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I, INTRODUCTION 

Recently Joos , 1 Weinberg, 2 and Weaver, Hammer and Good’ have developed 

new descriptions of a free particle with spin s = 0, l/2, 1, . . . . These de- 

scriptions are of interest because they are closely analogous to the Dirac theory 

for a spin-l/2 particle and they permit many of the well-known discussions for 

the spin-l/2 theory to be extended to apply uniformly to particles of arbitrary 

spin. Joos’ and Weinberg’ gave their description in a manifestly covariant form. 

Covariantly defined matrices as developed by Barut, Muzinich, and Williams4 

appear as the generalization of the Dirac yP matrices. Weaver, Hammer, and 
n 

Good’ gave their description in Hamiltonian form and found an algorithm for 

generalizing the Dirac Hamiltonian 2 l p + pm to any spin. The wave functions N 

in these two approaches are identical for odd-half-integral spin and are equivalent, 

in the sense of being related by an operator that has an inverse, for integral spin. 

In any case the wave function forms the basis for the (s, o) 9 (0, s) representation 

of the Lorentz group. Also the wave function corresponds to the momentum-space 

wave function used by Pursey’ in his treatment of free particles with spin. 

In later works most of the properties of the free-particle theory have been 

worked out. Sankaranarayanan and Good’ studied the spin-l case in detail and 

Shay, Song, and Good7 the spin-3/2 case. Sankaranarayanan and Good gave gen- 

eral discussions of the polarization operators6 and the position operators. 8 The 

density matrices for describing orientational properties were set up by 

Sankaranarayanang and by Shay, Song, and Good. 7 Mathews lo and Williams, 

Draayer, and Weber 11 obtained definite formulas for the Hamiltonian for any 

spin. 

The descriptions have been applied so far only to free particles and a question 

is how to include effects of an external electromagnetic field. In view of the 
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success in treating all these properties of the free particle uniformly for all 

spins, one might hope that electromagnetic interactions could also be introduced 

for any spin. The problem becomes more and more complicated as the spin 

increases, since a particle of spin s can have anomalous electric and magnetic 

multipole moments up to the 2 2s order. 

The purpose of this paper is to give the theory of a spin-l particle, described 

by a (1, 0) 0 (0, 1) wave function, interacting with an external electromagnetic 

field, and having arbitrary magnetic dipole and electric quadrupole moments. 

This new formulation turns out to be worthwhile because it permits a complete 

treatment of the system (some aspects involving the anomalous quadrupole mo- 

ment were not covered before). The results apply exclusively to spin one and 

have not so far suggested a generalization to higher spins. 

The spin-l particle in an external field was originally studied by Proca 12 

and Kemmer l3 using a lo-component wave function. Corben and Schwinger 14 

showed how to include an anomalous magnetic dipole term in Proca’s theory and 

Young and Bludman 15 took account of an anomalous electric quadrupole. Spe- 

cializing to time-independent electric fields and space-time independent magnetic 

fields in the anomalous quadrupole terms, they obtained a Hamiltonian of the 

Sakata-Taketani 16 type which included the effects of the anomalous moments,, 

This Hamiltonian formulation involves a 6-component wave function which has 

complicated Lorentz transformation properties. 

The wave equation given here is manifestly covariant and requires no auxil- 

iary conditions on the wave function. The equation has the usual symmetries with 

respect to space reflection, time reflection, and charge conjugation. It leads to 

the definition of a Lorentz-invariant inner product that includes a contribution 

from the anomalous quadrupole term. It was found that there are two possible 
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choices for the anomalous quadrupole term in this wave equation, each having the 

correct transformation properties and giving the same type of contribution in the 

nonrelativistic limit to order m -2 . 

