RESONANCES (THEORY) *

Haim Harari
Weizmann Institute of Science, Rehovot, Israel ${ }^{\dagger}$
and
Stanford Linear Accelerator Center, Stanford University, Stanford, California

Rapporteur talk in the XIV International Conference on High Energy Physics, Vienna, Austria

August 28 - September 5, 1968

Permanent address
*
Supported in part by the U. S. Atomic Energy Commission.

CONTENTS

I. Introduction
II. Meson Classification Schemes

1. The "Old-Fashioned" Quark Model
2. Quarks, Daughter Trajectories and the New Gell-Mann-
Zweig Model
3. Mesons and $\operatorname{SU}(3)$4. Chiral $\operatorname{SU}(2) \times \operatorname{SU}(2)$ and the Meson Classification5. Other Theoretical Models for Mesons
III. Baryon Spectroscopy
4. The Status of Baryon $\operatorname{SU}(3)$ Multiplets
5. Branching Ratios and Representation Mixing for Baryon
Resonances in $\mathrm{SU}(3)$
6. Baryon Resonances and the Quark Model
7. Other Theoretical Schemes for Baryons
IV. s-Channel Resonances, t-Channel Trajectories and Loops in
the Argand Diagram
8. Resonances in Partial Wave Analysis and Schmid's Proposal
9. The Interpretation of Circles in the Argand Plot
10. The Properties of a Resonance
11. Applications, Tests and General Remarks
12. Are the t-Channel Trajectories Reflected in the Observed
Meson and Baryon Spectrum?

V. A World of Resonances

1. Is Everything Made Out of Resonances?
2. An Exception: The Pomeranchon
3. Infinitely Rising Trajectories: A Few Remarks
VI. Summary

References

I. Introduction

We have heard from the previous three rapporteurs ${ }^{1,2,3}$, that our experimental colleagues have reached remarkable achievements in their search for resonances. This point is perhaps best illustrated by reproducing the entire information on resonances included in the first edition ${ }^{4}$ (dated March 20, 1958) of the now famous "Rosenfeld Tables". Using the same information density with which the August 1968 table fills $2 \frac{1}{2}$ condensed pages ${ }^{5}$, the 1958 version is shown in Figure 1. We, theorists, cannot claim similar progress in understanding the observed resonance spectrum. In fact, at the time of the last conference we thought that all we had to do was to explain why certain resonances existed and why they possessed their specific properties. As you will see, now we are not even sure any more that we know what a resonance is.

In this report I propose to discuss two main theoretical topics related to the interpretation of resonant states: (i) The present status of various hadron classification schemes and (ii) the role played by resonance states in our understanding of strong interaction dynamics.

The material of this report is organized as follows:
Section II deals with various theoretical models for meson spectroscopy including the quark model, Regge theory, $\mathrm{SU}(3)$ and chiral $\mathrm{SU}(2) \times \mathrm{SU}(2)$.

Section III treats the baryon spectrum with an emphasis on $\mathrm{SU}(3)$ and the quark model.

Section IV is devoted to the general question of the relation between t-channel Regge trajectories and s-channel resonances. We discuss

```
(3/2, 3/2) TP Reroonce
```



```
    Lab-cystem momentum: P
```

Figure 1: The entire information on resonances included in the 1958 "Rosenfeld Table".
the possible mechanisms which may lead to loops in the Argand diagram for partial wave amplitudes. At the end of this discussion we return to the meson and baryon spectrum and try to find to what extent the qualitative predictions of the t-channel Regge picture are reflected by the experimentally observed states.

In Section V we briefly discuss the speculative picture according to which most of the observed hadron reactions may be described in terms of sums of resonance excitations.

Section VI is a short summary of our main discussion points.
Our choice of material as well as our list of references is certainly incomplete. Many of the interesting contributions submitted to the conference are not discussed and many others are discussed only briefly, mainly because of time limitations.

This written report includes some material (Sections II-5, II-4, IV-4, V-2, V-3) that was not presented in the actual talk, but was promised to be included in the Proceedings.

II. Meson Classification Schemes

1. The "Old-Fashioned" Quark Model

The usual quark model description of meson states, ${ }^{6}$ temporarily ignoring "radial" excitations, includes the "energy levels" of Figure 2, in which we have limited ourselves to orbital angular momentum $\mathrm{L} \leq 3$ and ignored spin dependence, $\operatorname{SU}(3)$ breaking and L-S splittings ${ }^{7}$. Every "level" presumably corresponds to a full nonet, including four different isomultiplets: $I=1, \frac{1}{2}, 0,0$. The present status 1 of meson states below $1.5-1.6 \mathrm{BeV}$ leads to the assignments of Table 1.

L	S	J CC	$\mathrm{I}=1$	$\mathrm{I}=\frac{1}{2}$	$\mathrm{I}=0$	$\mathrm{I}=0$
0	0	0^{-+}	π	K	η	X^{O}
	1	I^{--}	ρ	$\mathrm{K}^{*}(890)$	ω	ϕ
1	1	0^{++}	$\delta(960)$	$\mathrm{K} \pi(1100)$	$\sigma(750)$	$\mathrm{S}^{*}(1070)$
	1	1^{++}	$\mathrm{A}_{1}(1070)$	$\mathrm{K}^{*}(1230)$	$\mathrm{D}(1280)$	$?$
	1	2^{++}	$\mathrm{A}_{2}(1310)$	$\mathrm{K}^{*}(1420)$	$\mathrm{f}^{\mathrm{O}}(1260)$	$\mathrm{f}^{*}(1515)$
	0	1^{+-}	$\mathrm{B}(1220)$	$\mathrm{K}^{*}(1320)$	$?$	$?$

Table 1: $\mathrm{L}=0$ and $\mathrm{L}=1$ quark-antiquark meson states.

The following remarks should be made with respect to the particle states of Table l:
(a) In the pseudosealar nonet, an octet-singlet mixing angle of the order of $10^{\circ}-20^{\circ}$ scems to be necessary in order to explain a large number of phenomena.

Figure 2: $L \leq 3 q \bar{q}$ "energy levels". Every level is denoted by J ${ }^{P C}$ and represents an $\operatorname{SU}(3)$ nonet. L-S coupling, spin dependence and $\mathrm{SU}(3)$ breaking effects are ignored.

The quark model may give hints for the sign of this angle (see Sections II-3-(a), II-3-(d) and II-4), but no conclusive determination is possible, at present.
(b) $\delta(960)$ has now been seen in $\mathrm{K}^{-} \mathrm{p}$ and $\overline{\mathrm{p} p}$ reactions ${ }^{8,9}$ and it decays, at least part of the time, to $\eta \pi$. We may now consider it as a fairly established member of the scalar nonet.
(c) $\mathrm{K} \pi$ s-wave phase shifts obtained from extrapolation to the pion pole in KN reactions dominated by π-exchange indicate a 0^{+}resonance at $1100-1200 \mathrm{MeV} .{ }^{10}$ Assuming that $\kappa(730)$ is dead ${ }^{1}$, the 1100 MeV state should be the strange member of the scalar nonet.
(d) $\sigma\left(J^{\mathrm{PC}}=0^{++}, \mathrm{I}^{\mathrm{G}}=0^{+}\right)$may have any mass between 700-1000 MeV (probably around 750 MeV), and its existence is agreed upon by all $\pi-\pi$ "phase-shifters". It has not yet definitely been observed in a direct experiment. It is probably an almost pure "non-strange" $q \bar{q}$ state.
(e) $\mathrm{S}^{*}(1070)$ is probably the $\lambda \bar{\lambda}$ state ($\lambda=$ strange quark) of the scalar nonet. There are possible indications of a $\pi-\pi$ state around 1050, which may or may not be the same state. Assuming $S^{*} \nmid \sim \pi$, the $\lambda \bar{\lambda}$ interpretation is the most natural one, leading to the "universal" arc $\cos \sqrt{\frac{2}{3}}$ octet-singlet mixing angle for the 0^{+}nonet.

