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ABSTRACT 

Starting from Lagrangian field theory, we derive the interaction 

Hamiltonian of a composite system with an external electromagnetic field. 

Upon this basis, we develop the theoretical foundations of the atomic Zeeman 

effect, with specific reference to the fine structure and Lamb shift measure- 

merits. We also explicitly verify the Drell-Hearn-Gerasimov sum rule and 

the low energy theorem for Compton scattering for composite systems. An 

essential result of our investigation is that the interaction of a loosely bound 

composite system with an external electromagnetic field can be well approxi- 

mated by the sum of the relativistic interaction Hamiltonians appropriate to 

the free constituents, but that in general the non-relativistic reduction of this 

Hamiltonian does not yield the sum of the corresponding free reduced (e. g. 

Foldy-Wouthuysen) Hamiltonians. New features of- this work include an ex- 

tended Salpeter equation which includes interactions with an external electro- 

magnetic field, explicit wave packet solutions to a two-body relativistic equa- 

tion, and a calculational approach to perturbation theory with composite systems 

in which sums over intermediate or final states preceed non-relativistic approxi- 

mations. Our explicit calculation of the DHG sum rule illustrates its super- 

convergent nature. 
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Section 1 
Intr oduc t ion 

The most familiar objects of physics - atoms, nuclei, and perhaps 

even elementary particles - are composite systems. Yet one searches the 

literature in vain for an adequate practical treatment of the electromagnetic 

interactions of such systems, taking into account the essential complications 

of relativity and spin. In this work’ we derive from Lagrangian field theory an 

expression for the interaction Hamiltonian of a composite system with an ex- 

ternal electromagnetic field. For simplicity, we consider two-body systems, 

and, in particular, systems in which the particles can be regarded as inter- 

acting throughan instantaneous Bethe-Salpeter kernel - which is to say, inter- 

acting through a potential - and we investigate the corrections to this approxi- 

mation. We find that for such systems the external electromagnetic interaction 

Hamiltoniancan be well approximated by the sum of the relativistic interaction 

Hamiltonians appropriate to the free constituents, but that the non-relativistic 

reduction of this Hamiltonian does not yield the sum of the corresponding re- 

duced (e. g. Foldy-Wouthyusen (F-W)) Hamiltonians if the constituents have 

spin. The crucial error in deriving F-W additivity is in neglecting the spin 

transformation of the composite state wavefunction associated with the center 

of mass (CM) motion. 

The correct non-relativistic reduction of the interaction Hamiltonian 

for a composite system of two spin + particles in an external electromagnetic 

field takes the following form2 
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The terms proportional to (MTma)-’ or (MTmb)-’ are correction terms to 

F-W additivity. 

We were motivated to undertake this investigation in attempting to 

understand certain difficulties in connection,with the Drell-Hearn II) - 

Gerasimov (2) (DHG) sum rule and the low energy theorem for Compton scat- 

ter ing (2 ) . The low energy theorem for Compton scattering is a fundamental 

statement for electrodynamics: given the total mass, spin, charge, and mag- 

netic moment of any discrete system, the photon scattering amplitude is 

determined to first order in frequency. As a consequence of the low energy 

theorem, the DHG sum rule for the photoabsorption cross section is obtained 

by assuming an unsubtracted dispersion relation for the spin-flip forward 

amplitude. Again, the result depends only on the spin and static properties 

of the target system - no distinction is made between elementary and com- 

posite systems. 

The calculation of Barton and Dombey e), which purported to show 

that if the DHG sum rule holds for nucleons, it must fail for bound states 

containing a nucleon, thus seemed very suspicious. If this calculation had 

been correct, the only way to reconcile the DHG sum rule with the low 

energy theorem would have been to assume that there is an additive con- 

stant, sometimes called a rP subtraction at QO If, present in the dispersion 
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relation for the spin flip forward Compton amplitude f2 for a composite system, 

even if it is not present for the constituents. Such a state of affairs would be 

physically most unreasonable, since a “subtraction at 00~~ is associated with 

the asymptotic behavior of f2 (w) for I w I - 00, and the asymptotic behavior of 

the Compton amplitude for the composite system should be no worse than that 

of the sum of the amplitudes of the constituents ( cf. Section 7D). 

In this paper we show that the calculations in ref. (&) are incorrect 

because of the unjustified assumption, which pervades the literature (5), that 

the electromagnetic interaction of the composite system can be calculated 

from the sum of the Foldy-Wouthuysen Hamiltonians of the constituents. In 

fact, such a Hamiltonian does not yield.the correct low energy limit of the 

Compton scattering amplitude3 for the bound system, nor does it have the 

correct Thomas term appropriate to the system’s-momentum and spin4. We 

shall show that when the spin transformations are properly included the new 

non-relativistic interaction Hamiltonian (1.1) emerges, the low energy theorem 

is not violated, and the DHG sum rule for composite systems is verified. 

After this work was completed, we learned that some of these results have 

also been obtained using quite different methods by H. Osborn (5). 

The outline of the paper is as follows. We begin in Section 2 with a 

derivation of the relativistic electromagnetic interactions of a two-particle 

composite system. In order to do this, we return to the definition of the 

electromagnetic current as given in Lagrangian field theory. The matrix 

elements of the current are then readily expressible in terms of Bethe- 

Salpeter (I-) (BS) amplitudes. In the approximation in which the BS inter- 

action kernel is replaced by a neutral instantaneous kernel (i. e. potential) 

in ladder approximation a relativistic interaction Hamiltonian emerges. For 
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Salpeter’s (31) equation which includes interactions with a static external - 

field. In fact, it turns out that a Yf Breit” Hamiltonian extended to include 

external electromagnetic interactions leads to the same results as the BS 

approach up to terms of relative order < >, where U is the 

interaction potential. 

Using these procedures, the corrections to the impulse approxi- 

mation can then be readily traced. In Section 3 we apply these results to the 

analysis of the Zeeman spectrum in hydrogen-like atoms, in order to obtain 

estimates of radiative and reduced mass corrections not already included in 

standard calculations. We emphasize that the comparison of theory with ex- 

perimental measurements of the Lamb shift and fine structure intervals in 

H and Drequires a precise theoretical extrapolation of the experimental re- 

sults to zero magnetic field. Thus care in the calculation of the Zeeman 

effect is as essential as it is in the calculation of the zero field energy levels 

themselves. 

In general, we require matrix elements of the current connecting 

composite states of different total momentum. The Lorentz transformation 

properties of the Bethe-Salpeter and time-independent Salpeter wavefunctions 

are derived in Section 4. In addition, a very convenient relativistic two-body 

bound state wavefunction, correct to first order in the binding potential, is 

given. The effect of the spin transformations, resulting from boosting the 

CM wavefunctions to other Lorentz frames, is shown explicitly. 

The foundations are thus prepared for the calculation in Section 5 

of the photo-absorption matrix elements required for the DHG sum rule. 

Two complimentary derivations of the sum rule for composite systems are 
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given. The first derivation is in the spirit of numerous atomic and nuclear 

physics calculations and shows how such treatments - including that of ref. (4) - 

must be modified when relativistic effects are included properly. The second 

method of derivation is based on closure of relativistic states and is more 

elegant and instructive. AS is discussed in Section 7C, this technique ex- 

presses the DHG sum rule in the form of a superconvergence relation. Our 

calculations are given for realistic models of bound states of two spin4 par- 

ticles or of a spin 3, spin 0 combination. The second method of derivation, 

however, shows that the sum rule only requires the correct external electro- 

magnetic interaction of the CM motion and total spin; hence this method of proof 

may be readily generalized to other bound systems. 
- In Section 6, we explicitly prove the low energy theorem for a com- 

posite system. The correct spin terms in the non-relativistic reduction are 

again essential to the calculations. We also obtain the effective Hamiltonian (1.1) 

(which includes the negative energy state contributions which enter through 

second order perturbation theory), to be used as the non-relativistic “large 

componentY1 reduction of the electromagnetic interaction of the composite 

system instead of the usually assumed, but incorrect, F-W form. We d is - 

cuss in Section 7A how the correct interaction can be 

derived in an alternative way through a modification of 

the F-W procedure. 

We recommend that the reader interested chiefly in calculational 

details, as presented in the derivation of the DHG sum rule or the calculation 

of the low energy limit of the Compton amplitude for composite systems, 

should proceed directly to Sections 5 through 8. 
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Section 2 

The Electromagnetic Interactions of a Composite System 

One of our purposes in this work is to derive the electromagnetic 

interaction Hamiltonian for the two-body system as it is prescribed by the 

axioms of Lagrangian field theory, For example, starting from the definition 

of the electromagnetic current for two fermion fields5 

j P (x) = e 7 rta)$ 
a (a) P (a) + ebV(b) Y;b)G (b) ’ (2 .I) 

we shall show that in an approximation which is often physically reasonable, 

the interaction Hamiltonian is the sum of interaction Hamiltonians appropriate 

for free particles: 

H em = e y ta), ta) Aqx 
a0 CL a 

) + e 

where A’(x) is the external elec,tromagnetic field and Hem is an operator in 

the two-fermion Hilbert space which can be time dependent (x1 = { = t). I 

Eq. (2.2) is usually assumed without proof in quantum-mechanical treetments 

of a two-fermion system. In general, however, expression (2.2) is not exact, 

and we shall discuss the source of the additional terms for Hem below (after 

Eq. (2.33)). 

A. The Bethe-Salpeter Equation 

Before we proceed to a derivation of the interaction Hamiltonian we 

shall review the application of the Bethe-Salpeter (BS) equation (9 ) and S-matrix 

perturbation methods to the two-fermion system. The wavefunction of each 
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> (corresponding to a bound or scattering system) satis- two-fermion state In 

fies the BS equation6 

(ia (a) 7 (b) 1-1 
P (a) - ma)(iap y(b) - mb)x n(xa’s) = Gx J(xap %> (2.3) 

where 

(4 03 
Xn(Xa,~)’ < 01 T($ (x,)d txb))I n’ . (2.4) 

The center of mass coordinate dependence in the eigensolutions can be ex- 

hibited since the states I n > are eigenstates of total fourlnomentum: 

- 

xn(xaJq = e 
- iP; X 

x Jx) 

with 

x = Taxa + Tbxb 

x=x a-33 

7 = a 
ma/(ma + Mb) , ‘b = mj-,i(ma +“b, 

In “ladderl’ approximation one takes. 

GXn = G(xa- %)Xn(xa- xb) 

(2.5) 

(2.6) 

(2.7) 
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although in general the BS equation (2.3) includes (and we will consider) self- 

energy corrections and irreducible kernels in addition to the kernel G(xa - xb) 

from single boson exchange. 

The most practical application of the BS equation has been the cal- 

culation of the energy levels of the hydrogen atom. In lowest, non-relativistic 

approximation - the exchange of Coulomb photons in ladder approximation 

withmejM -0 P - the Schriidinger equation for an electron in a Coulomb 

potential emerges. Figure (1) illustrates the contribution of other irreducible 

kernels. Using the techniques of Feynman, Salpeter e), Erickson and Yennie 

(10), and others, the energy levels can, in principle, be calculated to any 

degree of precision. In practice, one uses as expansion parameters 

me/M , R 
P 

/a 
P 0 (ratio of proton rms radius to Bohr radius), (I! (from vacuum 

polarization and self-energy kernels), as well as Zo! and Zo! log Za! (from the 

binding interaction). 