For any spin of particle, the values of the normal electric and magnetic 

moments depend on the wave equation used to describe the particle. Here the 

normal magnetic moment g-factor is l/2 and the normal electric quadrupole 

moment is -li2/2m c . 22 The values of the 

Foldy-Wouthuysen type of transformation, 

tonian correct to order m -2 , 

II. THE WAVE EQUATION 

The equation is 

yap + raTa! + 2m2+(eh/12) 

moments were found by making a 

leading to a nonrelativistic Hamil- 

ys,ap Fc@ 

1 
+ tedm2) y6 ap TV , , m&/axJ “,,I e = 0 , 

where na! is -i( a/ax,) - eAQ! and F 
aP 

is the field tensor, 

(1) 

F 
@P = wpa) - wpp 

F.. =E 
1J ijk s, Fi4 = - Fqi = -iEi, F44 = 0 o 

The Latin indices run from 1 to 3, Greek from 1 to 4 with x4 = it. Factors of 

c andh are omitted. The constants A and q are real and adjust the sizes of the 

intrinsic moments, are six-by-six matrices 

defined in terms of 

0 

Y.. = 
1J -s.s -s.s. ij ij ~1 
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I 

(3) 

The other matrices are defined in terms of the yap by 

Ys,o!p = i [%* ) 7jiJ ’ 

Y~,(Y/?,~Y = paps rpv], + 2 %P %v 

(4) 

The operators no are understood to act on everything to their right, including the 

wave function. The gradient operators inside brackets, such as in the factor 

(aF,/&J, act on the fields FaP only and not on the wave function. The y 
d 

satisfy Yap = Ypa, and yola! - - 0 so there are 9 of them independent; the Y 
5,oP 

satisfy Y5,ap = - Y5,pa and there are 6 of them independent; the symmetry 

properties of Y6 crP ~1/ are 9 , 

y6,~/3,~~ = - y6,@! ,/JV ’ 

‘f-5, N~,Pv = yQ-wd , 

Y~,oL&w + y6,~~,v~ + y6,~v,pv. = ’ ’ 

and there are therefore 10 of them independent. One defines Y5 by 

Y5 = 

(5a) 

(5b) 

(SC) 

and then there are 36 independent Hermitian matrices 1, Y5, y @’ iY5 L!p ’ Y5,@’ 

‘6, G,PV 
which form a complete set of 6 x 6 matrices. Some other properties are 

given in Ref. 6. 
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III. LORENTZ TRANSFORMATIONS AND CHARGE CONJUGATION 

The Lorentz transformation properties of the wave function are assigned to 

be the same as that of the free particle wave function. However this assignment 

does not settle the question because in the free-particle discussion a different 

wave function is used in the Hamiltonian formulation than in the manifestly co- 

variant formulation. The relation between the two functions was given in Eq. (62) 

of Ref. 6. For the transformations continuous with the identity the two functions 

behave the same and the notation of Refs. 3 and 6 is used. For the reflections 

and charge conjugation there is a difference. As shown later, for zero fields 

Eq. (1) specializes to Weinberg’s formulation and so his assignments for the dis- 

continuous transformation properties are the appropriate ones to use. 

For Lorentz transformations continuous with the identity 

the wave function transformation rule is 

+I’ Go = W(x) 

where x1 denotes z’, t’ and the matrix A satisfies 

A-1 %pA = aacl “pv Ypv , 

A+ Y44 = 344 11-l , 

CA =A”C ) 

11-l y5" = y5 o 

(6) 

(79 

( w 

UC) 

(8) 
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Here C is the charge-conjugation matrix defined by 

where C, is a unitary matrix such that 

csg= -E*c . S 

The C matrix has the property 

CYij c-l = y?: , -1 = -1 
1J ’ Y4i ’ -YXi, ‘Y44’ =Y$4 l 

(9) 

(10) 

(11) 

In consequence of Eqs. (6) and (7a) every Greek subscript is a vector index in the 

same sense as in Dirac’s theory and Eq. (1) is evidently covariant. 

For the space reflection 

Xf = -xi, t’ = t 

Equations (6) and (7) apply again with A chosen to be r,40 Since ro and FaP are 

regular under space reflection the covariance is again evident. For this trans- 

formation, instead of Eq. (8)) the equation 

blr,A = -y5 (12) 

applies D By including factors of y, the parity noninvariant interactions can be 

formed. For example (eh*/12) y5 y5 op FaP is an electric dipole interaction term. 
, 

For the time reflection 

xi = xi, t’ = -t 

the wave function transformation rule is 

V(x’, = A[C~@>] * 
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where again A is y44 and satisfies Eqs. (7). By explicit calculation, using Aa 

andF 
QP 

to be pseudo, one verifies that Eq. (1) is covariant. 