$$
1
$$

(f) In spite of the experimental doubts we continue to believe that the A_{1} exists and is a 1^{++}state (see also Section IV-4-(d)).
(g) K^{*} (1230) may be the same as the C-meson, and may or may not be a l^{+}state. We tentatively assign this-"lower half of the Q-bump" to the A_{1}-nonet, recalling that the two axial K^{*} 's can mix. ${ }^{13}$
(h) Since $\mathrm{D}(1280)$ is heavier than A_{1} and K^{*} (1230), our first guess would be to associate it with the $\lambda \bar{\lambda} \int_{J}^{P C}=1^{++}$state, while the other 1^{++}
isoscalar should be found around the A_{1} mass. The recently observed ${ }^{9}$ decay $\mathrm{D} \rightarrow \delta+\pi$ indicates, however, that D has at least some non-strange quark components.
(i) Any educated guess would place the missing 1^{++}isoscalar around $1050-1300 \mathrm{MeV}$. It could decay to $4 \pi, \mathrm{~K} \overline{\mathrm{~K}} \pi, \mathrm{KK}^{*}, \pi \pi \eta, \pi \delta$, etc. The absence of this state should probably start to embarrass us. If its mass is below 1100 MeV , only the 4π and $\pi \pi \eta$ modes are allowed, but in any case we should have probably seen it by now.
(j) We assume that at least one of the A_{2} - states (if there are more than one) is a 2^{++}.
(k) $\mathrm{K}^{*}(1320)$ is supposedly the other $\mathrm{I}^{+} \mathrm{K}^{*}$, corresponding to the high-mass portion of the Q-bump.
(1) The untimely death ${ }^{1,14}$ of the II-meson at 990 MeV has leftus with two missing 1^{+-}isoscalars. Their masses could typically be 1200 and 1400 MeV , if they are a pure "non-strange" and a pure "strange". $q \bar{q}$ state, respectively. At least one of them should decay to $\rho \pi$, but if its mass is around 1200 MeV , I do not see how we could have possibly isolated it, in view of the $A_{1}, A_{1.5}, A_{2}^{L}$, and A_{2}^{H} confusion. The "cleanest" way of seeing this state is in the $\rho^{\mathrm{O}} \pi^{\mathrm{O}}$ invariant mass plot, which should not show the $\mathrm{I}=1$ states. Both missing $\mathrm{I}=0, \mathrm{~J}^{\mathrm{PC}}=1^{+-}$states should decay to $\mathrm{K} \bar{K} \pi$, and in particular to $\mathrm{K}_{1}^{0} \mathrm{~K}_{2}^{\mathrm{o}} \pi^{\circ}$, a mode which distinguishes them from the D and the E mesons.
(m) Among the other mesons below 1.5 BeV we should mention $\mathbf{E}(1410)$ as a possible radial excitation of η in the 0^{-}nonet. We do not know where the other eight states of this radially excited pseudoscalar are or why
we do not sec a "radially excited" π, which should be diffractively produced in $\pi-\mathrm{p}$ collisions. The only candidate for such an cxcited π, at present, could be $\mathrm{A}_{1.5}(1170)$, if it exists.
(n) $A_{2}^{L}(1270)$, a third $K^{*}(1280$?) in the Q region, a possible $D-$ wave $\pi-\pi$ state at 1050 , a possible $\mathrm{K} \pi$ resonance at 1260 , and a few other hints here and there, are among the possible future sources of difficulty to the simple "old-fashioned" quark model.

The situation concerning $\mathrm{L}>1, \mathrm{~m}>1500 \mathrm{MeV}$ mesons is sufficiently confused to prevent us from making any serious classification attempts for this region. We would like to emphasize, however, that even the usual quark model (with radial excitations) predicts many additional states between $1600-1900 \mathrm{MeV}$, which have yet to be discovered.

2. Quarks, Daughter Trajectories and the New Gell-Mann-Zweig Model.

A brief glance at Figure 2 immediately reminds us of one severe restriction imposed by the ordinary quark model on the allowed meson quantum numbers. All natural parity mesons $\left(0^{+}, 1^{-}, 2^{+} \ldots\right)$ must have "normal" charge conjugation, namely - for all non-strange, neutral, natural parity mesons, $\mathrm{C}=\mathrm{P}$. From the pure experimental point of view this is probably one of the most striking successes of the $q \bar{q}$ description of mesons, since we do not have a single established meson which violates this rule. On the other hand, from the pure theoretical standpoint we may be facing a difficulty. The classification of meson states according to Regge trajectories has had some remarkable successes, such as the probable existence of the $J^{P}=3^{-}$g-meson on the ρ-trajectory or the R-S-T-U sequence of mesons discovered by the CERN missing-mass-spectrometer
group. Various theoretical agruments, including group theoretical speculations ${ }^{15}$ as well as dynamical bootstrap models ${ }^{16,17}$ indicate that the daughter trajectories ${ }^{18}$ (which are needed at $t=0$ to guarantee the correct analytic properties) are actually parallel to the parent trajectories of a given sequence. If this is the case, and if the parallel daughter trajectories actually materialize into particles at some or all of the right signature points, we find ourselves faced with a dilemma. All the odd daughters of all natural parity trajectories, as well as many other daughter states are not allowed by the quark model. This is clearly demonstrated in Figure 3, where the exchange-degenerate-daughters of the exchangedegenerate $\rho-\mathrm{A}_{2}$ trajectories are shown to be illegitimate within the framework of the "old " $q \bar{q}$ model.

This theoretical inconsistency should worry any person who believes in the relevance of the quark model on one hand and the sequence of parallel daughter trajectories on the other hand, to the ovserved spectrum of mesons.

A way out of this difficulty has recently been proposed by GellMann and Zweig. ${ }^{19}$ They point out that the contradiction stems from the fact that the non-relativistic quark model involves states which are identified according to their Q^{3}) properties, and which are supposcd to exhibit the general characteristics of the states of a three-dimensional harmonicoscillator type potential. On the other hand,- the entire group-theoretic formulation of the daughter sequences is based on the existence of a symmetry larger than $O(3)$ - either $O(3,1)$ or $O(4)$. Any given $O(3)$ state has to appear in conjunction with others, forming a complete $\mathrm{O}(3,1)$ or $\mathrm{O}(4)$
\otimes Illegitimate daughters according to the usual quark model for mesons.

1142A3

Figure 3: The ρ and A_{2} trajectories (assumed to be degenerate) and their daughter-trajectory sequence. All states have natural parity but the "odd" daughters have $\mathrm{C}=-\mathrm{P}$ and are therefore not allowed by the ordinary $q \bar{q}$ picture of meson states.
representation. Gell-Mann and Zweig therefore introduce a four-dimensional oscillator scheme in which both the "quark-spin" S and the "orbital angular momentum" L are $\mathrm{O}(4)$ quantum numbers and are accompanied by the extra quantum numbers required by a complete $O(4)$ classification. For example, the usual spin triplet ($\mathrm{S}=1$) is accompanied by a "fourth component" of its $\mathrm{O}(4)$ four-vector. In the case of the lowest-lying vector mesons this "fourth component" is interpreted as the daughter state of the 1^{--}nonet, presumably having a similar mass and $J^{P C}=0^{+-}$.