B. The Composite System in an External Field 

The effect of an electromagnetic field Ap(x) on the two-fermion system 

may be calculated in the usual way from the reduction of the S-matrix in field 

theory, using as a perturbation the Heisenberg interaction density 

XI(x) = jp WAp (x) (2.8) 

with jcl(x) defined by (2.1). Examples are 

(1) Scattering of a composite system in a static external field in 
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lowest order: The linear term in the S-matrix is 

S(l) = -2ni 6 (En- Em) n lUe,(O,T) I m > d3x. (2.9) 

(2) Compton scattering on a two fermion composite system, to lowest 

order in Q. 

s(2) = $Jd45/d4x2 < f,PF’l T(xI(xl), 5(x,)) 1 i,x 7 > 

= _ .:,./ d4x$j4x2 ;“‘x2,- k*xl) (2.10) 

- 

-c f I T( c r$), 2. 7(x2)) I i > . 

The radiation gauge is used for the photons. We have dropped an equal time 

term in reducing out the photons from the states since this gives no contribu- 

tion when the exchanged boson is chargeless. Inserting a complete set of 

states and integrating over xlo, x2o, one obtains a Lippman-Schwinger form 

Sc2) =-2ni 6(E SW- E 
gii - jgf .z2 

i 

(2.11) 

iflF1.-j-(Z2)I j >< jIF.T(%)l i> <flF~‘-f(ZZ)lj >< jI-G.T(G2)Ii > 

Ei+“- Ej + it- 
+ Ei-uI - Ej + ie . 
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Here j’“(s = jP(O, 3, I i > and I f > represent the initial and final bound 

system in different four-momentum states, and I j > represents all possible 

states connected to I i > or I f > through one photon emission or absorption 

(conserving three-momentum) and includes disintegration channels. The 

method of Low (5) can be applied at this point to establish the low energy 

theorem for Compton scattering. The direct derivation we give in Section 6 

is based on an explicit form for the currents for the two-body system. 

As is apparent from our examples, explicit calculations in pertur- 

bation theory will require matrix elements of the electromagnetic current 

between composite states. The general method of calculating such matrix 

elements has been discussed by Mandelstam @). A simple result can be 

obtained for the two-fermion problem in ladder approximation [ Eqs. (2.3), 

(2.7)] : 

< n I jp(x) I m > d4xb ?intxf %) $%a@)’ y@) - “b)x ,tx, xb) 

(2.12) 

- ie 
/ 

(b) . d4xa-!itxa, x) ycl (13 (a). 
b ~~~)-m~)x,tx,J) 

where the conjugate wavefunction is 

xntxa9q = < Ill T(F(x,) ;G(xb)) 1 0 ’ * (2.13) 

In terms of Mandelstam’s graphical analysis, this’result for jP(x) in ladder 

approximation corresponds to Figure 2. In general, j,(x) is modified by addi- 

tional terms when other irreducible kernels or self-energy corrections are 
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included in the BS equation. (See Figure 2b) Such terms correspond to ano- 

malous moment contributions, form factor corrections, exchange currents, 

etc. The amplitudes x n are assumed to be normalized (g , lJ) to give the 

correct total charge: 

/ 
< n I j,(x) I m > d3x = (ea+ eb)dmn. (2.14) 

C. The Instantaneous Ladder Approximation 

We will now discuss a further simplification of the electromagnetic 

current of the two-fermion system made possible if the BS (ladder approxi- 
- 

mation) kernel is instantaneous: G(xa- xh) =ig(Ta-Tb)6 (xi - <). This is, of 

course, a good approximation in the low energy or weak binding region and 

corresponds to a description of the two-body interaction in terms of poten- 

tials’. For the instantaneous kernel the x0 integration in (2.12) can be per- 

formed and, as we shall see, yields an effective interaction Hamiltonian. 

We must first recover some results of Salpeter @) for the case of 

the instantaneous kernel, but without specializing to the CM frame. Intro- 

ducing total and relative momentum variables, 

p =p, +Pb 

(2.15) 

P = ‘pa - TaPb 
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the BS equation in momentum space is8 

QB). (T a P+p) - m ][ $b+TbP-p) - mb]# @,,pb) = & a / 
d4p1&-$ )+ (P;,Pi) (2.16) 

with 

MC&Pi,) = 
/ 

d4x d4x 

b 
eipk’ xa + @ i’ “b 

xtxa, xb> = J, t Tap+, 7$-p’) 

g(g)= 1 / d3xe 
.-- 

m3 

- lp’xg@. 

We define free particle projection operators 

A”,Ga) = IE,G,) It Ha6a)l/2EaGa) 

(2.17) 

EaGa) = pa + may Haga) “a’pa ‘pa ma p-3 

and obtain the four equations 

[‘a’0 - ‘aEaFa) ’ p()][7bp0 - “b%Gb) -PO] # s s @  ,P ) = 
ab a b 

(2.18) 
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for 

# 
‘aSb 

=f 1. 
a a ‘a’ ‘b 

One is then able to integrate over p. 9 

c? pO 

‘a’ ‘b 
(g,,) = 

s -co 
dpo es s 

ab 
(pa+,) 

(2.19) 

co r 

= 
s 

‘aSb 

-00 dpo [Tap0 - saEaGa) + PO + id sal[TbPo - sbsi$bb) - PO * ‘* ‘b] 

- - % 
2ni r . 

- a’ -1 “by-l’ PO- saEaGa) 1 - S&&,) ‘aSb 

Adding these equations together gives Salpeter’s equation (E) 

[pO 
po-- 

- HaGa) - H&?&l 8 @,p) = 

(2.20) 

(“;nb, - a b (a) 03 
A.AJYo Yo s d3p’g6-T)q pO $, @, 

a consequence of the instantaneous kernel. Combining (2.18) and (2.19), the 

p. dependence of $@,,p,) is completely determined. We define an auxiliary 

wavefunction 77 6; F) where 
P 

[PO - H a(p;) - Hb(p;)] rl “g F) = $),y;b) 
f 

d3p’ g&g) (2.21a) 
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Then 

# tP ,P )= 
‘ash a b (2.21b) 

1 pO - saEaGa) - sbEb&,) 

- 2ni [Tap0 - saEaga) + PO + i6 sa][TbPO- sbEbFbb) - PO + i6 sbl 
is). 

D. The Interaction Hamiltonian 

- Assuming ladder approximation and an instantaneous kernel for the 

BS equation we will now be able to eliminate the relative time dependence in . 

the matrix element of the current (2.12). We shall express the result in terms 

of the matrix element of the interaction Hamiltonian between two composite- 

state wavefunctions. 

s d3x < n 1X1(!& 0) I m > 

= - i eaJd3xJd4xb X,(x, xb) r(ai A(s(ia(b). y(b) - mb)xm(x,xb) xo= o (2 22) 

. 

= - 27Tiea /““Ph/d3Pa /d4Pbiln(pk. p,) ‘Y(a)* Apa- <a)(‘+b).Pb- mb)+m@a>pb) 

where, for simplicity, we only display the ea contribution. 



Concentrating on the pi integration, 10 

, 
- 2ni 

/ 
dp; i$ @;, Pb) yila)h’@)* P b - “b) irnba’ pb) 

= xi n-t 
TSf a’ ‘b 

ipt $i) ,(a) ,(a) q,m 
, 

s s s’ 
0 CL s s la3 

aba ab 
(2.23) 

co 

/ 
$0 

(Pi- S;E; - SbEb)(PF- SaEa- sbEb)(’ l/2 Ti) 
. 

--oo 
sHEk+pb + i6si) (TbPz - sbEb - p. ’ + i6sb) (Tap:- saEa fp, + i6 sa) 

where 

Pb - PO = Tb@go - pa,) = T (P” - PO”) . b o 

The integral in (2.23) equals sa if sa = So = sb, equals 0 if sa = sH = - sb, and leads to terms proportional 

to the binding potential g(q) for sa # sg. The complete result for the B S equation in ladder approximation 

with an instantaneous potential is 

(2.24a) 
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where 

ta). AGa) A(f) _ A!’ eayo (a) (a),(a)* A(;,) A- 

+ Ap)eay!)y(a). A (<a) A?) 1 
PF- 

yta) ytb)g (?;) + (h. c .,n 
P;+E,+E’a ’ ’ 

-m)] (2.2413) 

yta)yta). A$ ) Ata) ’ 
a0 a + 

yta)y @) 
p:- PF+Ea+E’ ’ 

o g$)+(h.c.,n -m)] 
a 

+ (a - b). 

The terms including the binding potential in Hi: insure that the correct 

external electromagnetic interaction is obtained in the static limit, where the 

results of the Dirac equation must apply. 
11 Note that for mb 4 03, the ladder 

approximation Salpeter equation with no external field reduces to 

where 

[E - t <*Fa+ Pama) Ts = A: V(X,)~)~ 

instead of the Dirac equation 

yta)ytb) g(z) - 0 0 VT;; ) a 

W - tga. Fa + P ama)l aD = ‘qD . 

(2.25a) 

(2.25b) 

It is easy to check that the terms in the second line of (2.2413) insure that to 

first order in the external field the Salpeter formalism in the static limit gives 

the same result as the Dirac theory 

(2.26) 

through contributions linear in g(T). The addition of the cross-graph kernels in 

the Bethe-Salpeter equation are required to establish (2.26) to all orders in the 

binding potential. The relationship of (2.24b) to results obtained from a Breit 

equation approach is discussed in the next subsection. 
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E. The Extended Bethe-Salpeter Equation 

An alternative way of introducing electromagnetic interactions in the 

treatment of composite systems is to use the minimal substitution 

i@’ (4 
I-1 - ia 

c1 - eaAp(xa) 

(2.27) 
(4 O-4 

ia - ia 
P IJJ - eb $txb) 

in the BS equation. The resulting “extended” BS equation has in fact been derived 

by Schwinger Q) from Lagrangian field theory for the case of a time-independent 

(or adiabatic) external field AP(z). Although this approach is not directly appli- - 

cable to Compton scattering, it does have a natural application to the study of the 

Zeeman effect in Section 3, and it allows us to make comparisons with the simpler 

Breit equation approach. 

The extended BS equation in ladder approximation is 

ma )( tib - ebdb - mb)$ (pat pb)= G$(bas pb) t2028) 

where 

$a$+a+,) = 2fd4p6 6(~; - P”,‘) Y(~).A(F~ - ga) +(p;,pb) 

G#(pa, pb)= hp’ d4p1S4 (p-pf) C (P-P’!+ (PH, pb) . 

One can verify that perturbation theory (8J for (2.28) and the result (2.12) both 

give the same current and interaction energy to first order in ea and eb. If 
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self-energy corrections and other irreducible kernels are included in the BS 

equation, then the extended equation (2.28) will be correspondingly modified 

by additional terms as a consequence of the substitution (2.27) and gauge invar- 

iance. In particular, anomalous moment and form factor contributions arise 

when self-energy corrections to the fermion lines are included in the BS equation, 

in analogy to our discussion after (2.13). 

In the presence of an external field A’(g), we can derive, for an instan- 

taneous kernel, an extended Salpeter equation. We proceed exactly as in Eqs. 

(2.16) through (2.21), except that we use the following “Furry’! projection operators 

where 

$ E (P, - eaAa)P, A”, E Ak( Za) 

Zi;za + e,Az + Pama 

(2.30a) 

(2.30b) 

The last identity is quite useful; it enables one to expand the “Furry” projection 

operator to arbitrary order in the external potential. 

The resulting “extended Salpeter equation” has a form analogous to 

(2.20): 
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where g -y(t) Y(i)g . If we expand the lfFurry” projection operators through 

order e a’ eb’ and e e a b’ we obtain 

+ 

I  

ea ,(: I  ,(a). *  

a a 
> ea y(:) y(a) l *a 

Ea+Eg 

e yta) y(a) . A 
a O  a 

Ea -t- E’ 
A~(i;,)l~po~+ ]a-+ b/ (2.32) 

a 

where E,= 7 pa + ma acts to the right and EL acts to the left of Aa. Equation (2. 32) 

can also be obtained without operator manipulation from (2.28) by separating 

terms containing A’ at the start and using the ordinary projection operators 

Al i$ ( > 
in the Salpeter reduction, In this method; we just repeat Eq. (2.19), 

except that r’ now contains the AP terms: 

r- rh [i? + ea$ia(fb - mb) + eb$lb(tia ’ ma) - ea$iaebBib] $ . t2* 33) 

It is interesting to compare these two methods of derivation of Eq. 