The charge conjugate wave function is defined by 

fjF = (cl))* 0 (14) 

It satisfies an equation the same as Eq. (1) but with all terms proportional to e 

changed in sign. It follows from the fact that Eq. (7~) applies to all transformation 

matrices A that $I’ has the same Lorentz transformation properties as tip. The 

charge conjugation has period two, 

as follows from the fact that CECs is unity. 18 

IV. INVARIANT INTEGRAL 

Let the adjoint wave function be defined by 

F = 4+ Y44 l 

The equation it satisfies is 

(15) 

(16) 

where ?? o! is -i (3/axa) I- eA,! D It follows from Eq. (7b) that the adjoint function 

transforms according to 

p (x’) = 7 (x) A-l 

for isochronous Lorentz transformations and according to 

(17) 

it’ (x’) = [F(x) c-y* A-l (18) 

for time reflections. 
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If @) is a solution of Eq. (16) and fi(@ of Eq. (1)) then the current 

@(n) _ #Q) y 

cd% @ 

tn) 

- (eq/6m2) gQ) (aF 
PV 

/ax ) y 
P ~,Pv,PQ 

($4 (19) 

is conserved, 

aJr’“‘/axcy = 0 . 

Here the brackets in a factor like - -tQ) 
( > 
71 

P 
@ indicate that the ? 

P 
acts only on the 

$‘I’ . Evidently J($ n, (Q, 4 is a Lorentz four-vector so the integral of J4 over 

space is a time-independent Lorentz scalar. The invariant integral is therefore 

defined by 

(Q$~), &“) = i(4m)-lJ d3x [(F@?“) Y4P 4”) 

- (eq/6m2) qcQ) (aF 
PV 

/ax ) y 
P 6,~,/34 

lp . 1 
An alternative form is 

(@(Q), @(“) = i(4m)-‘/d3x [-2 #Q)’ Y44 yqini $(n) 

- (eq/6m2) q(‘) (aF 
PV 

/ax ) y 
P 6,w,P4 

$@) . 1 

(20) 

(21) 
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The factor is chosen to give the right nonrelativistic limit, as discussed below. 

As in the Dirac theory, the anomalous magnetic moment term does not influence 

the invariant integral formula. The integral is not positive definite. 

For the time-rate-of-change of matrix elements of any operator T, one finds 

that 

d (,(“, T @(n))/dt = i (4m)-l/d3x $(Q) [W, T]-$(m (22) 

where W is the operator inside the square brackets on the left in Eq. (1). This 

applies in general, even when the fields and T are time dependent. Equation (22) 

can be easily derived by operating on the equation 

W (T @@)) = [W, T] _ @) 

from the left with $(‘), on Eq. (16) from the right with (-Tfi) and adding; the terms 

on the left can be rearranged into i times the divergence of a current Jo built from 

q(Q) and T ,@). From Eq. (22) it is seen that matrix elements of a symmetry 

operation of the system are time independent. The point is that if T is a symmetry 

operation and $(n) satisfies the equations of motion then T @(n) also is a solution. 

Then W fi@) and WT $(n) are both zero and the right-hand-side of Eq. (22) is zero. 

V. NONRELATIVISTIC LIMIT 

As was first emphasized by Foldy and Wouthuysen in the spin one-half case, 

the nonrelativistic approximation corresponds to an expansion on m-l, For a 

Dirac particle they developed the series by making unitary transformations of the 

Hamiltonian which removed odd parts of the Hamiltonian to higher and higher 
. 

orders of m -I. Their process cannot be applied directly here because there 

isn’t a Hamiltonian to begin with, In the Dirac case it is appropriate to consider 

unitary transformations because the invariant integral is J d3x @(‘)? @(@ and the 

unitary transformations preserve this form into the nonrelativistic limit. With 
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the different invariant integral that applies here, Eq. (21), it is not appropriate 

to keep wave function transformations unitary. The basic idea used in finding 

the limit here is to take out the rest-energy part of the wave function, make a 

non-unitary transformation that removes odd parts of the wave equation in a 

certain order, and then expand in powers of m 
-1 e 

The first step is to convert the wave equation, Eq. (1)) into a nonrelativistic 

type of notation. The appropriate matrices are 

0 1 

@= y44= 1 0 ’ ( ) 
a.=iy 1 44 yi4 = - y5si 

= 
s. 0 1 

( ) 
e 

0 - s. 1 

In terms of them the y5,0p matrices are 

‘5,ij = -6r ijk ‘k ’ 

‘5, i4 = -6~~ . 