The meson spectrum proposed by Gell-Mann and Zweig is shown in Figure 4. They essentially introduce a complete sequence of $J \geq 0$ daughters for all natural parity states as well as for all the conventional $\mathrm{S}=0$ (unnatural parity) states. In addition they have a sequence of parity doublets for every one of the conventional $\mathrm{S}=1$ unnatural parity states (such as the A_{1}) but these sequences terminate at $J=1$. In terms of Toller's classification of trajectories, they assign the conventional $S=1$ unnatural parity $L=J$ states to $M=1$ families while all other states have $M=0$.

The proliferation of new states in the Gell-Mann-Zweig model is especially noticed for the higher L-values, but even below 1.5 BeV they expect many new states (assuming that the daughter masses are approximately the same as their respective parent masses). The new "wanted" states below 1.5 BeV are: ${ }^{19}$
(a) $\mathrm{A} \mathrm{J}^{\mathrm{PC}}=0^{+-}$nonet approximately degenerate with the ordinary vector mesons. Its non-strange members should decay to 4π or 5π while the strange component might decay to $\mathrm{K} \pi$ ($\kappa(730)$? ? ?),
(b) $\mathrm{A}^{\mathrm{PC}}=0^{--}$nonet around the B -meson mass. The $\mathrm{I}=1$ state could decay to $\pi+\omega$ and might be "covered" by the B. The other states

$\underline{0}^{--} 1^{+-} \underline{2}^{--} 3^{+-}$	$\mathrm{L}=3$	$\begin{array}{lll} \frac{4}{}^{++} & \underline{3}_{-}^{-+} & 2^{++} \\ \underline{1}_{-}^{-+} & 0_{--}^{++} \\ \underline{3}_{-}^{\mp+} & 2^{ \pm+} & \underline{1}_{-}^{\mp+} \\ \underline{2}^{++} & \underline{1}_{-}^{-+} & \underline{0}^{++} \end{array}$
$0^{-+} 1_{--}^{++} \underline{2}^{-+}$	$\mathrm{L}=2$	$\begin{array}{lll} \mathrm{g} \frac{3^{--}}{2^{+-}} & 1^{--} & 0^{+-} \\ \underline{2^{ \pm-}} & 1^{\mp-} \\ \underline{=-} & \\ \underline{1}^{--} & 0^{+-} \end{array}$
$\underline{0}_{--} \underline{1}^{+-} \mathrm{B}$	$\mathrm{L}=1$	$\begin{aligned} & \mathrm{A}_{2} \frac{2^{++}}{\underline{1}^{-+}} \underline{0}_{--}^{++} \\ & \mathrm{A}_{1} \xlongequal{\underline{1}_{-}^{\mp+}} \\ & \delta \underline{0^{++}} \end{aligned}$
$0^{-+} \pi$	$\mathrm{L}=0$	$\rho \underline{1}^{--} \underline{0}^{+-}$
$\mathrm{n}=1 \quad \mathrm{n}=0$		$\mathrm{n}=0 \quad \mathrm{n}=1$

1142A4

Figure 4: Meson states in the new Gell-Mann-Zweig scheme. Solid lines: states allowed by the "old" quark model, including radial excitations, which are labeled $n=1$. Dashed lines: new states, including daughters and parity doublets. L, S and n refer to the quantum numbers of the "old" quark model. Every state corresponds to a $\mathrm{J}^{\mathrm{PC}}, \mathrm{SU}(3)$-nonet.
should be observed somewhere within the general confusion of the $A_{1}-A_{2}$ and the Q regions in the 3π and $\mathrm{K} \pi \pi$ systems, respectively.
(c) $\mathrm{A}^{\mathrm{PC}}=1^{-+}$nonet, the parity doublet of the $\mathrm{A}_{1}-$ nonet.
(d) Another 1^{-+}-nonet, the "daughter" of the A_{2}-nonet. $A_{2}^{L}(1270)$ could belong to such a nonet if (i) A_{2} splits, (ii) both "halves" decay into $\pi \rho$ and $\pi \eta$, (iii) only $\mathrm{A}_{2}^{\mathrm{H}}$ decays into $\mathrm{K}_{1}^{\mathrm{o}} \mathrm{K}_{1}^{\mathrm{o}}$. Very crude indications supporting such a possibility already exist, ${ }^{2}$ but we should definitely wait for more data.
(e) A^{++}-nonet around the 2^{++}-nonet mass.

The overall experimental picture certainly does not support the Gell-Mann-Zweig proposal, but we cannot rule it out either, since all or most of their predicted low-lying states are not easily detectable.

Quite independently of this detailed model, the apparent absence of states belonging to daughter trajectories should concern those of us who believe that the "daughters" are roughly parallel to their "parents". A quantitative (bootstrap-type?) estimate of the couplings of daughter particles to various channels is badly needed.

3. Mesons and SU(3)

We now proceed to discuss the present status of $\operatorname{SU}(3)$ for meson resonances.
(a) $0^{-+}{ }^{+}$nonet

Using a quadratic mass formula, the $\eta-\mathrm{X}^{0}$ octet-singlet mixing angle is $\pm(10.4 \pm 0.2)^{\circ}$. A linear mass formula would give $\pm(24 \pm 1)^{\circ}$. The unmixed η_{8} is a $2: 1$ mixture of strange and non-strange $q \bar{q}$ pairs. A
mixing angle $\theta_{0}=10^{\circ}$ may raise the $\lambda \bar{\lambda}$ content in the physical η-particle to about 80% or reduce it to 50%, depending on the sign of θ_{0}. Within the quark model the sign of the mixing angle can be determined from its effect on various decay processes. Assuming that the $\pi^{0}, \eta, \mathrm{X}^{0} \rightarrow \gamma \gamma$ transition matrix elements (after extracting the appropriate phase space factors) satisfy the usual $\operatorname{SU}(3)$ relations, we find:
$\Gamma\left(X^{0} \rightarrow \gamma \gamma\right)=\frac{\mathrm{m}^{3} \mathrm{X}^{0}}{\sin ^{2} \theta_{o}}\left[\left(\frac{\Gamma\left(\pi^{0}-\gamma \gamma\right)}{3 \mathrm{~m}_{\pi}^{3}}\right)^{\frac{1}{2}} \pm\left(\frac{\Gamma(\eta-\gamma \gamma)}{\mathrm{m}_{\eta}^{3}}\right)^{\frac{1}{2}} \cos \theta_{o}\right]^{2}$
where the \pm signs in the equation correspond to the different possible signs for the mixing angle θ_{0}. Assuming $\Gamma\left(\pi^{\circ} \rightarrow \gamma \gamma\right)=7.5 \pm 1.5 \mathrm{eV}, \Gamma(\eta \rightarrow \gamma \gamma)=$ $0.88 \pm 0.22 \mathrm{keV}$ and $\theta_{0}= \pm 10^{\circ}$ we predict that $\Gamma\left(\mathrm{X}^{0} \rightarrow \gamma \gamma\right)=50 \pm 30 \mathrm{keV}$ or $350 \pm 90 \mathrm{keV}$, depending on the sign of θ_{0}. A mixing angle of $\theta_{0}=24^{\circ}$ would give $10 \pm 6 \mathrm{keV}$ or $90 \pm 20 \mathrm{keV}$. A preliminary result for the $\mathrm{X}^{\circ} \rightarrow \gamma \gamma$ branching ratio, presented at this conference ${ }^{2 l}$, is consistent with all these possibilities. The quark model, however, prefers the negative sign in the expression for $\Gamma\left(\mathrm{X}^{0} \rightarrow \gamma \gamma\right)$, predicting ${ }^{22} \Gamma\left(\mathrm{X}^{\mathrm{o}} \rightarrow \gamma \gamma\right)$ around 50 BeV . This corresponds to a $50 \%-50 \%$ mixture of strange and non-strange $q \bar{q}$ pairs in the physical η. This conclusion is qualitatively supported by the approximately equal cross-sections for η and X^{0} production in high energy πp reactions, which should be contrasted with the large $\omega: \phi$ and $\mathrm{f}^{\mathrm{O}}: \mathrm{f}^{*}$ production ratio in $\pi \mathrm{p}$ collisions. The decay $\delta \rightarrow \eta \pi$ leads, however, to the opposite conclusion concerning the sign of θ_{0} (see Section II-3-(d)). (b) l^{--}- nonet