(2.32) when contributions of order eaeb are considered. In the method based on 

(2.33), eaeb terms arise from the Ic) contribution with zc) expanded 

to first order in eb, and vice-versa, as from the explicit 

eaeb$adb$ term* If 21) is expanded using the two body propagator 

[‘a- ma)(% - mb)lW1 ) then the eaeb contributions cancel. Thus, as in the method 

based on (2.31), there is no explicit eaeb contribution required in (2.32). Indeed, 

the eaeb contribution which is zeroth order in g must vanish because there is no 
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eaeb contribution to the total energy shift of two free particles in an external 

field. This rule emerges directly from (2.32) as a consequence of omitting the 

initial state from the sum over intermediate states in second order perturbation theory. 

The energy shift due to the external field may be calculated from (2.32) 

by means of perturbation theory and compared with the Mandlestam result 

(2.24). We mention two unconventional aspects of the perturbation calculation: 

(1) The normalization condition of the unperturbed wavefunctions is 

/ PHI2 - K-f d3pa d3Pb = 1. 

(2) The binding potential in (2.32) is non-hermitian. Condition (1) guarantees 

agreement with the change in sign of the P-- contribution in (2. 24b)11; condition 

(2) gfves rise to extra contributions to the perturbation theory energy shift, which 

corresponds to the (h.c.) terms in (2.24b). 

Thus the two derivations of the energy shift do agree, but both calcu- 

lations become awkward and difficult to extend to higher order in ea and eb, and-- 

because of the omission of crossed-graph kernels in the ladder approximation 

treatment--also difficult to extend to higher order in the binding potential. This 

should be contrasted with the Breit equation (1) extended via (2.25): 

(2.34) 

which has none of the above difficulties. Although the Breit equation is an 

approximate formalism we note the following result: The Bethe-Salpeter energy 

shift (2.24 ) is the same as that obtained from the Breit equation (2.34) to first 

order in the binding. This is readily verified by expanding the equation for + ft 

to first order in A&x) and 2. The result is the same equation which follows for 
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8, from (2.32). In fact, since Eq. (2.34) is exact in the static limit, the energy 

shift due to an external field AP as calculated from the Breit equation is correct 
-2 

except for terms of order <eY= A -$$-n->. 
a b 

We should, however, remind the reader that the Breit equation does 

not have correct charge conjugation properties. The sign of the charges must 

be changed by hand to describe the bound states of antifermions (q- VW-). Of 

course, in the case of weak binding of fermions the e)_- amplitudes (Breit or 

Salpeter) are of little consequence. These components correspond to the ampli- 

tude for finding both fermions in free negative energy states and are suppressed 
11 

by two powers of the binding energy divided by the total mass. 

Thus we finally obtain the ?mpulse” approximation result (2.2), but 

only after 

(1) adopting the Breit equation description --with errors in. the interaction energy 

of relative order<?/ mam$; 

(2) neglecting non-instantaneous terms in the kernel, in particular the self-energy 

graphs ; and 

(3) neglecting charged boson “exchange” currents. 

All of these approximations can be reasonable in practice. Corrections can 

be made for the neglect of contributions from (l), (2), or (3). In particular, 

inclusion of self-energy graphs in the BS kernel can be partially taken into 

account by the usual form factor modifications of (2.24). The practical effect of 

contributions from (1) and (2) in the theory of the atomic Zeeman effect is dis- 

cussed in Section 5. Corrections analogous to (2) and (3) in the relativistic 

treatment of the electromagnetic interaction of the deuteron have been discussed 

by Gross (123. 
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Section 3 

The Exact Zeeman Effect in Hydrogen-Like Atoms 

In this section we discuss the sources and importance of radiative 

and higher order reduced mass corrections to the atomic Zeeman spectrum. 

We concern ourselves here with determining the magnitude of the contributions 

not included in standard treatments (13-15) of the Zeeman effect in hydrogen, -- 

which are based on an additive Dirac Hamiltonian, Eq, (2.2). Our aim is to 

understand the Zeeman spectrum to an intrinsic accuracy of 1 ppm. 

This study is of more than historical or academic interest. For ex- 

ample, recent level crossing measurements @) of the hydrogen fine structure 

have determined the fine structure constant to a few ppm. The analysis de- 

pendson the extrapolation of the experimental results from rather large mag- 

netic fields to zero magnetic field. Similarly, the results quoted for the Lamb 

shift (17) require precise understanding of the Zeeman effect. It is especially 

worthwhile to be critical of the usual analyses in view of the serious disagree- 

ment of the Lamb shift measurements and the theoretical predictions. 

Let us now analyze what would constitute an exact treatment of the 

Zeeman spectrum of hydrogen. As stated in Section 2, the energy levels of 

the unperturbed H atom are determined to arbitrary accuracy by the BS equa- 

tion if one includes the prescribed irreducible kernels Gi (see Fig. 1). The 

energy levels of the H atom in a given static (or adiabatic) external field are 

in turn defined by the extended BS equation (2.26). In general, with the appli- 

cation of the field AP(x), the kernels are modified 
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through (2.27), corresponding to insertion of photons on each internal charged 

line. Thus, extra contributions to the Zeeman interaction are obtained from 

all kernels Gi except the one-photon-exchange, kernel. 

Our reduction sequence is as follows: We shall first itemize the con- 

tribution of the higher order kernels and demonstrate explicitly the origin of 

anomalous moment interactions. We next check the corrections due to the re- 

duction of (2.28) to the extended Salpeter equation (2.31) and then to the two 

component Hamiltonian (1.1). Finally, we compare our results with the work 

of ref. (2) and (15). Throughout we make use of the available small expansion 

parameters, especially Q! and me/M . 
P 

Our purpose is to determine the res- 

ponse of the atomic system to an external magnetic field. We do not discuss 

the line shape. 

A. The Contribution of Higher Order Kernels to the Zeeman Spectrum 

It is convenient to examine the contribution of currents induced from 

the non-ladder kernels by first taking the limit me/Mp - 0. In this limit (8-) 

the ladder and crossed photon graphs give the Dirac equation for an electron 

in the static field of the nucleus plus the external field. The self-energy and 

vacuum polarization kernels then correspond to the electrodynamic corrections 

to the bound state equation in this limit. The formalism in ref. (10) is parti- - 

cularly useful here in determining the dependence on the external field of the 

radiative corrections to the energy levels of the electron, since the level 

shifts are calculated in (10) as an expansion in the total field F =a* -a A - P I-IV VP’ 
The result may be written in the form 
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AEn = AEn + AEn + AEn 

where 

AEn = -2a! 
3am2 

< n 15 (ln 2 (Hg- En) + 

qp) = 2n zrn Q! (+<nIByoupv lf"ln> 

and AE,(R) contains terms explicitly quadratic in F 
WJ 

as well as terms which 

modify the operators in M and L at small distances. Here H N-R is the non- 

relativistic Hamiltonian for the electron in the total field. For corrections 

to the Zeeman spectrum, we are interested in the dependence of AEn on the 

external magnetic field. When the part of I?” corresponding to g is inserted 

in AE,(M), we obtain the contribution of the anamolous moment of the electron 

to order Q. The remainder of the dependence of AEn (as reflected in changes 

in the binding energy and wavefunction of I n > ) for a static field ‘iT is readily 

found (1_5) to be of order CX(ZCY)~~~H. The vacuum polarizationloop level shift is 

unchanged to first order in peH, because of Furry’s theorem. 

We can now relax the requirement me/Mp = 0 and thus obtain reduced 

mass corrections to the radiative level shifts. If we use the reduced mass 

dependence of the Schrijdinger equation for I n > in AEn, the resulting cor- 

rections to the Zeeman spectrum are of order 

WW2(me/Mp)~eH , 
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the T. g operator in AEn having no direct reduced mass correction. 

We also note that the extra contribution of the crossed graph kernel 

will be of order 

(Z N4 (me/ Mp)CceH 
since its effects of order (Za) 4 p,H have already been included in the Dirac 

equation when me/M 
P 

- 0. (8) 

We next consider the correction to the Zeeman spectrum accompanying 

the replacement of the one photon kernel by an instantaneous potential. It is 

readily seen to be of order (2~)~ (me/ Mp)peH, since this correction does not 

appear in first Born approximation or for infinite proton mass. Also, if the 

atom is moving with velocity 7 with respect to the external magnetic field, we 

can have a binding correction of order p,H(Zo) 2-2 8 V . 

B. Other Corrections 

We now have examined all the corrections to the Zeeman spectrum due 

to the assumption of an instantaneous potential in ladder approximation. The 

extended Salpeter equation is now applicable and the resulting interaction form 

expressed in (2.24), augmented by anamolous moment terms, is justified. 

Finally we replace the extended Salpetar equation by the extended Breit 

equation. As shown in Section 2, the error made in using the Breit formalism 

for the electromagnetic interactions of hydrogenic atoms is only of order 
2 pe H 

“a% 
- (ZN4 (me/ Mp)l*,H. The pm _ amplitudes may be discarded since 

they are suppressed by a factor (Z2012me)2/ Mp2,. The Hamiltonian (2.2), which 

is in fact the interaction Hamiltonian of the Breit equation, may thus be used for 

an analysis of the Zeeman spectrum which is to be accurate to 1 ppm. The approximations 
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are summarized in Table I. We also note that in accordance with the rule ex- 

pressed in the last part of Section 2, cross terms in the electron and proton 

interaction with the external field are to be neglected in the zero binding limit. 

In fact the Hamiltonian (2.2) and the Breit formalism were used in the 

analyses (13-15) of the Zeeman spectrum necessary for the critical n = 2 -- 

measurements. In particular, Dirac wavefunctions with reduced mass cor- 

rections are sufficiently accurate; and quadratic terms in the Pauli reduction, 

as well as Anf 0 contribution, can be ignored. The magnetic field dependence 

of the energy levels (line centers) of a stationary hydrogen atom in a uniform 

magnetic field may thus be determined to an intrinsic accurac’y of 1 ppm. 

Finally, we must consider the experimental effects in atomic beam 

measurements due to the revised spin orbit terms in the reduction of the inter- 

action of external fields to Pauli form as obtained in the next sections. [See 

especially Eq. (1.1). ] The spin-independent terms are unchanged, hence the 

external field interactions @) of the orbital motion and the non-spin effects 

of the motional electric field (motional Stark effect) will not be modified. On 

the other hand, measurements correlating the atomic spin with an external 

field (static, oscillatory, or motional), such as spin-dependent Stark effects, 

electric perturbation of hyperfine levels, polarized target measurements of 

electron scattering, or polarized atoms in a strong electric field, will be 

sensitive to the corrected spin-orbit terms. These electric field. effects are 

negligible in the experiments of ref. (ll) and (14), since they are reduced by a 

factor of me/Mp compared to the usual non-spin Stark contribution. 



-26- 

Section 4 

An Approximate Wavefunction and its Relativistic Transformation 

In order to calculate matrix elements needed in Sections 5 and 6, we 

require a wavefunction which is valid in the “loose binding” approximation - 

i. e. , accurate to first order in the binding potential U and in the squared rela- 

tive momentum F2 2 2 -c-c m a’ mb. We will construct such a wavefunction by 

solving a relativistic equation (2.20) to the required accuracy in the CM frame, 

and then transforming the resulting wavefunction to any desired frame 13. As 

in Section 2, we will discuss explicitly only the case of two spin $ particles. 