The y 
6, aP,w 

type of matrix is easily converted into terms of 2 and 2 by using 

the result 

k ~P,Yv 
= -P/12) y5,/Jv + I 

+4(8 a/J % -6 o!v $3/L) - 4%!ppv y5 ’ 

(23) 
It is assumed that the external fields F 

Q!p 
satisfy the- homogeneous Maxwell 

equations 

c 0rpp.J aFcYp’axp = O 

so the third term in Eq. (23) doesn’t contribute in the wave equation. The second 

term in Eq. (23) leads to terms proportional to (aFav /ax,) in the wave equation; 
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this type of term is retained so that all the results below apply even in the case 

when the wave function overlaps the sources of the external fields. With this 

notation change and after multiplication by m -2 the wave equation reads 

- (e/m2) (P-I-h) 2. (EJ+iy,EJ + 2 

(24) 

The second step is to make the substitution 

+ = exp [(2 0 $n> - imtJ til , 

multiply through by 

exp [- (g 0 z/m) + imt] , 

and expand for small m -1 . The effect of the time-factors is just that 7r4 becomes 

im -k -3 7r 4e The expansion needs to be carried out to order m to get the quadrupole 

contribution. The calculation leads to 

L 
(1-p)+2i(7r4/m) (l-t@-2i(g*z/rn) (7r4/m) + 2i(7r4/m) (g*drn) (1-p) + (r4/m)2( l+@ 

+(n2/m2)(W) - (e/m2)(ptA)~- (E+iY5E,) + i(‘y-+)2(~4/m)(l-p) - 2i(a*~/m)(~4/m)(~.~m) 

+ i( r4/m) (g -2/mj2( l+p) - (g *z/m) (n4hQ2( 11-P) + (r4/m)2(g -z/m) (1-p) + (4/3) (2 l z/m)3 P 
- ((u-&n)(a2/m2)tl+P) + (~2/m2)(g-~hn)(l-P) + (e/m2)(g-~hn)(P+A) E*(@iy,g) 
- (e/m2)(p+A) g*(EJ+’ iy513)(g*~/m)+i(eq/m3)(s s +s s 

pk kp -4/3spk) y5 atBp+i y5E#a%] b$ = o o 

The odd terms only begin in the m -2 order O (25) 
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As a third step one makes a similarity transformation so that the same 

equation holds but with /3, y5, g, I/I,- replaced by p’, v;, g’, @i where 

-1 0 
p’ zz ( ) 0 1’ 

0 1 ’ = 
y5 10’ ( ) 

The point of this is that, if $i is considered as two three-component functions, 

then the upper part of Eq. (25) is 

2Gs -I- O(mm2) es + O(mm2) *L = 0 , 

where O(m-2) denotes terms of order m -2 
. The small components are thus of 

order m -2 compared to the large. There is considerable simplification in the 

lower half of Eq, (25), leading to the result 

1 4i(n4/m) + 2(n4/m)2+ 2(n2/m2) - (e/m’)(l+Qg* B, 

- 2i(Ez/m) ( r4/m) (52/m) + 2i(r4/m) (ga/m? 

+ i(e/m2)(&*7r/m)( 1-h) k Et- i(e/m2J(l+h) 20 g(kE/m) 

- (eq/m3) ( spsk+sksp- 4/36pk)taEp/aXk) eL = ’ o 1 
- 13 - 

(26) 



This can be rearranged into the form 

(-ir4 - (2m)-’ $ fi, = (H-e@ tiL 3 (27) 

where H is given by 

H = e$ + ( r2/2m) - (e/4m) ( l+A) 20 B, 

+ (e/8m2)(l-k2q)(sisj+s j s i - 4/3 sij)(aEj/aXi) 

- (e/8m2)(1-A)s-*(x x~-~x~) + (1/6)(e/m2)(1-A)(V*lZ) 9 (28) 

and where $J is -iA4 . 