The $\omega-\phi$ mixing angle predicted by the quadratic mass formula
is $\theta_{1}=40^{\circ}$. Apart from symmetry breaking corrections, $\operatorname{SU}(3)$ invariance and the octet assignment of the photon lead to:

$$
\Gamma\left(\rho^{\circ} \rightarrow \ell^{+} \ell^{-}\right): \Gamma\left(\omega \rightarrow \ell^{+} \ell^{-}\right): \Gamma\left(\phi \rightarrow \ell^{+} \ell^{-}\right)=3: \sin ^{2} \theta_{1}: \cos ^{2} \theta_{1}
$$

The recent measurements of these leptonic decay rates, reported at this 23 conference, give ratios $7: 1: 0.8$ with $20 \%-40 \%$ errors. Symmetry breaking effects may lead to corrections of factors of 24 to the above predictions. Most models for such corrections are consistent with the present preliminary data and are discussed elsewhere in this proceedings. ${ }^{25}$

The situation concerning the decays $\mathrm{I}^{-} \rightarrow 0^{-}+0^{-}$remains essentially unchanged. Assuming that the only phase space correction is given by $\mathrm{p}_{\mathrm{c} . \mathrm{m} .}^{2 \ell+1}$. and using $\Gamma\left(\mathrm{K}^{*} \rightarrow \mathrm{~K} \pi\right)=49.7 \pm 1.1 \mathrm{MeV}, \mathrm{SU}(3)$ predicts: $\Gamma(\rho \rightarrow \pi \pi) \sim 130 \mathrm{MeV}, \Gamma(\phi \rightarrow \mathrm{K} \overline{\mathrm{K}}) \sim 5 \mathrm{MeV}$. Most models for these decays would tend to correct the ratios between these decay rates by $20 \%-40 \%$, following from the $\rho-\mathrm{K}^{*}-\phi$ mass differences. Within the ambiguities of such corrections the agreement is satisfactory. Notice, however, that most of the success here emerges from the phase-space factors!

A beautiful test of $\operatorname{SU}(3)$ for the coupling of the ρ-trajectory to $\pi \pi$ and $\overline{\mathrm{K}}$ was suggested by Barger and Olsson ${ }^{26}$. Using high energy Regge parametrizations for $\pi^{-} p, K^{-} p$ and $K^{+} n$ charge exchange scattering, they find excellent agreement between experiment and the $S U(3)$ prediction for the ratio between the $\rho \pi \pi$ and $\rho \mathrm{K} \overline{\mathrm{K}}$ residue functions.
(c) 2^{++}- nonet

Here there are new developments, related to the possible splitting ${ }^{27}$ of the A_{2}. The octet-singlet ($\mathrm{f}^{\mathrm{O}}-\mathrm{f}^{*}$) mixing angle obtained from the
quadratic mass formula is $\theta_{2}=30^{\circ}$. The following ratios among the various $\mathrm{K}^{* *}(1420) \rightarrow 1^{-}+0^{-}$decay modes (assuming a $\mathrm{p}_{\mathrm{c} . \mathrm{m} .}^{2 \ell+1}$ phase-space factor) are obtained:

$$
\Gamma\left(\mathrm{K}^{* *} \rightarrow \mathrm{~K}^{*}(890)+\pi\right): \Gamma\left(\mathrm{K}^{* *} \rightarrow \rho+\mathrm{K}\right): \Gamma\left(\mathrm{K}^{* *} \rightarrow \omega+\mathrm{K}\right) \sim 12: 3: 1
$$

The experimental ratios are approximately $10: 3: 1$ with $10 \%-30 \%$ experimental errors, in addition to the usual $\operatorname{SU}(3)$ ambiguities. The agreement is excellent and cannot be obtained from phase-space alone. Using the $\mathrm{K}^{* *}(1420)$ decays as input, we then predict $\Gamma\left(\mathrm{A}_{2} \rightarrow \rho+\pi\right) \sim 90 \mathrm{MeV}$. If the A_{2} indeed splits and we have two different resonances, A_{2}^{H} and A_{2}^{L}, each having $\Gamma \sim 30 \mathrm{MeV}$, the discrepancy cannot be tolerated. No mixing or mass dependent factors could be reasonably invoked here to account for the "missing"factor of 3 , unless the "other" A_{2} is also a $2{ }^{+}$state. In that case we may even have one relatively wide and one relatively narrow resonance interfering with each other. ${ }^{28}$ Barring such a possibility, and accepting the splitting of the A_{2}, we are led to predict that $\mathrm{K}^{* *}(1420)$ should also split. The predicted width for $\mathrm{f}^{*} \rightarrow \mathrm{~K}^{*}(890)+\mathrm{K}$, using the unsplit $\mathrm{K}^{* *}(1420)$ as input, is around $15-20 \mathrm{MeV}$ while if $\mathrm{K}^{* *}$ splits (or if we use $\mathrm{A}_{2}^{\mathrm{H}}$ as input) we find 5 MeV . Experimentally $\Gamma\left(f^{*} \rightarrow \mathrm{~K}^{*} \mathrm{~K}\right) \leq 15 \mathrm{MeV}$. Needless to say, the existence of a pair of A_{2} 's also predicts another pair of isoscalars in addition to f^{O} and f^{*}, but those need not be degenerate with f^{O} and f^{*}, and $\mathrm{SU}(3)$ does not "demand" the splitting of the known f particles.