It will be adequate14 for our purposes to drop the projection operators 

in (2.20). The resulting “Breit” equation takes the following form in the CM 

frame 

-b - (G”-$ + Pama - Q! .p +pbmb+U-X)qm. =O (4.1) 

where, in momentum space, U is the integral operator 

and we assume for simplicity that g contains no Dirac matrices 
15 . Since 

%n will reduce to a product of free positive-energy Dirac spinors in the limit 

of zero binding, we will attempt to find a solution which is of the form 

(4.3) 
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where w 
0 

is a 2 x 2 matrix and a function of < and F a, b9 $&6) is a One- 

component function, and x SM (S=l, 0) is a constant spinor 16 . It is useful to 

define 

U-w - U- (ma+mb- w) =- (ma+ka) - (mb+kb)t 

(4.4) 
k zx 

a,b- - Tb,a(U + w), Ta b E ma,b/(ma + mb)’ 3 

W is the binding energy and ka b is a kinetic energy operator (for example, 
9 

in the limit of zero binding, ka , b = T2/2ma b + Oip”i/m3) ). t 
In terms of these quantities, Eq. (4.1) becomes 

This equation is satisfied if we take 

1 1 w = a 2ma+ka %.*’ ’ -5, % = - 2mb+kb “i3 

and if 4 
% 

satisfies the following equation: 

--h-L 1 --h--S.--c- l 
“amp 2ma+ka ;.-g+u+w i#l Oamp ’ ub’p 2mbtkb b l- 

=o. 

(4.6) 

(4.7) 
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If we drop spin-orbit and other relativistic terms, Eq. (4.7) reduces to the 

two-body Schrijdinger equation in the CM frame: 

(4.7’) 

where m r E mamb/ (ma + mb). 

The CM solution for total spin S and projection M takes the following 

form in position space: 

,- 
where x = xa- x b, x=7-x + aa ‘bs, and pi b - 3 =7/T2 + rnz b. Eq. (4.8) is , 
written so that the normalization condition 17 compatible with Eq. (2.24), namely 

J d 
33 ---7 

xad “b pti txat xb) th++ - A_ _ )4,t’a?‘b) = l, (4.9) 

is satisfied if 

J d3p I g~$?) I 2 = 1. 

In the matrix element of the interaction with an external field, the 

initial and final states will in general have different total momenta; it will con- 

sequently be necessary to know how to transform the CM wavefunction to an 
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arbitrary reference frame. In order to learn the transformation properties 

of the BS wavefunction, we return to the definition 

QP 
xm (x a bSM= ,x ) < 0 1 T(#;(xa)+;(xb)) 1 8RSM > . 

Since a Lorentz transformation leaves the vacuum invariant, U(A) I 0 > = I 0 > , 

a’ (X X xw a’ b ) = < 0 I U(A)T($;(xa), $;(xb)U(A-l)U(A) I mSM > 

(4.10) - - c Ca+A)oQ’ %1(A)@’ < 
M’a)‘P’ 

0 I ~($f'(xg),P(~'~)) I FESM’>&,~(R~) 

-where x’ = Ax, (E,?) = A(% ,z), S(A) is the usual spinor transformation 

matrix, and n i,M(Rw) is the Wigner rotation matrix, which equals 6 M,M 

here since the initial state is at rest. Inverting (4.10) gives the required trans- 

formation law 

X ;;‘(“k. s)sM = sa @?‘) s,p’ptA) x$ txa7 Xb)SM’ 

An explicit form for S(A) is 

S,(A) = exp (&Ga?tanh -%I, 

(4.11) 

(4.12) 

where 7 = F/E. With y = (1-V 2 -3 
) , the Lorentz transformation on xa is 
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Now Eq. (2.19), which we apply in the transformed reference frame as well 

as the CM frane, implies the following transformation law for q : 

8 
(21 ) $ ) X0’) = x (xo’= 0,5;’ ;x”l,%‘, 

ES EF 
(4.14) 

As might be expected, the equal-time (x 0’ = 0) wavefunction in the new reference 

frame corresponds to an unequal-time wavefunction in the CM frame. However, 

the dependence of xW on the CM relative time x0= -yv.T’ is completely 
o 18 determined by Eq. (2.21); for small 7 we are justified in neglecting x . 

Then (omitting primes) 

a PE+mb 
2p;: 

(4.15) 

7.T a’ F Za.$ 

Wz+E 2ma+ka 

5 
2ma+ka 

@$ih SMe 
G. - iEX”. 
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Here ?‘=T + (y - l)%*z includes the Lorentz-Fitzgerald contraction of the 

wave function. Again, pz b , 
We will have occasion in Sections 5 and 6 to evaluate matrix elements 

of commutators like [ Xi, pi] = i6 ij. In order to avoid confusion, we can 

imagine the physical state to be a wave packet, constructed by superposition 

of an arbitrarily small range of momentum eigenstates: 

This is done in Eqs. (5.8), (5.29). This wavefunction will 

malized if - 

d3PI +)I 2 =I. 

be properly nor- 

(4.16) 
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Section 5 

The Drell-Hearn-Gerasimov Integral 

In this section we will show in some detail how the formalism of 

Section 2 provides a framework for a correct calculation of the electromagnetic 

interactions of composite particles. In Section 5A, we present an explicit 

derivation of the DHG sum rule for a spin 9 bound state composed of a spin 4 

and a spin 0 particle; in Section 5B, the same system is treated more elegantly. 

The former derivation is in the spirit of numerous atomic and nuclear physics 

calculations, and it shows how such treatments must be modified when rela- 

tivistic effects are included properly. The second derivation is simpler and 

explicitly relativistic, and in addition it exhibits especially clearly the super- 

convergent nature of the DHG sum rule. In Section 5C, the same techniques 

are applied to a spin 1 model consisting of two fermions. 

A. A Spin $ Composite System 

Consider any system of total angular momentum i , charge ZTe, mass 

w, and magnetic moment /..L. The DHG sum rule (1,2) reads -- 

co 
s ~pP-4 - y/p) 

w 
Wth 

(5.1) 

Here a(w) is the total cross section for photoabsorption of circularly polarized 

light on a polarized target. The subscript P refers to the configuration where 

the photon helicity p and target spin are parallel, (p, Sz) = (+l, -I$ ) or (-1, - $ ), 
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and A refers to the anti-parallel configuration (p , Sz) = (-1, +3 ) or (+l, -Q ), 

where z is the incident photon direction. The integral begins at the laboratory 

photon energy threshold tith for first-order electromagnetic processes. For 

an elementary particle, this is the threshold energy for photoproduction w 
PP; 

but for bound systems, wth is ordinarily the photoeffect threshold, equal to 

the energy difference AE12 between the ground and the first excited state plus 

the recoil energy: 

@El2 1 
2 

wth = AE12 + 2wL << wpp. 

The object of this subsection will be to show by explicit calculation that the 

DHG sum rule is satisfied for a loosely bound composite system consisting of 

a spin 0 particle and a spin 8 Dirac particle in an S state. 

We propose to calculate the DHG integral 

‘P,A = s aP, Atw) dw 
w 

%h 

by first order perturbation theory. Suppressing the polarization index, we 

must evaluate 

I=87r2 c 
f>i 

I< flHemli >I2 
w 3 

(5.2) 

(5.3) 

where I i > represents the spin 3 ground state and the sum ranges over all 

discrete and continuum excited states Ef - Ei 2 uth > 0. For the first order 
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electromagnetic interaction Hamiltonian we use 

_ Hem = Ze GX(Tp) + ze TX .YK(“r7;), (5.4) 

- eG’, 1 E^ 1 = 1, w = Ef - Ei, The rest of 

the notation is defined in Table II. Note that we have included no ‘l exchange 

current” interaction in (5.4); throughout this paper we assume that the com- 

posite systems considered are bound by the exchange of neutral particles. 

The unperturbed Hamiltonian for the two-body system is taken to be 

and we note the identity 

z = i[ Ho,rp] . 

(5.5) 

(5.6) 

Then 
‘--s - 

ik. r &T 
< fl GE^ e p 1 i> = < fl i[Ho,yp.?le pIi> 

j-g-;: giT 
= i < f I [ HO,?p. z e pl -yp. ;[ Ho, e p] Ii? (5.7) 

gJT 
= iw< fl;;“*;e 

P 
q-- A cask) I i > 
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where we made essential use of energy conservation, w = I -ifI = E - E f i’ 
in the last step. This identity would be convenient for making a multipole 

expansion of the radiation interaction with the proton. 

In order to parallel the usual atomic physics calculations4, we will 

at this point reduce the matrix element to an approximate non-relativistic 

form. In doing this, we use the analogues of the equal-time BS wavefunctions 

derived in Section 4. We introduce the following notations for the relativistic 

(four-component) and “non-relativistic” (two-component) wavefunctions in 

position representation: 

qi(T,Z) = -c F,X I i > 

(5.8b) 

appears because of the Lorentz-Fitzgerald contraction of the wavefunction. 

(For our purposes we can approximate5 bye) The normalization factor is 
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. 

+:I 

f$l + 

n ‘$-I 

f&J 
++a1 

+a1 cv 
X 

f-21 
,tz I 

4 -z I 
f&l 

u f6 .d 

X 
<A 
tt; .A 

w 3 
+ 

+ 
.?I 

+ 

II 



-37- 

In the second-to-last step we have dropped the higher-order T. k 0 (momenta3) 

terms and in the last step we have integrated Q-F) and (F!-F) by parts. 

Note thatrp=z + (1 - A) 
MT 

y and that higher order terms in w are omitted in 

the last step. These approximations are justified in the discussion following 

Eq. (5.13). For the average of the initial and final momenta we use the nota- 

tion $av = 8 (2 +yJ, sav =& (@+s), and we define Fp/M e Fav/MT +Fav/M. 

Let us identify the physical content of the terms in (5.9). The first 

term is obviously the electric dipole term i w; .; = ($ 
P 

po ̂ E)/M. Before we 

discuss the second term, - i;;’ . i < - 
P P 

. k/M, we should add to it the contribution 

-4.G 
P 

.eFp.X- iGp.i?;;lp.T;+F-.f?p 
P P 

.x)/M, coming from the exponential 

factor. The sum is ipp. e Fp .x, the second term in the power-series expansion 
- $;;C 

of p- .E^e . P 
P 

Calculating non-relativistically, we identify this as a sum of 

-electric quadrupole and orbital magnetic dipole terms: 

(5.10) 

=Md- A-- 
2 3 Pp. E rp- k) + + (xx ;).(Tp x cp). 

The spin part of the magnetic dipole interaction is represented by the term 

dir -ixx E^. Finally, the last I’ spin-orbit” terms contain the interaction 

with the motional magnetic field - Tpx %? and the effects of the Thomas pre- 

cession. These are the terms which would generate the spin-orbit interaction 

if the spin 3 particle were bound about a center of force, instead of inter- 

acting with a radiation field. In fact, precisely the same spin-orbit terms 
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appear if we consider the matrix element of an electric potential ZeA”(yp), 

as they must by gauge invariance. 

Turning our attention to the matrix element of ?r.x(?r), we calculate 

&r F 1X.T 
< flYT.;e ’ I i > =< fl i[Ho,Fn.<]e =I i > 

ik. r 
=iw < f]Tr.;e 71 -J-&l i > 

(5.11) 

=iw (fl e 
iGr, 

1 1 
4MMT z.;x< - av - 

4-M; 
z.;x F 

. 1 
av I i). 

This matrix element also makes a contribution to the “spin-orbit1 terms. 