As a fourth and final step in finding the nonrelativistic limit, the equation is 

reorganized into Hamiltonian form. If the function W is defined by 

-2 

$f= 
[ 
l+ (2m)-’ (H-e+) 1 eL 

then, to order m , the $ term cancels out, Eq. (27) becomes 

i&&/at = H* , (30) 

and &is identified as the nonrelativistic wave function. 

It is clear that, from what has been said so far, this identification is not 

unique. For example, fiL might be taken as the nonrelativistic wave function and 

the ?T: term manipulated into a contribution to the Hamiltonian in the m -2 order. 

However the identification above is supported by the limiting value of the invariant 

integral.. Starting from Eq. (21) and disregarding terms of order m -3 , one finds 

($‘tQ)d’tn’) = i(4m)-l/h3x [2i@(Q)t,.,$n) + k4!$QJ)t (l+p)@(n) - @(“)? (1+-P, ?r4@(ril 

= 

= / d3x wfQ)t ,tn) o 

- 14 - 
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Therefore, except perhaps for further unitary transformations, ti is the correct 

nonrelativistic wave function. 

VI DISCUSSION 

The magnetic dipole term in H can be written as -g(e/2m) & B, where the 

g-factor is (l+E\)/2. Thus for a particle described by Eq. (1) the normal g-factor 

is l/2, the same as for a Dirac particle. The conventional form for a spin s 

electric quadrupole interaction term is 

Q dE. 
H zz- 

eq 4s(2ZZ - 1) (sisj+sjsi - 2/3Sij s2) & , 
j 

where Q is the quadrupole moment. By comparison with Eq. (28) one sees that 

the quadrupole moment of this particle is 

Q = (-1+ A+ 2q)/(2m2) , 

the normal moment being then - 1/(2m2). 

An alternative way to include the anomalous quadrupole contribution is to use 

the term (qe/m2)(aF,dax,) rp $1/ in place of the ys term in Eq. (1). The in- 

variant integral can still be defined all right and the same nonrelativistic limit applies 

except for a different factor in the VoE term. NN However the type of quadrupole 

term used in Eq. (1) has a universal application because the y 
6, aP,w 

matrices, 

Lorentz type (2,0) 8 (0,2), exist for all spins greater than one-half whereas 

matrices like y,, , Lorentz type (1, l), exist only for spin one. 

The connection between this formulation and other spin-one free-particle 

formulations is found by specializing Eq. (1) to the case e = 0 and rewriting it as 

(32) 
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where PQ! is -is/ax@. Here one can operate with -P P y 
a! P@P 

and use the matrix 

property 

This leads to 

(P,P,j$b = (Papa + 2mT2+ 

and so gives the Klein-Gordon equation 

PoPa+ = -m2@. (34) 

Furthermore this combines with Eq. (32) to yield Weinberg’s equation2 

(35) 

Thus Eqs. (34) and (35) together are equivalent to Eq. (32). In Ref. 6, Section 6, 

the relations between Eqs. (34) and (35) and the other free-particle spin-one 

formulations were given. 

Just as in the spin-l/2 case, the polarization of the spin-l particle can in 

principle be followed throughout the interaction. One defines the four-vector 

polarization operator by 

TP = (i/12m) E pvpcr y5, vp TIT 

= t-i/6@ y5 r5 luc+ nc . , (36) 

This is a gauge-independent notion and it fits in with the scheme of free-particle 

polarization operators. 
6 The fourth component is 

T4=(i/m)g*a ; 

for a particle in an electrostatic field, this is (ip/m) times the helicity operator 

(s-0 x/p) which is central to the discussion in the next section. 
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VII. APPLICATION: SEMICLASSICAL SOLUTION OF THE GENERAL ELECTRO- 

STATIC PROBLEM 

As an example of the usefulness of this theory the semiclassical approxima- 

tion for the solutions of Eq. (1) will be set up in the case of a spin-l particle in 

an electrostatic field. This applies for example to a deuteron moving relativis- 

tically through laboratory fields. The approximation is the generalization of the 

WKB method to the relativistic spin-l case. Some of the ideas are the same as 

those developed by Pauli 21 in the relativistic spin-l/2 problem. The approximate 

solutions are expressed as linear combinations of functions that have, in first 

approximation, definite helicities and a set of differential equations is given for 

the expansion coefficients. The anomalous quadrupole moment term does not 

contribute to the wave function in first approximation. 