Concerning the decays $2^{+} \rightarrow 0^{-}+0^{-}$, the comparison between $\mathrm{SU}(3)$ and experiment is displayed in Table 2. Assuming that $\mathrm{K}^{* *}(1420)$

Decay	CG-Coefficient	Prediction	Experiment
$\mathrm{A}_{2} \rightarrow \mathrm{~K} \overline{\mathrm{~K}}$	12	6	<5
$\mathrm{A}_{2} \rightarrow \eta \pi$	8	11	< 10
$\mathrm{f}^{\mathrm{O}} \rightarrow \pi \pi$	$3\left(2 \sin \theta_{2}+\mathrm{a} \cos \theta_{2}\right)^{2}=48$	140	145 ± 25
$\mathrm{f}^{\mathrm{o}} \rightarrow \eta \eta$	$\left(2 \sin \theta_{2}-\mathrm{a} \cos \theta_{2}\right)^{2}=4$	1	~ 0
$\mathrm{f}^{\mathrm{O}} \rightarrow \mathrm{K} \overline{\mathrm{K}}$	$4\left(\sin \theta_{2}-\mathrm{a} \cos \theta_{2}\right)^{2}=25$	7	< 4
$\mathrm{K}^{* *} \rightarrow \mathrm{~K} \pi$	18	53	45 ± 4
$\mathrm{K}^{* *} \rightarrow \mathrm{~K} \eta$	2	0.2	2 ± 1
$\mathrm{f}^{*} \rightarrow \pi \pi$	$3\left(2 \cos \theta_{2}-a \sin \theta_{2}\right)^{2}=0$	0	<10
$\mathrm{f}^{*} \rightarrow \eta \eta$	$\left(2 \cos \theta_{2}+a \sin \theta_{2}\right)^{2}=12$	15	< 30
$\mathrm{f}^{*} \rightarrow \mathrm{~K} \overline{\mathrm{~K}}$	$4\left(\cos \theta_{2}+\mathrm{a} \sin \theta_{2}\right)^{2}=27$	53	50 ± 20

Table 2: $2^{+} \rightarrow 0^{-}+0^{-}$decays and $\operatorname{SU}(3) . \quad \theta_{2}=30^{\circ}$ as given by the quadratic mass formula. $a=2 \cot \theta_{2}$ is chosen on the basis of the small $f^{*} \rightarrow \pi \pi$ decay rate. The only phase-space correction is a $p_{c . m}^{2 \ell+1}$. factor.
does not split, the agreement is significantly good. If, however, $\mathrm{K}^{* *}(1420)$ splits, either the entire $K \pi$ mode will come from the 2^{+}part of the split $\mathrm{K}^{* *}$, or f^{o} and f^{*} should also split in order to achieve even crude agreement with $\operatorname{SU}(3)$. Note that the details of this comparison do depend in a very sensitive way on the values of θ_{2} and a - where a is the octet to singlet ratio of the decay matrix elements.

The $\mathrm{A}_{2} \eta \pi / \mathrm{A}_{2} \mathrm{KK}$ ratio for the couplings of the A_{2} trajectory was compared with the high energy data for $\pi^{-} p \rightarrow \eta \mathrm{n}$ and $\mathrm{K}^{+} \mathrm{n}$ and $\mathrm{K}^{-} \mathrm{p}$ charge exchange by Barger and Olsson ${ }^{26}$. The agreement is extremely good.

Table 2 gives a very weak indication that the $A_{2} \rightarrow \eta \pi$ decay rate is slightly smaller than predicted by $\operatorname{SU}(3)$. This is by no means conclusive in view of the splitting problem and the small size of the discrepancy. If, however, $\mathrm{A}_{2} \rightarrow \eta \pi$ really turns out to be significantly smaller than the $\mathrm{SU}(3)$ prediction, it could hint that the $\eta-\mathrm{X}^{\circ}$ mixing angle tends toward the almost pure $\lambda \bar{\lambda}$ decomposition of η, contrary to our conclusion from the $\eta \rightarrow \gamma \gamma$ rate. It would be interesting to watch future measurements of this decay rate (see Sections II-3-(a), II-3-(d), II-4).
(d) 0^{++}-nonet

Assuming that the members of a 0^{+}nonet are $\sigma(750), \mathrm{K}^{*}(1100)$, $\delta(960)$ and $S^{*}(1070)$ we find that no mixing angle can fit the mass formula, since the K^{*}-state is the heaviest. The discrepancy can be removed only if the $\mathrm{m}\left(\mathrm{K}^{*}\right)<1070$. The "usual" quark model angle $\theta \sim 30^{\circ}-40^{\circ}$ would be a natural choice here, in view of the apparently weak $\mathrm{S}^{*} \rightarrow \pi \pi$ rate. This would predict $\mathrm{m}\left(\mathrm{K}^{*}\right) \sim 960$. Independent of the particular value of the mixing angle, if we assume $\mathrm{S}^{*} \nrightarrow \pi \pi$ and $\Gamma\left(\mathrm{S}^{*} \rightarrow \mathrm{~K} \overline{\mathrm{~K}}\right) \sim 70 \mathrm{MeV}$, we predict: (i) $\mathrm{\Gamma}\left(\mathrm{~K}^{*} \rightarrow \mathrm{~K} \pi\right) \geq 80 \mathrm{MeV}$: (ii) $\Gamma(\sigma \rightarrow \pi \pi) \geq 500 \mathrm{MeV}$; (iii) $\Gamma(\delta \rightarrow \eta \pi) \geq$ 40 MeV . While the first two predictions are not inconsistent with the
the information obtained from the $\pi-\pi$ and $\pi-K$ "phase shift analysis", the actual width of $\delta(960)$ seems to be much smaller (the missing mass spectrometer gives $\Gamma(\otimes)<5 \mathrm{MeV})$. 'This can be understood within the quark model, if η is an almost pure $\lambda \bar{\lambda}$ state, namely - if the sign of the $\eta-X^{\circ}$ mixing angle is opposite to the one needed for explaining the strength of the $\eta \rightarrow \gamma \gamma$ decay mode. The sign choice indicated by the δ decay is further supported by chiral symmetry considerations (see Section II-4). We do not know how to resolve these conflicting pieces of evidence.
(e) I^{+}-nonet

Here we face the well known problem of mixing between the two axial $K^{*}-$ mesons belonging to the two axial nonets. The large number of missing states and unknown mixing angles prevent us from drawing any significant conclusions. If the octet-singlet mixing angles in both axial nonets are the usual quark model angles (arc cos $\sqrt{\frac{2}{3}}$) and the decays $B \rightarrow \phi \pi, b^{\prime} \rightarrow \rho \pi$ (where b^{\prime} is the $\lambda \bar{\lambda}$ isoscalar of the B-nonet) are for bidden, we can compute the transition rates of all $1^{+} \rightarrow 1^{-}+0^{-}$processes in terms of $\Gamma\left(A_{1} \rightarrow \rho \pi\right), \Gamma(\mathrm{B} \rightarrow \omega \pi)$ and the $\mathrm{K}^{*}-\mathrm{K}^{*}$ mixing angle λ. Our results are given in Table 3. For $\lambda=0$ we obtain reasonable results for the K^{*} width but a small variation in λ can change the picture. Note that if $\mathrm{b}^{\prime} \nrightarrow \rho \pi$, its decay to $\mathrm{K}^{*} \mathrm{~K}$ will be relatively weak and the only allowed mode would probably be $K \bar{K} \pi$. The 1^{+-}isoscalar that does decay to $\pi \rho$ should have a width of the order of 100 MeV . -The phase space corrections in this case are even more ambiguous than usual in view of the allowed S-wave and D-wave decays, with an apriori unknown relative strength.