The total spin-dependent interaction coming from the matrix element 

< f ] Ze~.~(~p) + zeTT.x(Tr) I i > is thus, to first order in the momenta, 

z-.7? x $av %v 
2M ;.gx - 

2MT 
(5.12) 

where 1-1 = Ze/XM is the magnetic moment of the Dirac particle, whjch is also 

equal to that of the system as a whole 20 . For completeness, we will also 

write down the leading spin-independent terms: 
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- HiFmsindependent = g Fp* 2 + i? -27 .@ 
P P 

(5.13) 

z 2 
( ) 

ZTe = E - m eFav. f? + MT Sav- F + . - . , 

It is appropriate here to discuss the relative sizes of the various 

terms we have considered. Our remarks will be valid for any sufficiently 

loosely bound system. The only requirement is that in the bound state, the 

velocity v of the particles is small compared to c. (In hydrogenic systems 

such as the fYpionic atom If considered here, v = CY. ) For matrix elements 

involving bound or low-lying continuum states f and i, k = Ef - Ei = mra2, 

r = l/mrcY, and p = mro, where mr = Mm/(M+m) is the reduced mass. It 

follows that for these matrix elements successive multipoles are smaller by 

a factor of GF- a’. Relative to the electric dipole (El) term iwFp. ;, the 

magnetic dipole (Ml) and electric quadrupole (E2) terms are smaller by a 

factor of 01, and the If spin-orbit” (SO) terms are smaller by a factor of CV~, 

as are such spin-independent (X2) terms as iw;; ($M)2. For these remarks 

to be valid estimates of the contribution of these terms to the sum I in Eq. 

(5.3), we must argue that, for i = ground state, the higher continuum states 

f are unimportant in the sum. This is generally true for loosely bound systems 

because of the small overlap integral between the rapidly oscillating exponen- 

tial of a high energy wavefunction and the smoothly spread wavefunction of a 
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low energy bound state. For example, for hydrogen the matrix element 

I (flTrfl i)l ismaximumfor Ef N 0 and decreases for large Ef faster than 
21 

(Ef - Ei) 3/2 if non-relativistic wavefunctions are used . 

Now let us consider which of the various terms of Hem can contri- 

bute to the integral in the DHG sum rules (5.1) to produce a result of first 

order in 01. Using the estimates discussed above and recalling that A a l/j=, 

we have listed in Table III the contribution to I of each possible product of 

matrix elements through order o. Of the two terms which are not eliminated 

by general considerations, the (Ml)2 term vanishes because it can connect 

the ground state only with itself and not with any excited states. Thus for the 

model considered in this section, our non-relativistic calculation gives 

I = 4n2e2 
c [ 

A( 
f>i w 

iI($- &)I!Z;*lf)(f i&F.; x 2M F li)+h.c. 
I 

(5.14) 

In obtaining this result we have dropped the3 terms (which cannot contribute 

to matrix elements between i and an excited state f), used the non-relativistic 

identity: = i *[Ho,Fj, 
MT 

and used closure (we do not need to subtract the 

unexcited ground state contribution from the closure sum since the matrix 

element ( i 171 i ) vanishes by parity). In order to evaluate the remaining 
A 

matrix element, we introduce the circular polarization basis E p’ P =k 1, 

with the properties (recall that $ = G) 
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g+ip$r A*,; 
tp=-P2yE Y- 

P P = P’P’ 
6 ix; =-ip; 

P 
;* X; ’ A p’ p p=lPz, 

and designate the spin orientation of the ground state i by /J = t- 1: 

crz I i,p) =p I i,p). Then 

=-ipp (i,pl 3 [x,p,l ++ [y,pyl +iPLzI LN=w- 

In the last step Lz I i) = 0 since I i) is an S state. Finally, 

OAtw) ) 2 . 
dw = I - I =8n2e2 P A 

(5.15) 

(5.16) 

which agrees 22 with (1) for the model considered thus far, consisting of a 

Dirac particle (J.J = Ze/2M) and a zero spin particle. 

If we wish to allow the spin 8 constituent of our system to possess 

an anomalous magnetic moment A so that p = Ze/2M + h , we must introduce 

into Eq. (5.4) the Pauli term 

It is straightforward to verify that Eq. (5.12) remains correct, if we just 
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reinterpret /J in it as being the entire magnetic moment; the Thomas terms 

are unchanged. One might think, therefore, that the entire calculation pre- 

sented above is unaffected. This is not correct, however; our non-relativistic 

treatment gives correctly only the low energy part of the DHG integral I. 

Suppose, for instance, that the anomalous magnetic moment of our spin i 

particle arises from its coupling to a field of mass m1 (where m1 is much 

larger than the binding energy of the spin 4 plus spin 0 system), just as the 

anomalous moment of the physical proton is associated with the existence of 

its meson cloud. Then one must separate I into two parts (4), 

ml 00 

1 zz $0, + $W = 
s 

Q(W) Tdw + F dw. 

Wth 

One calculates I’ Ow as before and finds 

In order to evaluate high I , assume that at the high proton energies w > m1 , 

the forward scattering amplitude is just the sum of the forward scattering 

amplitudes for each particle, and apply the DHG sum rule to the spin 9 

particle: 

,high Pigh _ Ihigh 
P -A - (.i)p- &?s)A= ~lu”w);u2’w’ dw 

(5.17) 

(5.18) 

(5.19) 
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Combining this with (5.18) we find 

a,(W) - OAtw) 
W 

dw = Ip - IA = 87r2 , (5.20) 

again in accord with the Drell-Hearn-Gerasimov sum rule. 

B. Alternative Derivation of the DHG Sum Rule 
for Spin * Composite System 

It is advantageous in calculations such as that of the DHG integral 

and thecompton scattering amplitude to postpone the reduction to non-rela- 

tivistic forms until after the sum over final states has .been performed. The 

evaluation of the DHG integral by this method proceeds as follows: 

I = 47r2 c J- I< fl Zez.;e 
ig-;t ZT 

p + ih@ (T.jCX l - iwz;) e P 
f>i Cd2 

jgy- 
+ze<.Ee ‘li>12 

(5.21) 

c 
g.-;r ic7 

= 4n2 1 < fl Ze7p.i(l-z.k)e P+hp(Za&x2 - iz;)e ’ 
f>i 

ic7 
+ zeT ~ . E^ (1 - ?* . k) e 2 *Ii>1 . 
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Again we will neglect the retardation factors. The error made in doing this 

corresponds to binding corrections to the magnetic moment on the rhs of 

Eq. ( 5.1 )23. Since the matrix elements are now independent of w = Ef - Ei, 

we are able to use closure on the states f. We must insert the (hermitian) 

positive energy projection operator 

P+ = c Ij>< jl 
Ej > 0 

since physical photoabsorption transitions require Ef > Ei. Defining the 

(hermitian) operator 

X=ZeYp(l-Gic);hp(rxC- iG)-!-zeTT (1 - Tfk), 

we find 

(5.22) 

I=4a2 <ilX.2+P+Gili>-47r2C 1 < illgtl i>l 2 
if 

(5.23) 

= I closure + Iground 

ground where the if sum in the I term runs over both polarizations of the 

ground state. 
The Iclosure term makes no contribution when we take the difference 

Ip - IA. Using the notation I 
PP 

corresponding to (5.15), we note that Ip - IA = 

4 (1 ++- I+-> - fr (I-+- 1-J. We easily verify,using the reality of the ground 
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closure state, that the I contribution to each of these parentheses is zero: 

closure I 
/JCL+ - l;Fsure= < i,pI 

=< i,p 

ZZ 0. 

- A* ha e+P+g ;+I i,p > - < i,/.4IG;rP+CEh I i,p > 

Now we must evaluate ground I . The relevant matrix element is 

< illX.;I i> =(i* 1 Z,eZE^ +/,,Z.Lx; ;;: E^ x -& I i). (5.25) 

Terms linear in? and F vanish because i and i.’ are both of the same parity 

in the relative coordinate?; various higher order terms which do not contri- 

bute to Ip - IA have also been omitted in writing (5.25). Now note that none 

of the terms in the matrix element of Eq. (5.25) can connect I i) to any ex- 

cited state I n ) because of the orthogonality of the F wavefunctions. Thus we 

can do closure 24 in the I ) states (at this point, we can regard the states I ) 

as being the eigenstates of a Pauli Hamiltonian), and after a little calculation 

again obtain the DHG sum rule: 
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Ip- IA= rund- ~~oUnd=-4*2 C I< if 1x-t 1 i > 1 2 
it I P-A 

=-4n2Cl( I Z,eKi 

( I 

2 

P-A 

(5.26) 

= 8n2 ( ) ZTe 2 
p-m * 

This method of calculating the DHG integral has several advantages 

over the traditional methods used in atomic and nuclear physics 25 . In the 

usual treatments, which the derivation of Section 5A is supposed to parallel, 

one must use non-relativistic reductions - in which the Dirac operator % gets 

replaced by 3s and z’s - at an early point in the calculation. That is because 

a11 dynamical operators must in these treatments be split into CM and rela- 

tive coordinate parts, and the CM parts dropped. This is trivial for Fp = 

F(M/MT) +c, but impossible for z. In the derivation presented in this section 

we were able to avoid such calculational gymnastics. In particular, we utili- 

zed the completeness of the relativistic states; and we used our approximate 

wavefunctions, derived in Section 4 under the assumption that v;- $/MT is 

small, only in evaluating the matrix element (5.25), where such an approxi- 

mation is entirely justified. A further advantage of the calculation of this sub- 

section, which we sometimes refer to as “relativistic closure” in the following, 

is that it emphasizes the fact that the DHG integral equals the “Born term” 

I ground ’ which depends only on the static properties of the system: the total 

rna.ss, charge, and magnetic moment. 
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C. Spin 1 Composite System 

The analogue of the DHG sum rule for a spin-S system of charge ZTe, 

massm , and magnetic moment ~1 reads (18 ) - 

co a,(w) - uA(w) 
J 

2 
w 

&pIp-IA+. (5.27) 
%h 

Here the P and A configurations correspond to (photon helicity, target Sz) E 

(JL,~) equal respectively to (f l,* S) and (% 1,sS). In this section we are con- 

sidering the case S = 1, the model consisting of two spin % particles in an 

S-state. The electromagnetic interaction is 

-Hem = (5.28) 

The notation is defined in Table II. 

Introducing a notation for states analogous to that of Eq. (5.8), and 

utilizing the results of Section 4, we write 
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(5.29b) 

N(2) 
P>P 

= 1 - p2 - p2 + O(momenta$). 
8m; 8m; 

These expressions for the spinors are correct through second order in 

momenta, and are adequate for our purposes. With 

Ho = Ga.pa + pama +?ib’rb + pbmb + u(Ta -‘b) 

weagain have the identity 

z 
0 = i[ HoyTa, b] 

(5.30) 

(5.31) 

and we evaluate the matrix elements of Hem as before: 

< f 1 zaeza.x(?a) + 3 ha,C?aaal-lV FpV(Fa) 1 i > = 

(5.32) 

iw < f I [ zaeTa* ?(l-Ga. k) + haPa(Ga*ir X 2 - Gas ;)I e ali>. 

The spin-independent part of the corresponding non-relativistic Hamiltonian 

is the same as for the previous model (see Eq. (5.13)), and the spin-dependent 

part is the obvious generalization of Eq. (5.12): 
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Fav Ga.Bx -- 
2ma 

(a - b) 1 
+[(2pa- g)3a-Ex & +(a-b)] . 

(5.33) 

We will now exhibit the generalization of the relativistic closure 

derivation of the sum rule. We begin with Eq. (5.32). Again we must drop 

the exponential factors in order to sum over the final states by closure. Thus 

we define 

P, = c Ij>< jl 
Ej > 0 

and 

As before, 

T;c c 
s=a,b 

[ zseTs(l -Ys.T;) + h spsGs X G- iG,)] . 