The equation to be solved is 

+ +2m2c2+eAia!*E C Nhr 

eii3 

+ m2c3 ’ ‘5 ‘jke 

2 
-ix q (BiSj + SjSi - $ Cij AL 

m2c3 
axiaxj (37) 

This is just Eq. (1) specialized to the case A, = 0, A4 = i$ time-independent. The 

factors of h and c have been reinserted and it has been written in terms of the 

s- and /3- rather than the y-matrices. 

The results are conveniently expressed in terms of the solutions of the free- 

particle problem. In this case one considers solutions of the form 

$ = w exp 1% -l(p* E-Et)] e (33) 
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The equation determining w is then 

C p2tI+P) - 2 (g-g)2 /3 - 2 (E/c) go&p - (E/c)~ (l+p) + 2m2c2 3 w=o 0 (39) 

By looking at the problem in the rest frame, & = 0, one sees clearly that there 

are six solutions for each fixed p N0 It is easy to find them by supposing they are 

eigenstates of the six-by-six helicity operator, say 

(ZE/P) w=uw , (40) 

where u=O,*l. Then Eq. (39) reduces to a two-by-two problem. There are 

solutions only if 

E = eW (41) 

where E= f 1 and W is an abbreviation for c(p2 + m 2 2 112 c ) , the positive root. The 

particle/antiparticle solutions are identified as E = f 1. The final formulas for 

the solutions w C,(T(~) of the free-particle problem are 

w&j = -$ 
uO 

,o 
L l 

(W=P)u*I \ 
’ 

uO 
we, *&I = 

22mc2 
c ) (W=P)u*l ’ 

(42) 

where u,(g) are the solutions of the three-by-three helicity eigenvalue problem 

normalized so that 

(E- E/P) u=uu , 

In the representation (s.). 
1 Jk 

= i E.. 
Ilk 

explicit formulas for these functions are 
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The factors in Eqs. (42) are chosen so as to give a normalization appropriate to 

Eq. (21). If the q-term can be disregarded and if v has time-dependence 

exp (-ih 
-1 Et) then 

where 

(4% 

The normalization is such that I = E/mc2 for the free-particle solutions. 

The semiclassical approximation is obtained by substituting 

$ = a0 -t- (B/i) a1 + . . . 
[ 1 exp (is/LPI) 

into Eq. (37) and formally obtaining a solution to first order for small A. Appli- 

cability of this approximation is discussed below. In terms of the abbreviations 

g= 7s , E = -%/at 

(this is a different use of the symbol g than before) the terms in h give 

C P2( It-P) -, z(~.p)~p - 2cW1(E-e$)g*p@ - c-2(E-e$)2(1+P)+2m2c2 1 a9 = 0. (45) 

Solutions of this equation are known by comparison with the free-particle problem, 

Eq. (39). According to Eq. (41) it is necessary that 

E - e@ = EC (p2 + m2c 3 l/2 . (46) 

In the following only the particle solutions, E = + 1, are considered; then this is the 

equation for the classical Hamilton-Jacobi function S. Also only the solutions with 

definite energy E are found so that 

s=s-Et , (47) 

where 3 is time-independent. This means that p is Es and is also time-independent. 