Decay	C. G. Coefficient	Remarks
$\begin{aligned} A_{1} & \rightarrow \rho \pi \\ \mathrm{a} & \rightarrow \mathrm{~K}^{*} \mathrm{~K} \\ \mathrm{a}^{\prime} & \rightarrow \mathrm{K}^{*} \mathrm{~K} \end{aligned}$	$\begin{aligned} & 2 \mathrm{f}^{2} \\ & \frac{1}{2} \mathrm{f}^{2} \\ & \mathrm{f}^{2} \end{aligned}$	$\} \begin{aligned} & \text { probably not alluwed } \\ & \left(\mathrm{m}\left(\mathrm{a}, \mathrm{a}^{\prime}\right)<1.39 \mathrm{BeV}\right)\end{aligned}$
$\begin{aligned} & \mathrm{B} \rightarrow \omega \pi \\ & \mathrm{~b} \rightarrow \rho \pi \\ & \mathrm{~b} \rightarrow \mathrm{~K}^{*} \mathrm{~K} \\ & \mathrm{~b}^{\prime} \rightarrow \mathrm{K}^{*} \mathrm{~K} \end{aligned}$	$\begin{aligned} & 2 \mathrm{~g}^{2} \\ & 2 \mathrm{~g}^{2} \\ & \frac{1}{2} \mathrm{~g}^{2} \\ & \mathrm{~g}^{2} \end{aligned}$	$\begin{aligned} & 120 \pm 20 \text { (input) } \\ & 120 \pm 20[\text { if } \mathrm{m}(\mathrm{~b})=\mathrm{m}(\mathrm{~B})] \\ & <10 \mathrm{MeV} \text { if } \mathrm{m}(\mathrm{~b})<1.55 \\ & <20 \mathrm{MeV} \text { if } \mathrm{m}\left(\mathrm{~b}^{\prime}\right)<1.55 \end{aligned}$
$\begin{aligned} & \mathrm{K}_{1}^{*} \rightarrow \rho \mathrm{~K} \\ & \mathrm{~K}_{1}^{*} \rightarrow \omega \mathrm{~K} \\ & \mathrm{~K}_{1}^{*} \rightarrow \mathrm{~K}^{*} \pi \\ & \mathrm{~K}_{2}^{*} \rightarrow \rho \mathrm{~K} \\ & \mathrm{~K}_{2}^{*} \rightarrow \omega \mathrm{~K} \\ & \mathrm{~K}_{2}^{*} \rightarrow \mathrm{~K}^{*} \pi \end{aligned}$	$\begin{aligned} & (f \cos \lambda-\mathrm{g} \sin \lambda)^{2} \\ & \frac{1}{2}(\mathrm{f} \cos \lambda-\mathrm{g} \sin \lambda)^{2} \\ & (\mathrm{f} \cos \lambda+\mathrm{g} \sin \lambda)^{2} \\ & (\mathrm{f} \sin \lambda+\mathrm{g} \cos \lambda)^{2} \\ & \frac{1}{2}(\mathrm{f} \sin \lambda+\mathrm{g} \cos \lambda)^{2} \\ & (\mathrm{f} \sin \lambda-\mathrm{g} \cos \lambda)^{2} \end{aligned}$	Depend very sensitively on sign and magnitude of λ $\mathrm{K}_{1,2}^{*} \rightarrow \rho \mathrm{~K} / \omega \mathrm{K}=2$ independent of λ.

Table 3: Decay rates for the two axial nonets (assuming a $\mathrm{K}^{*}-\mathrm{K}^{*}$ mixing angle λ). a and b are the "non-strange" $\bar{q} \bar{q}$ isoscalar states and a^{\prime}, b^{\prime} are the strange $(\lambda \bar{\lambda})$ isoscalar $q \bar{q}$ states in the A_{1} and B nonets respectively. The decays $\mathrm{B} \rightarrow \phi \pi$ and $\mathrm{b}^{\prime} \rightarrow \rho \pi$ are assumed to be forbidden.

4. Chiral $\mathrm{SU}(2) \times \mathrm{SU}(2)$ and the Meson Classification

Chiral $\operatorname{SU}(2) \times \operatorname{SU}(2)$ has emerged in the last few years as a useful dynamical symmetry, ${ }^{29}$ leading directly to relations among weak and electromagnetic matrix elements, and via PCAC and the vector meson dominance to predictions for strong interaction processes. The classification of particle states in the infinite momentum frame into representations of chiral $\operatorname{SU}(2) \times \operatorname{SU}(2)$ leads to many interesting relations among masses and coupling constants. ${ }^{30}$ Most of these relations are particularly relevant to the spectrum of low-lying mesons. We now list some of the consequences of the $\operatorname{SU}(2) \times \operatorname{SU}(2)$ classification, which are of immediate experimental interest.
(a) Current algebra sum rules for $\pi-\delta(960)$ elastic scattering indicate that an interesting relation exists between the δ and X^{0} mesons. A single assumption on the classification of δ and X^{O} into a ($\frac{1}{2}, \frac{1}{2}$) multiplet of $\mathrm{SU}(2) \times \mathrm{SU}(2)$ predicts $\mathrm{m}(\delta)=\mathrm{m}\left(\mathrm{X}^{\mathrm{O}}\right)$ and $\delta \nrightarrow \eta \pi$. Both predictions are approximately correct since the δ-width is extremely small. This relation between the tiny $\delta-\mathrm{X}^{\mathrm{o}}$ mass difference and the "almost forbidden" $\delta \rightarrow \eta \pi$ decay is extremely interesting. If X^{0} mostly belongs to a ($\frac{1}{2}, \frac{1}{2}$) chiral representation, the η is probably in a $(0,0)$ and in terms of the quark model we are again led to identifying η as a $\lambda \bar{\lambda}$ state. The existence of the transition $D \rightarrow \delta \pi^{9}$ probably means that there is some component of the D meson in the samc $\left(\frac{1}{2}, \frac{1}{2}\right)$ representation, mixed with X^{0}. Notice that particles of different spins (but the same helicity) can mix in $\operatorname{SU}(2) \times$ SU(2).
(b) The σ meson is predicted to be approximately degenerate with ρ, in agreement with the recent $\pi-\pi$ analysis. They should satisfy
$\mathrm{m}_{\sigma}^{2}=\mathrm{m}_{\rho}^{2}=\frac{1}{2}\left(\mathrm{~m}_{\pi}^{2}+\mathrm{m}_{\mathrm{A}_{\mathrm{l}}}^{2}\right)$.
(c) The decay $\mathrm{A}_{1} \rightarrow \rho+\pi$ should proceed mainly via the longitudinal mode ${ }^{30}$, namely - the $1 \longleftrightarrow 1$ helicity amplitude should vanish. This means that there is more D-wave than S-wave contribution to the decay. A recent SLAC experiment ${ }^{31}$, submitted to the conference, verifies this but more data are definitely needed.
(d) A_{1} should have a strong $\pi+\sigma$ decay mode with a width of the order of 50 MeV . It is almost impossible to distinguish between this mode and the $\pi+\rho$ mode, except for two cases: (i) $\mathrm{A}_{1}^{\mathrm{o}} \nrightarrow \rho^{\mathrm{O}}+\pi^{\circ}$ but $\mathrm{A}_{1} \rightarrow \sigma+\pi^{\mathrm{o}}$. (ii) The apparent $\left(\mathrm{A}_{1}^{ \pm} \rightarrow \rho^{ \pm} \pi^{\mathrm{O}}\right) /\left(\mathrm{A}_{1}^{ \pm} \rightarrow \rho^{\mathrm{O}} \pi^{ \pm}\right)$branching ratio should be smaller than 1 , because some of the " ρ " events should really be σ events. Both features are difficult to observe experimentally.