I = 87r2 c 
f>i 

& I< flHemli>12, 

so that 

=4n2 < i,~lZi*pP+G;p I i,p > - 4n2 c 
2 

I 
/JP PL’ 

I < i,p’ IS tp I i,p > I 

(5.34) 

(5.35) 

(5.36) 

2 Iclosure + Iground 
c1P /JP . 
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As before, closure I does not contribute to Ip- IA. In calculating Ig round , 

only one slight subtlety changes the calculation from that of the spin 3 model 

considered previously. The ground state here is the spin triplet; the spin 

singlet is regarded as having higher energy and hence is not contained in the 

1-1’ sum in ound P . Consequently the total spin g = 3 ( za +Tb) can contribute 

to the matrix elements in Igr ound , but the operator !I? 5 4 Fa - Gb) cannot. 

Then, with /J = pa+ pb, 

= 4rr2 c I (i,icl’ I Z,eS; +pXii~ 2 + ~a-pb)~.T;x 2 

ZTe + 2/J--- t -1 s.7 x F F 2m+ (pa-pb)FP.x al i)‘I 2 

I P-A 

= 4iT2 c n 

(5.37) 

P-A 

ZTe 2 
=47r2 p-- . t 4 

It is clear from these calculations that proofs of the DHG sum rule 

could be constructed for any loosely bound composite system. Multiparticle 

26 
systems could be treated by pairwise induction . In particular, the sum 

rules are valid for H3 and He3 by treating them as composite states of spin 4 + 

spin 0 constituents. 
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Section 6 

Low Energy Forward Compton Scattering 

A. Spin $ Composite System 

It is possible to prove from field theory @), or directly from S-matrix 

theory (20), that the amplitude for Compton scattering is completely deter- 

mined to first order in the photon frequency by the static properties of the dis- 

crete system. In particular, for a spin i system characterized by mass “M , 

charge ZTe, and magnetic moment /J, the S-matrix for low-energy forward 

Compton scattering must take the form 

- 

where 

Sfi = - 2ni 6(Ef Ei)Mfi (6.1) 

2 
Mfi=&(2~)383(Pf-Pi) z $‘.$ofi+2irc: fi.8tx$+O(~2) . 1 (6 -2) 

This result depends essentially only on relativistic invariance, and is valid 

for atoms and nuclei as well as elementary particles 27 . As a check on the 

consistency of our formalism, we rederive it in this section for the spin i 

system of a “protontf (mass M, charge Z, magnetic moment p = 

loosely bound in an S-state to a lcpion’f (mass m, charge z) so that ZT = Z + z, 

andm=M+m- W. 28 (The notation is summarized in Table II.) We use 

techniques very similar to those employed in deriving the DHG sum rule for 

this system. 

The first and second order perturbation theory 29 contributions to the 

S-matrix elements for forward Compton scattering give 



- 52 - 

Mfi = < f,i$l I Hem I i,% > + c 
< f ,G7 I Hem I j > i j I Hem I i,% > 

> . 
J Ei + w - Ej + iE 

(6.3) 

+ c -c f,i?&l I Hem 1 j,-Qef ,x$ > < j,c$t,B 1 Hem I i,% > 

j 
Ei- w- E. 9 

3 

The electromagnetic interaction Hamiltonian 

_ Hem z2e2 ---+ 
= zeGx(Tp) + AP [z?6(Tp)- 1% g(rp)] + zeTr .x(yn) - 2m A(r,) 

2 
(6.4) 

is the same as that employed in the last section - with the addition of the 

quadratic term, which was irrelevant there. It is convenient here to treatx 

as an operator and use linear, rather than circular, polarkation vectors 

^e 1 =8, 2 2 = y; viz. , 

X(T) = C J- Gae ilZF 7 

d-- 
a +a $ e-Gr 

&I! 2w i-&3! a 
. 

&I! 
(6.5) 

We use i, j, f to designate states of the spin 9 system and Ei, Ej, Ef to 

designate the energies of these states, including recoil energy. For forward 

scattering, Ef = Ei, so f = i except possibly for spin orientation. 

Our technique for calculating the sums in (6.3) will be to remove 

factors of energy from the matrix elements in order to perform closure. For 

example, 
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At this point we have assumed that there is a finite energy gap AE between 

the ground state and the continuum; and, since we are interested in the limit 

w - 0, we consider 0 < w < E2 - Ei, where E2 is the energy of the first 

excited state. Thus we have dropped the ie in the denominator, since there 

are no poles in this region of w. 

Referring to the definitions (6.7), we observe that the I1 seagull” 

term in (6.9) is exactly cancelled by the commutator. Lest the wary reader 

notice that only the sum proportional to w survives, and worry that we have 

lost the Thomson limit, we will point out that the recoiling ground state term 

j = iI in the sum has a denominator proportional to w and contains the Thomson 

term. We now substitute the third and fourth lines of (6.8) and (6.9) and again 

-use the completeness of the states j to perform closure: 

2wMfi = w < f I [g e,z’. 6’1 I i > 

(6.10) 

+ cd2 c 
+ -t <flh.~~lj><jl~~li>+<fl~Blj><jlh~^eli’ 

j 
Ei + w - E. 

J 
Ei - w - E. . 

J 

The first term in (6.10) is of order w2. Moreover, for w < < E2 - Ei, all the 

terms in the sum except j = i’ are also of order w2. Thus 
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where TNE is the contribution of the intermediate states in which the spin i particle has negative energy. 
32 

It will be recalled that the sum of To and T1, defined in Eq. (6.12), equals the full low energy amplitude (6.2). 

We must thus show that the sum of the terms in the brace in (6.19) is zero. We can calculate the leading terms in TNE 

by inserting the free Dirac negative energy projection operatbr and using closure to sum over all intermediate states: 

-9 --t 

TNE=” lC 
< fi H *i$‘(l-fl-;.<p/M)I j > < jl g?+l i> 

(m+M) - (m-M) + w t 
<fli?*i?O-P-~.~p/M)Ij><jIH.^e’Ii> 

j 
(m+M) - (m- M) - CLI 

= Z2e2 $, G 6 

[ 

P. 
M fi - iw g (2h + $&)Zfi. gr x $ 1 (2r)3a3(Ff - Fi) . 

(6.19) 

Thus the quantity inside the curly brackets in Eq. (6.18) is indeed zero. 

We are now in a position to write down an effective interaction Hamiltonian for the two particle 

system, which is correct to order v/c, and which takes into account the negative energy state contribution 

through second order perturbation theory. The result33 is 

- H”N”R = +/G-i3 
P +& (21-1 - &)Z. zp x (gp - ZeXp) 1 

(6.20) 
- g&-ZETX 6 

T 
p - ZeXp) 1 . 

If A0 = 0 and if we neglect retardation - thus settingx 
P 

= xT =x, which is sufficiently accurate for the cal- 

culation of the DHG integral and the low energy limit of Compton scattering - we can combine terms and obtain 
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-He; =- Z2e2 -2 
-TivTA + 

z2e2 -2 -=A +,;.g 

(6.21) 

Let us discuss the significance of the various terms of this effective 

Hamiltonian. The terms in the first bracket of (6.20) are identical with the 

usual terms arising from the Foldy-Wouthuysen reduction of the Dirac equa- 

tion, including an anomalous moment (2). The last bracket of (6.2 0) contains 

terms that can only be obtained from a proper relativistic treatment of the 

two-particle system, and are traceable from the effects of the boost in the 

two-particle wavefunctions 
34 . We discuss the physical origin of these I1 spin- 

orbit” terms in SectionVII. In (6.21) we have separated the terms into those 

proportional to the total momentum F =F +-F7 and those proportional to the P 

relative momentum F = (mgp - MFX )/MT. - 0rX The terms quadratic in Ap P 

in (6.20)) which are collected in the bracket in (6.21)) reproduce in non- 

relativistic perturbation theory the effects of negative energy states in second 

order relativistic perturbation theory. For example, these -quadratic terms 

give a contribution to Compton scattering exactly equal to TNE, which was 

calculated in (6.19). 32 
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C. Spin 1 Composite System 

For a spin-S target of charge ZTe, mass “@L , and magnetic moment 

/.L, the low energy limit of the forward Compton scattering amplitude is c, 22) - 

Mfi =& (2~)~a~(P~ - Pi) 
Z2 e2 
--&- $‘.Gdfi + iw (6.22) 

We can derive this result explicitly for the spin 1 composite system considered 

in Section III, consisting of two spin 3 particles in a spatial S state and spin 

triplet state, by the same method used for the spin & model above. The ana- 

logue of (6.7) for this case is 
30 

- 

SE x zse Gs + ih sas(zs x Tf - iwz,) 1 iG Fs 
e 

s=a,b 

iGY 
<-z,eTe a 

_ z-Tb 

a + zberbe 

I iKlr 
zseTs(l - Gs* ii) + A sps(Zs x i; - iGs) e ‘. 

The remaining calculations are exactly analogous to those following (6.7), so 

they will not be reproduced here. 

(6.23) 

On the same basis 
33 as Eq. (6.20), we can obtain the effective inter- 

action for the spin $ - spin 3 system; it appearsas Eq. (1.1). 
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Section 7 - Comments 

A. Revision 

It is worth noting that there is nothing wrong in principle with using 

a F-W transformation to eliminate “odd” operators in the relativistic 

Hamiltonian (to a given order in m-l). What is incorrect is to assume that 

this F-W unitary operator reduces the bound state wavefunction to a simple 

Pauli form. Unless the wavefunction is written in the CM frame, the trans- 

formed wavefunction contains extra kinematical terms, as is apparent from 

Eq. (4.13). From a physical point of view, what appears as a triplet wave- 

function of two spin 8 p articles in the CM, contains singlet contributions in 
- 

13 the boosted wavefunctions required for the matrix element , The usual 

treatment employing the sum of F-W Hamiltonians with the incorrect Pauli 

wavefunctions misses this singlet contribution. 

On the other hand, we can recover the correct interaction (1.1) by 

’ extending the F-W technique, as we have shown-elsewhere. The usual F-W 

result is obtained, plus a contribution due to the presence of the boost operator 

in the bound state wavefunction. 

B. Semiclassical Derivation of HE 

A somewhat curious feature of the interaction Hamiltonians HGg for 

composite systems developed in the proceeding sections - see Eqs. (l.l), 

(5.12), (5.33), (6.20) and (6.21) - is the appearance of additional “spin-orbit” 

terms beyond those which would appear if HGG were simply the sum of Foldy- 

Wouthuysen or Pauli Hamiltonians for the constituent particles. For example, 
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for the spin 0 - spin Q system, one might have thought that the It spin-orbit” 

term woeild be just that of the free spin 4 particle 

In fact, the correct term is 

In this sub-section we will give, for a system of arbitrary composition and 

arbitrary spin, a heuristic derivation of the part of Hii which does not depend 

on the internal structure of the system. (We will refer -to this part of the 

interaction as Hem ext. ) Thus we will explain the appearance of the coefficient 

ZTe (2~ - rX) in the second term of the above equation, instead of the coefficient 

(2~ - $$) which one might naively expect. We will also show, in the next sub- 

section, that knowledge of Hz: is adequate to derive the DHG sum rule for any 

spin. 