Suppose the classical problem is solved so that s as a function of 5 and three constants, 
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values of integrals of the motion, is known. The only problem then is to deter- 

mine a 0’ Equation (45) implies that 

ao = c 
u=O,*l *ow*lo- , (9 (48) 

where A, are three functions of position still to be determined. The limitation 

on A, is that the approximation should be solvable to next order to get a1. Thus 

Eq. (37) for the terms in I? gives 

- 2(zz)2p-2c -’ (E-e+) g*EP - cm2 (E-e$)2 (11-p) + 2m2c2 1 a1 

(4% 

(Even in this order, the q term does not contribute.) The matrix of coefficients 

of a1 is the sarne as in Eq. (45) and has zero determinant. Equations (49) have 

a solution for a1 only if the vector on the right is orthogonal to the solutions of 

the homogeneous equations formed with the Hermitian conjugate of the matrix 

on the left. Taking that Hermitian conjugate is the same as replacing (E-e+) by 

-(E-e+) so those solutions are just w -1, $) and the condition for solvability is 

Wtl,T [(p.v+ v~~)(~+P) -2p(s+ sep+s*p s-v) - 2c-‘W#WV P 
Nm -h. -N-m NM-- ‘VW 

-1 - ec E*o!P-ec NN -‘Ag-g ~A,w+~ u =O . 1 , 
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Here 1 acts on everything to the right, including the 5 dependence in p. Expressed 

as differential equations for A, this reads 

c WT -1 T 2p(l+P) -2PP(7-+@)+2c L 
-1 

we2 

, 
1 W+l (T l 5% , o- 

Here W still denotes c(p2+ m c ) 2 21/2 . By using the explicit formulas for w6 u, 
, 

Eqs. (42)) one can verify that the left-hand side simplifies to 4p. V A . 5- T Let 

Eq. (50) be written as 

(51) 

where the coefficients C 7u can be found given the potential $(xJ and choice of 

principal function S. Since at every point p is normal to the surface 3 = constant, 

Eqs. (51) determine Ar everywhere if the A7 are given on one particular surface. 

In this respect the semiclassical approximation is like the classical problem in 

which one can have various numbers of particles streaming on the various allowed 

~ trajectories. For any particular orbit s(t), since p is c N -2 (E - e$) dxJdt, Eq. (51) 

is a set of total differential equations 

(E -e+) dAr/dt = c2 cC,,A, 
U (52) 

which determine the amplitudes A ~ if they are known at the start. 

In the one-dimensional problem, when $ and s depend on a single coordinate, 

say z, one can solve for the A7. explicitly. The principal function is 

S =$pdz - Et 

where 

(53) 

(54) C 
l/2 p=C? -’ (E -e$J2 - m2 c4 1 
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for particles moving in the positive z-direction. Only the z-components of the 

spin matrices occur in Eq. (50) so it is appropriate to use the representation in 

which sz is diagonal. In place of Eqs. (43) one has 

and their derivatives are zero. 

Equation (51) uncouple and simplify to 

P(d.Ar/dz) = - ;*Ttdp/W , 

the A-term dropping out. The amplitudes are then just p -l/2 and the semi- 

classical solutions are 

Go = (z)l” (11) exp ix-’ (jpdz - Et) , (559 

exp iliB1(jpdz -Et) . (55b) 

These are eigenstates of the helicity sz, as are the exact solutions of the electro- 

static one-dimensional problem. 

Equation (44) is still appropriate for discussing the normalization, although . 

there, p denotes -i A 1 whereas in Eqs. (55) p is given by Eq. (54). To first 

order in Fi they amount to the same thing and I is E/cp. This is a sensible result 

since it is inversely proportional to the classical velocity. 

The semiclassical approximation is expected to apply when terms marked by 

higher powers of iEi are smaller than those marked by lower powers. Typically 

the AI& terms are considered one higher order than p2 in deriving Eqs. (45) and 
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(49). Using Eq. (46) and considering E - e$ of order mc2, one finds that the 

relative size II~z/P~ is of order (II eEf /m2c3), where Ef is the size of the elec- 

tric field. This parameter also measures the size of the g l g terms relative 

to P2, as long as h is of order unity. Another parameter enters in when the q 

terms are considered. Their size relative to the 2 l g terms is about 

(RqYEf /mc Ef 1. The approximation is expected to apply, then, when the above 

two parameters are small. For example, a deuteron has A= .7, q = 25 and if 

it moves in laboratory fields, Ef 2 lo4 esu, EEf /Ef z 1 cm -1 , the first param- 

eter is about 10 -17 and the .second about 10 -13 . The approximation would surely 

apply in that case. 
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