5. Other Theoretical Models for Mesons

A variety of theoretical ideas have been applied to the calculation of meson decay rates and masses. Some of their most interesting aspects (from the point of view of experimental tests) are the following:
(a) Hard pion techniques lead to predictions for $\mathrm{A}_{1} \rightarrow \pi \rho$ and $\mathrm{A}_{1} \rightarrow \pi \sigma . \quad \mathrm{A}_{1} \rightarrow \pi \rho$ is supposed to be dominated by S-wave ${ }^{32}$, in contradiction with the sum rule prediction of the previous section and with the preliminary experimental indications ${ }^{31}$. $\mathrm{A}_{1} \rightarrow \pi \sigma$ is again predicted ${ }^{33}$ to have a substantial decay rate.
(b) Quark model calculations of pion emission by quarks, neglecting recoil corrections, predict ${ }^{34}$ that $A_{1} \rightarrow \rho \pi$ and $B \rightarrow \omega \pi$ are not dominated by S-wave, that the first is purely transverse and the second purely longitudinal. Both predictions seem to contradict the data.
$B \rightarrow \omega \pi$ is consistent with a purely transverse decay, according to a recent Illinois experiment. 35
(c) Superconvergence relations and finite energy sum rule bootstrap calculations lead to relations among meson masses such as $m(B)=m\left(A_{2}\right)-m(\pi), m^{2}\left(A_{2}\right)=3\left[m^{2}(\rho)-m^{2}(\pi)\right]$, in good agreement with experiment.

III. Baryon Spectroscopy

1. The Status of Baryon SU(3) Multiplets

The most significant development reported to this conference with respect to the baryon spectrum is the discovery of several new Y^{*} candidates ${ }^{2}$ which fall very neatly into the various $\operatorname{SU}(3)$ octets and decuplets "started" by the "old" N^{*} resonances. We first discuss the existence of the various states in these multiplets and then proceed in Section III-2 to analyze in more detail decay rates, possible representation mixing, etc.

The known $\ell \leq 3 \mathrm{~N}$-states ($\mathrm{I}=\frac{1}{2}$) are displayed in Figure 5. Those include all the $I=\frac{1}{2} \pi N$ states claimed by the CERN group last fall, as well as the possible $D_{13}(1730)$ state that was hinted by their analysis but was not claimed to be a resonance. In accord with Donnachie we classify $\mathrm{D}_{13}(1730), \mathrm{F}_{17}(1980)$ and $\mathrm{D}_{13}(2060)$ as being shakier than the other states. Assuming that the only "allowed" $\mathrm{SU}(3)$ multiplets are singlets, octets and decuplets, we are led to believe that every excited nucleon state "starts" an octet. We therefore expect three other states (Λ, Σ and Ξ) for every one of the 12 N -states of Figure 5 (if they really exist).

The spectrum of excited Δ-states ($\mathrm{I}=\frac{3}{2}$) is shown in Figure 6 37 where, again, all the "products" of the CERN-1967 analysis are included, 3 with $\mathrm{D}_{35}{ }^{(1950)}$ and $\mathrm{P}_{33}{ }^{(1690)}$ marked as "dubious". Following the argument of the previous paragraph we expect three additional states (Σ, Ξ and Ω) for every Δ, assuming that all Δ 's belong to decuplets.

The known excited Λ-states are listed in Figure 7. They include the new possible $P_{01}(1750)$ state found by the CHS collaboration and

Figure 5: The excited N -states $\left(\mathrm{I}=\frac{1}{2}\right)$. Solid boxes represent relatively established states. Dashed boxes represent states which are more uncertain.

1142A6

Figure 6: The excited Δ-states $\left(\mathrm{I}=\frac{3}{2}\right) . \quad$ Notation as in Figure 5.
the "older" $\mathrm{F}_{07}(1870)$ possible resonance. Since the $\mathrm{I}=0 \mathrm{Y}^{*,}$ s may apriori belong to $\mathrm{SU}(3)$ singlets or octets we listed for everyone of them a tentaLive assignment. $\quad \Lambda(1405)$ and $\Lambda(1520)$ are known to be mostely in $\operatorname{SU}(3)$ singlets, although some octet-singlet mixing may be needed (see Section III-2). We believe that all the other Λ-states of Figure 7, with the possible exception of the "peculiar" $\mathrm{F}_{07}(1870)$, are in octets. Our discussion (below) of the existing octets seems to support these assignments.

The Σ-states are given in Figure 8, and they include the following new assignments:
(a) A possible $\mathrm{S}_{11}(1660)$ state was found by the CHS group in $\mathrm{K}^{-} \mathrm{p} \rightarrow \Lambda \pi$. This may be the same states as the $\mathrm{Y}_{1}^{*}(1680)$ found last year by a Northwestern-Argonne group. 39 We label it $\mathrm{S}_{11}(1670)$ in the figure.
(b) The old $\Sigma \eta$ enhancement at 1770 is still in doubt. ${ }^{2}$ This is our $S_{11}(1770)$ state.
(c) A new $\mathrm{P}_{11}(1610)$ state is hinted by the $\mathrm{CHS} \mathrm{K}^{-} \mathrm{p} \rightarrow \Lambda \pi$ data. ${ }^{38}$ This may be the same state as the $Y_{1}{ }^{*}(1616)$ reported at this conference by a BNL group 40
(d) The CHS group also reports a possible $\mathrm{P}_{13}(1660)$ state which they find in their $\mathrm{K}^{-} \mathrm{p} \rightarrow \Lambda \pi$ analysis. ${ }^{38}$
(e) The $\mathrm{F}_{15}(1910)$ state is not yet confirmed and is listed here "with reservations".

All Σ-states should probably belong to octets or decuplets. In addition to the old assignments of the established states we suggest that $S_{11}(1670)$ and $S_{11}(1770)$ are octet-decuplet mixtures, with $S_{11}(1670)$ being mostly in the octet and $S_{11}(1770)$ mostly in the decuplet. $P_{11}(1610)$ is probably

F'igure 7: The excited Λ-states. Notation as in Figure 5. Singlet or octet assignments are indicated for every state.

1142A8

Figure 8: The excited Σ-states. Notation as in Figure 5. Octet or decuplet assignments are indicated for every state.
in the octet of the $N(1470)$ resonance and $P_{13}(1660)$ should perhaps be in the decuplet of the "second" 3-3 resonance $\Delta\left(690, \frac{3+}{2}\right)$.

With these assignments we can now proceed to study the present status of the various octets and decuplets. For this purpose we ignore the possible mixing effects and tentatively assume that the $S=-1$ members of every multiplet should be found approximately $100-200 \mathrm{MeV}$ above the mass of the non-strange baryon in the multiplet. This assumption does not follow directly from any $\operatorname{SU}(3)$ considerations. It may be "derived" from simple minded quark-model arguments (The Λ-quark is heavier than the non-strange quarks by $100-200 \mathrm{MeV}$?) or can be based on our experience with those $\operatorname{SU}(3)$ multiplets which are already established. Mixing effects, while changing drastically the decay rate predictions, usually do not affect the baryon masses by more than 50 MeV , well within the range of our rough approximation. In order to examine the $\mathrm{SU}(3)$-octets we have plotted all N, Λ and Σ states which we had assigned to octets in Figures 5, 7 and 8 on three different mass scales, shifted with respect to each other. This is shown in Figure 9 where the N-spectrum, Λ-spectrum (shifted by about 200 MeV) and Σ-spectrum (shifted by about 220 MeV) are plotted together. The grouping of N, Λ and Σ states to $\mathrm{SU}(3)$ octets is striking. Below 1850 $\operatorname{MeV} \Sigma$ and Λ mass or 1700 MeV N-mass all the octets are completed as far as their N, Λ and Σ content is concerned. We will return to the missing excited Ξ states later. The newly discovered ${ }^{2} \Lambda$ and Σ states turn out to be exactly the states needed for completing all the expected octets! This is a remarkable success for $\mathrm{SU}(3)$.