Our analysis rests on the following simple observation: A system’s 

interaction with radiation is known in any reference frame once it is known in 

the system’s rest frame, the CM frame of its constituents. In this frame the 

interaction is simply 

(HI;) = ZTeAiM - i ?? cCM + (higher -moment interact ions), 
CM 

(7.1) 
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where ZT is the total charge, 1-1 is the total magnetic moment, and S is the 

spin of the system; and GM = (AiM, XC,) and g CM are the electromagnetic 

vector potential and magnetic field in the CM frame. We will neglect the 

electric quadrupole interaction and all other higher-moment interactions; it 

will be obvious that they can be discussed in the same manner. We will also 

neglect terms quadratic in A’. The interaction with a field < specified in any 

other reference frame L (Vflaboratoryll) is determined by transforming AL to 

the CM frame and using (Hz$CM. (HiFt)CM is not by itself a suitable inter- 

action Hamiltonian, however, since the CM frame is in general accelerated. 

We recall the well-known result of relativity that an accelerated frame rotates 

with respect to any inertial frame, with instananeous angular velocity uT, the 

‘I Thomas precession11 frequency (23) . Since we are writing the Hamiltonian - 

in a rotating frame we must add the usual zT* S”term 35 ,. where ;s’is the total 

angular momentum; of course, r= gin the CM frame. Thus 

H em 0 
ext = ZTeACM- E ETcM+;;-,.K (7.2) 

Let us suppose that the system moves with velocity 7 = $ = 

6 ZTeK 
in the L frame. We must do a Lorentz transformation with velo- 

YWL 
city - Fin order to go to the CM frame. Hence if AI” - L - (Q, x), then AsM = 

(- ?F r, 3 + (y -1) ^G. r), and if the electromagnetic fields in the L frame are 

denoted by zand g, then ‘jcM = YE- (,-l)%?*g- yvx z As usual, 

y = (1 - 72,-i . The Thomas precession frequency is 
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where the acceleration of the CM frame with respect to the L frame is 

;= ZTe --jyf- @+7x ig. 

Thus, 

- Hem 
ext = ZTe yFK+$S[ yG-(y-l)QGmK- 

ZTe 
f- -~x(E+~x~).iT 3n l+y (7.3) 

ZTe The reason that the coefficient ($ - ar)yt) appears instead of ($ - &) 

is that Eq. (7.1) was necessarily written in the frame in which the total spin of 

the system is well-defined - namely the rest, or CM, frame - not in the 

spin 3 particle’s rest frame. Thus the Thomas precession must be that of 

the CM frame. 
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C. The DHG Sum Rule 

The derivations of the DHG sum rules presented in Sections 3B and 
36 

3C show very clearly that these sum rules have the superconvergent form : 

0 =an J Id+9 
dw= B-t 

ca a,(w) 
w s - aA@) 

w do, 
?h 

where the Born term B is determined entirely by HzFt: 

B = lim 8n2 c I (i’lH~~ii)12 

W-O i’ w P-A . 

(7.4) 

(7.5) 

The sum in (7.5) is over states if degenerate with the ground state, i. e. , over 

the 2s +l spin orientations of the ground state. Such expressions have been 

worked out above. There are two terms which contribute to B, one coming 

from the magnetic dipole term ;g g of Hz;, specifically from the transitions 

from Sz = S (or - S) to Sz = S - 1 (or - S +l) upon absorption of a zero-energy 

photon, and one coming from the cross term between ZT and SEX g The 

former contributes only for the A (f’antiparallelff) case, not for the P case, 

so that its contribution to B is negative. The latter contributes for both A 

and P. The final result is 

B =4n2 (7.5’) 
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Thus 

=A@)) . 
Let us assume the usual unsubtracted dispersion relation for f2(w2); 

f2(w2) = - -J- 
co o,(w’) - UA(W’) s 4n2 Wth 2 2 w’dw’ . 

W’ -w 

Evaluating (7.7) at w = 0, using (5.27), we prove that 

ZTe 2 
f2(0) = - s ;- - t 1 WL - 

This low energy limit is also obtained directly in Section 6 for the models 

considered (which have spin S = % and 1). 37 

We emphasize that we have proved the DHG sum rule for the models 

(7.6) 

(7.7) 

we have considered, without requiring any assumptions on the high energy be- 

havior of Imf2 (w2) = - [ a,(w) - aA( /8n . Thus it will apply to systems, 

like positronium and muonium, for which our model Hamiltonian (5.28) ade- 

quately describes the electromagnetic interactions. There is no reason toexpect 

that the sum rule will fail for systems like the hydrogen atom in which one or more 

of the constituents have strong interactions, but the questions of convergence 

and subtractions in connection with the DHG integral for such systems require 

more information on the high energy behavior of the hadronic Compton scat- 

tering amplitudes. 
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D. Subtractions 

In connection with their calculation of the DHG sum rule for loosely 

bound composite systems, which was based on the assumption - here shown 

to be incorrect - that Hi: equals the sum of the F-W Hamiltonians of the 

constituent particles, Barton and Dombey (4, raised the question of the necessity 

of subtraction constants in such sum rules. There are really two separate 

questions to be considered: (1) whether there is an additional constant, or even 

a polynomial, on the rhs of the dispersion relation (7.7) for f2 (such terms 

could come from the integral over the circle at ~0 which closes the contour in 

the Cauchy integral), and (2) whether the DHG integral on the lhs of (5.27) 

actually converges. 40 
- 

We will discuss the convergence question first. For high energy 

photons, the scattering amplitude f2 should be well approximated by the sum 

of the amplitudes for the constituent particles ( “additivity” or “impulse 

approximation” ). Thus the asymptotic behavior of f2 for a composite system 

can be no worse than that of the constitutents. For example, if the DHG inte- 

gral converges for the proton - which is not inconsistent with experiment c) - 

then it will converge for the hydrogen atom. 

Now it could conceivably happen that the DHG integral converges, and 

yet the dispersion relation (7.7) nevertheless requires the addition of a con- 

&ant, sometimes called a ” subtraction at 03 ‘I. Abarbanel and Goldberger (20) - 

have shown that such a 1! subtraction at ~1’ in the DHG sum rule would cor- 

respond to a fixed pole at J=l in the complex angular momentum plane. It is 

a very interesting experimental question whether such a singularity exists in 

the complex momentum plane for Compton scattering on elementary particles 

such as the proton. 
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The calculations of Barton and Dombey (g), if correct, would have 

proved that a llsubtraction at ~0 I1 is necessary in the DHG sum rule for a 

composite system, even if it is not for the constituents. Such a state of 

affairs would be physically most unreasonable, since a “subtraction at wfl 

is associated with the asymptotic behavior of Ref2(u) for 1 w I - QJ; as we 

have argued above, the asymptotic behavior of the Compton amplitude for the 

composite system should be no worse than that of the sum of the amplitudes 

for the constituents. In fact, by deriving explicitly both the DHG integral 

and the low energy limit of the Compton amplitude, and demonstrating that 

they are equal 41 , we have shown that there is.nothing in the treatment of such 

composite systems as we have considered here whichintroduces into the dis- 

persion relation a real constant. 
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Section 8 

Conclusions 

The central conclusions of this paper are the following: 

(1) The external electromagnetic interactions of a loosely bound 

composite system are well described by the sum of the relativistic inter- 

actions of the constituents (for spin 4 particles, for instance, these are the 

Dirac plus anomalous moment interactions). The basis for this result is a 

systematic reduction of the Bethe-Salpeter and Salpeter equations extended 

to include the effect of an external field. 

(2) In particular, the Zeeman. spectrum of atomic hydrogen is 

accurately described to 1 ppm if this interaction Hamiltonian is used. 

(3) The non-relativistic reduction of this Hamiltonian is not given 

by the sum of the F-W Hamiltonians of the constitutents if the constitutents 

have spin. Additional terms arise from the spin transformation of the com- 

posite state wavefunction. Obviously, calculations based on the assumption 

of simple F-W additivity should be re-examined. 

(4) In particular, previous incorrect non-relativistic calculations of 

the DHG sum rule (4, and the low energy theorem for Compton scattering3 

are corrected when the proper interaction Hamiltonian is used. 
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FOOTNOTES 

1. A derivation of Eq. (1.1) and a brief pedagogical presentation of some of our 

other results is given in S. J. Brodsky and J. R. Primack, Phys. Rev. 16 , - 

Section 5. 

2. Here ea7 ma7 pa, and &2a are the charge, mass, total magnetic moment, 

and spin of fermion a. Note that we take c= 9 @a +;b) to be the total spin 

in the c. m. frame. The relative and total four-momentum are given by 

MTp = mbpa - mapb, P = pa+ pb, with MT = ma -t mb. As indicated below, 

the wavefunc tion cp (2;) ;A) to be used for evaluating matrix elements of 

0.1) must include the Lorentz contraction x “t = AT This is important for 

evaluating the DHG sum rule and low energy theorem for bound states with 

Q 2 1. Equation (1) includes only terms involving the external field 

Ai E (Az,As) = A’(xs); there are consequently no Darwin terms. The 

Hamiltonian for the atom in zero external field is assumed to be known. 

Binding correction factors of order (1 + W/m) are neglected here as well as 

cross terms in the binding potential U and the external field such as ZTUX z. 

3. We wish to thank Dr. H. R. Pagels for suggesting that the low energy theorem 

4. 

5. 

might be violated if the sum of Foldy-Wouthuysen Hamiltonians is used. This 

was also independently discovered by G. Barton, “Apparent Clash Between 

the Foldy-Wouthuysen Transformation and the Threshold Theorem for Compton 

Scatteringfl, September 1967 (unpublished). 

See Section 7B. 

For simplicity, we assume the two fermions are distinct and have non- 

derivative coupling via neutral spin 0 or spin 1 fields. Normal ordering is 

understood in the definition of the current. 
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6. Throughout this discussion we suppress renormalization constants, for 

simplicity. All masses and charges h.ave their physical values. In this 

7. 

equation, and throughout this paper, we use the notation and metric of J. D. 

Bjorken and S. D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, 

New York, 1965). 

Effective potentials can often be designed to simulate even higher-order 

irreducible BS kernels, as in the Breit equation: G. Breit, Phys. Rev. s, 

248 0937). See also H. Grotch and D. R. Yennie, Z. Phys. 202, 425 (1967). 

8. The interaction kernel is actually assumed to be instantaneous in the CM 

frame, and it is not instantaneous in any other frame. Eq. (2.16) conse- 

quently involves a further approximation: neglect of the induced non- 

mstantaneous Coulomb interaction (6 6 
/Jo vo 

/g2 in the CM fram.e becomes 

VpVv / [ (k.V)2- k2] in a frame where V is the total four-velocity). The 

usually negligible effect of the induced non-instantaneous term can be 

9. 

10. 

treated with the other neglected kernels in perturbation theory. 

The contour prescription comes from the negative imaginary parts of ma 

and m b, 6 being infinitesimal, real, and positive. 

We use Eqs. (2.19) and (2.21), which give the co,nnection between $ and 9. 

In the first line of (2.23) we have ,used the orthogonality of Ab, and 

Ab . The contour prescription in the second line of (2.23) corresponds 

to the fact that T is obtained from $ by complex conjugation and 

antichronological ordering. 

11. Conversely, the BS equation also describes the interaction of antifermions; 

then qx q--, and charge conjugation is reflected in the change of sign 

in Eq. (2.24). 
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12. Jn particular, in the experiments of Robiscoe et al. 0, a magnetic field 

was applied to a beam of metastable atoms in a definite hyperfine component 

of the 2s 
4 

state and adjusted until the energy of this level became degenerate 

with one of the 2P 
8 

components. By knowing the magnetic field at which the 

crossing occurs, one can extrapolate back to zero magnetic field and deter- 

mine the 2SI - 2P 
2 3 

separation at H = 0. 

13. Ian J. McGee, ref (l8), have an illuminating discussion of the relativistic 

transformation of a zero-binding wavefunction. We wish to thank Professor 

L. Durand for calling this work to our attention. 

14. In fact, we have shown in Section 2 that to first order in the binding the 

Breit equation correctly yields the electromagnetic interactions of the com- 

posite system. The wavefunction (4.8) which we obtain solves the Salpeter 

equation through first order in the binding. We also note.that the Breit 

equation reduces to the Dirac equation for ma/mb - 0 whereas the Salpeter 

equation must be augmented by crossed graph contributions to obtain the 

correct limit. This has been shown to all orders in perturbation theory by 

D. R. Yennie (private communication). Also see ref. c). 

For example, g in Eq. (2.16) can be the zeroth component of a four-vector 

interaction, such as the instantaneous Coulomb interaction g,(F) = yz-$/c2. 

For example, x11 = x-a y xb+, x10 2 = --!I- (xz g‘ xi + xix@ xi), etc., where 

“zaX “, =f x.2 * (xy(x;) =I. 

The normalization condition (4.9) for ladder approximation was first stated 

by Salpeter @. For comparison with (4.8), note that a single-particle 

wave-packet is written 



where 
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G(x) =/ -$ VI< u(p) e(p) ewiPsX 
P 

u(P) = I! P2m 

- -i 

1 

‘$111 7.F 
p” + m 

) 

x * 

18. This is similar to the approximation made in deriving Eq. (2.16). See 

Footnote (8). 

19. If, in the calculation (5.9), we do not use the identity G = i[ Ho,yp] , then 

the proper inclusion of the kinetic energy terms ki (see Section 4) and 

Ki = F2/2E i is essential in obtaining the correct coefficients for the g g x5 

and ~Ex$ terms. In the calculations presented in the text, however, k. 1 

-and Ki can be dropped. 

20. As stated in Section 2, we consider only binding arising from exchange of 

neutral particles with non-derivative coupling, so that tlexchange currents” 

cannot contribute to CL. Furthermore, we ignore “Breitfl binding cor- 

rections to the magnetic moments of the constituent particles. These are of 

order 1-1 W/m , and we have assumed W/m < < 1 ( llloose binding”). 

21. H. A. Bethe and E. E. Salpeter, ref. (z), p. 300. Cf. also H. A. Bethe, 

Intermediate Quantum Mechanics (Benjamin, N. Y. , 1964), p. 152. 

22. We do not distinguish w and MT = w + W in this section. First order 

binding corrections are correctly taken into account in the alternative 

treatment given in Section 5B. 

23. Cf. discussion following Eq. (5.13). 
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24. 

25. 

26. 

27. 

28. We remind the reader that W is the binding energy and that we assume 

WC< M,m. 

29. 

30. 

31. 

See Eq. (2.11). 
- 

Note that the definition of kin Eq. (6.7) [ or (6.23)] differs from that in Eq. 

(5.22) [ or (5.35)] by retardation factors. 

Low (3 ) has shown that the photoproduction channels in the sum over inter- 

mediate states do not contribute through order w, so we ignore them here. 

An alternative way of presenting the argument is to factor the wavefunctions 

of states i and i’ into relative and CM coordinate dependence. Since the 

states i’ and i have identical dependence on?, the relative coordinate, and 

since there is no relevant7 dependence in the operators whose matrix 

element (eq.(5.25)) is being calculated, the integral any gives 1. The re- 

maining integral on s effectively just sets Fi, = ??, and Eq. (5.26) obtains. 

See, for example, J. S. Levinger, Nuclear Photodisintegration (Oxford 

University Press, London, 1960), for a general exposition of non-relativistic 

sum rule techniques. Barton and Dombey, ref. 4, give in their Section 6 a 

partial catalog of the delicacies and perversities of the usual treatments; 

these include, for instance, the question whether closure (over positive 

energy states) and the Foldy-Wouthuysen transformation commute. 

Three particle composite systems are discussed in a recent preprint by 

V. P. Shelest, ITP, Kiev (1967). 

It is necessary, however, that the system to which we apply Eq. (6.2) satisfy 

the following requirements: (1) There is no state l*accidentallyff degenerate 

in energy with the ground state. (2) There is a finite gap in energy between 

the ground state and the continuum. 
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32. The “negative energy” expression (6.19) corresponds to the I1 Zff diagram 

contribution to (2.11) in which the intermediate states contain three free 

spin 4 particles (two fermions and one antifermion). 

33. The %?x x terms in the last bracket of (6.20) are given here for complete- 

ness although they give no contribution to low energy Compton scattering. 

They are derived by replacing the canonical momenta by the mechanical 

momenta in the CM equation of motion (4.1) and in the boost operator (4.12). 

(See also S. J. Brodsky and J. R. Primack, footnote 1. ) Darwin terms 

vanish for external fields. Terms proportional to the binding potential 

are omitted. 

34. Cf. Section 4, and Appendix III of I. J. McGee, ref. (18). - 

35. One can show that this term must be added to the Hamiltonian by doing a 

canonical transformation. Alternatively, we recall that (d@dt)mertial = 

(dc/‘dt) rotating + ;Jx Efor any vector -6. (H. Goldstein, Classical Mechanics 

(Addison-Wesley, Reading, Mass. , 1950), p. 133). Thus Hinertial = 

H rotating +z-r, SO that (dE/Winertial = i[ Hinertial, c] = i[ Hrotating, a + 

i[z.T, c] = (dG/dt)rotating +z x g. 

36. We write the forward Compton amplitude in the traditional form 

f(w) = fl(W2) 8’. e + io f2(w2)S:ef x $, 

where fl(0) = - ZFe2/m . 

37. The quantity ,U - ZTeS/w g A , the square of which is proportional to the 

low energy limit of the ASs = 1 Compton amplitude, coincides with the usual 

definition of the anomalous magnetic moment for S = $ and is a reasonable 

definition for all S. 38 A simple semiclassical dynamical interpretation can 

be given for this choice of ti = ZTeS/% as the ff normal” part of the 

magnetic moment. 39 The covariant equation for the motion of a particle 
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in an electromagnetic field is 

and the BMT (23) equation for the spin four-vector is - 

dsP P P -=‘5F dr vsv +; Fgvs%vucl . 

For the case h = 0, i.e. ~1 = h, both equations assume the same form. In 

this special case, u and s can be regarded as simultaneously undergoing 

ZTe an infinitesimal Lorentz transformation with Apv = 8, + - 
m 

Fpv d7. 

If we attach a “naturally instantaneous coordinate frame to each point of 

the world line - this frame being defined so that the time axis is along u 

and the space axes rotate in an interval d7 according to APv -then in this - 

natural coordinate system the spin is a constant vector for /J = 
%J* 

38. One usually introduces an electromagnetic interaction into the wave equation 

of a spin S particle by making the minimal substitution p - p 
P I-L 

- eAp and 

adding terms proportional to F 
/Jv 

or its derivatives. Those parts of the 

interaction coming from the minimal substitution we call llnormal’t, the 

others , Tt anomalousv7 . In general, however, there are numerous wave 

equations for given spins, and consequently this approach will not lead to a 

unique definition of the If anomalous magnetic moment”. 

39. A. S. Wightman, summer lectures at Stanford, 1967; cf. Bargmann, Michel, 

-1 Telegdi (2). Note that the gyromagnetic ratio g= (y /‘s)(e/2m) * Thus 

g = 2 is the I1 normal” value for particles with spin. 

40. The convergence of the DHG sum rule is discussed by A. H. Mueller and 

T. L. Trueman, Phys. Rev. 160, 1306 0967). 

41. Even for the incorrect Hamiltonian used by Barton and Dombey (4, - (a 

sum of two F-W Hamiltonians)- the (wrong) DHG integral equals the (wrong) 

low energy limit3 of f2. 
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Figure Captions 

Figure 1 - Exact calculation of the hydrogen spectrum. The typical kernels 

required for calculation of the energy levels of the H-atom to the 

present precision are shown. The one photon exchange contribution 

can be separated into Coulomb and transverse parts in the CM frame. 

The effects of strong interactions are summarized by form factors 

in G 
lY 

plus nuclear polarization contributions as indicated in 

GNUC-POL’ The main effects of adding the higher order kernels 

are listed below the diagrams. The available small expansion 

parameters are also given. 

Figure2 - 

Figure 2 - 

(a) Diagrammatic representation of the BS equation in ladder approxi- 

mation. (b) Lowest order electromagnetic interaction in ladder 

approximation. After isolating the contribution of the bound state to 

the two-particle BS propagator and absorbing the Feynman propa- 

gator s Si and Sk, we are left with the matrix element y ;’ (sy, 

Eq. (2.12). This is represented in (c). For simplicity, we consider 

only particle a to be charged. 

(a) The full BS equation, showing examples of graphs omitted in 

ladder approximation. (b) The lowest order electromagnetic inter- 

action for the full BS equation. 



Bethe-Salpeter Equation 

e?! - me) tip - rnJ X= GX 

G=Glr + 

- 

GCROSSED + GVAC. POL. + GSELF ENERGY + GNUC-POL + ’ ” 

e 

P x 

GCOULOMB + GTRANSVERSE 

c 
TRAN 

Ei $ E-. 
q ’ 

i=l, 2 

GCOULOMB - Schrijdinger equation, proton finite size correction 

+ GTRANS - reduced mass corrections, HFS splittings 

+ G::k,SED - Dirac equation, relativistic reduced mass correction 

+ GVAC-POL + GSELF ENERGY - Lamb shift, radiative corrections to HFS 

+ GNUC -POL - correction to HFS 

Expansion Parameters: %  Z% m,/Nlp , Rp/ao 

Fig. 1 
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TABLE I 

Corrections to the Zeeman Interaction of Hydrogen-Like Atoms 

from a Bethe-Salpeter Analysis 

Reduction Stex, 

1. Neglect self-energy and 
vacuum polarization kernels 

2. Neglect crossed graph kernel 

3. Retain instantaneous 
kernel only 

4. Adopt Breit formalism 

Contribution to Zeeman Interaction 

anomalous moment terms + error 

of 0[ c~(Zcx)‘p~H] 

Corrections O[ (ZCV)~~~H] + 

error of O[ (Zc~)~(m,/Mp)~~Hl 

error of 0[ (Za)4(me/Mp)peHl 

+ 0[ (Z(U)~ v2peH] 

error of O[ (Zc@4(me/Mp) p,Hl 

The expansion parameters are the fine structure constant a, (Za) = the coupling 

strength of the binding interaction, and (me/M 
P 

) = the electron to nucleus mass 

ratio. After these four reduction steps are made, the resulting interaction is 

given by Eq. (2.2) augmented by anomalous moment terms. 



TABLE II 

Notation Used for Bound Systems 

Spin 0 - Spin 4 
ffpionff ffprotonfl 

Individual Masses 

Total Mass 

Binding Energy 

m M 

W=M+m-?n, 

Individual Charges 
(in units of e) 

Z Z 

Total Charge ZT=Z+Z 

Individual Magnetic 0 =+A 
Moments 

‘=2M 

Total Magnetic 
Moment 

I-1 

Coordinates ?- T 
F 

P 

spin+ - Spin 3 

m a “b 

W=ma+mb- 9% 

Z .a ‘b 

ZT = za + Zb 

‘a be 
‘a,b = Gb+ha,b > 

P = ct,+i$ 

ra ‘b 



TABLE III 

Contribution of Various Prodqts of Terms to I 

Term WI2 tEl)tMl) (El) tE2) W)tSO) (El)(=) OW2 W2 (Ml) tE2) WV2 

Contribution 1 
G 1 1 a! CY CY o! c!! a! 

Remarks SI P P d SI SI d S SI 

Explanation of Remarks: SI - spin independent, hence vanishes when we calculate Ip - IA, 

P - vanishes by parity considerations, 

s - vanishes because of its spin structure, 

4 - could contribute. 