N, Λ, Σ States in SU(3) Octets

1142A9

Figure 9: $\quad \mathrm{N}, \Lambda$ and Σ excited states assigned to $\operatorname{SU}(3)$ octets. The three mass scales are shifted with respect to each other. The "ideal world" in which the $\mathrm{N}-\Lambda-\Sigma$ mass splitting in all octets is identical would correspond to overlapping "boxes" for the corresponding states in a given octet. The solid and dashed boxes are defined in Figure 5.

1142A10

Figure 10: Δ and Σ excited states assigned to $\operatorname{SU}(3)$ decuplets. Notation as in Figure 9.

A similar analysis for the $\mathrm{SU}(3)$ decuplets indicates (Figure 10) that the lowest missing Σ-state should, again, be around 1850 MeV . Here we have a clear deviation from our naive $\Sigma-\Delta$ "spacing rule". The $\Sigma(1660)$ state $\left(J^{P}=\frac{3+}{2}\right)$ is actually lower than its probable companion $\Delta(1690)$. Both of them, however, are not established and their masses might change in the final analysis.

The complete list of existing octets and decuplets is given in Tables 4 and 5.

J^{P}	N	Λ	Σ	Ξ
$\frac{1}{2}^{+}$	940	1115	1190	1320
$\frac{1}{2}^{+}$	1470	$1750 ?$	$1610 ?$	-
$\frac{3-}{2}$	1520	1690	1660	$1820 ?$
$\frac{1}{2}-$	1550	1670	$1670 ?$	-
$\frac{5-}{2}$	1690	1830	1770	$1930 ?$
$\frac{5}{2}^{+}$	1690	1815	$1910 ?$	$2030 ?$

Table 4: Possible SU(3) octets. Unconfirmed states or questionable SU(3) assignments are question-marked.

${ }^{P}$	Δ	Σ	Ξ	Ω
$\frac{3+}{2}$	1240	1385	1530	1675
$\frac{1}{2}-$	1640	$1770 ?$	-	-
$\frac{3}{2}^{+}$	$1690 ?$	$1660 ?$	-	-
$\frac{7}{2}$	1950	2030	-	-

Table 5: Possible SU(3) decuplets. Notation as in Table 4.

Assuming that this successful classification pattern continues into the higher mass region we may predict future Λ and Σ states between 1850 and 2200 MeV . We expect the following states:
(a) $\Lambda\left(900, \frac{1}{2}^{-}\right) ; \Lambda\left(1950, \frac{1}{2}^{+}\right) ; \Lambda\left(2050, \frac{3+}{2}\right) ; \Lambda\left(1900, \frac{3-}{2}\right)$;
$\Lambda\left(2250, \frac{3-}{2}\right)$ in octets.
(b) Additional possible $\mathrm{SU}(3)$ singlets.
(c) $\Sigma\left(1900, \frac{1}{2}^{-}\right) ; \Sigma\left(1950, \frac{1}{2}^{+}\right) ; \Sigma\left(2050, \frac{3+}{2}\right) ; \Sigma\left(1900, \frac{3-}{2}\right)$;
$\Sigma\left(2250, \frac{3-}{2}\right)$ in octets.
(d) $\Sigma\left(2100, \frac{1}{2}^{+}\right) ; \Sigma\left(1850, \frac{3-}{2}\right) ; \Sigma\left(2100, \frac{5}{2}^{-}\right) ; \Sigma\left(2050, \frac{5}{2}^{+}\right)$
in decuplets.
The masses of these predicted states should be within a range of 100 MeV or so around the above predictions.

The situation concerning the excited Ξ-states is very unpleasant. Since every octet and every decuplet require an $I=\frac{1}{2} \quad \Xi$-state, we could
get a vague impression of the expected Ξ-spectrum by combining the observed N and Δ states on the same plot. The predicted Ξ-states should probably lie $250-400 \mathrm{MeV}$ above the corresponding non-strange resonances. Figure 11 indicates for example that somewhere between 1950 and 2050 MeV there should exist 8 different $\boldsymbol{\Xi}$-states. Since a direct phase shift analysis is not feasible here, it will be extremely difficult to disentangle the various Ξ-baryons in this region. We must conclude here that states like $\Xi(1820)$, $\Xi(1930)$ and the new $\Xi(2030)$ reported to this conference by a BNL group, ${ }^{41}$ are really complicated superpositions of many Ξ-resonances, and their measured branching ratios represent weighted averages (with possible interference effect in some cases) of the true decay rates of the various single states.
2. Branching Ratios and Representation Mixing for Baryon Resonances in $\underline{\mathrm{SU}(3)}$
(a) $\mathrm{J}^{\mathrm{P}}=\frac{1}{2}^{-}$

The existence of $N(1550), N(1710)$ and $\Delta(1640)$ leads us to assume that we have two octets and one decuplet with $J^{P}=\frac{1}{2}^{-}$. The strongest indication for mixing is given by the prediction that, independent of the D / F ratios, any unmixed Σ-state should have equal transition matrix elements to $\Sigma \eta$ and $\Lambda \pi$ while any unmixed Λ-state should have a 3:1 ratio between its $\Sigma \pi$ and $\Lambda \eta$ matrix elements. Phase space considerations strongly favor the $\Lambda \pi$ over the $\Sigma \eta$ mode and the $\Sigma \pi$ over the $\Lambda \eta$ mode. The unmixed Σ and Λ states should therefore always strongly prefer their π-emission decays over η-emission. These predictions are totally inconsistent with the decay

Predicted Ξ-States

Figure 11: The predicted Ξ-spectrum. The approximate mass scale is based on adding $300-350 \mathrm{MeV}$ to the mass of the corresponding N or Δ state.
branching ratios of $\Sigma(1770)$ and $\Lambda(1670)$, both of which have an η decay mode which is comparable in strength to the π-emission mode. This difficulty can be avoided either by inventing a symmetry breaking correction which would balance the preference of the phase space factor for the $\Sigma \pi$ and $\Lambda \pi$ decays, or by introducing strong representation mixing effects. The latter possibility is much more natural, especially since we do not see any reason why such nearby multiplets having the same J^{P} assignments should not mix. Note that if we believe the simple massprescription of our previous discussion, we have to conclude that $\Sigma(1670)$ is mostly in the same octet with the $N \eta$ and $\Lambda \eta$ "threshold resonances" $N(1550)$ and $\Lambda(1670)$, while the $\Sigma \eta$ "threshold state", $\Sigma(1770)$ is at least partly in the $\Delta(1640)$-decuplet. Note also that if $\Sigma(1670)$ is purely in the same octet with $\Lambda(1670)$, we expect $\Gamma[\Sigma(1670) \rightarrow \Lambda \pi] \sim 7 \Gamma[\Lambda(1670) \rightarrow \Lambda \eta]$ after phase space correction and independent of the D / F ratio. The experimental numbers are 110 and 18 MeV respectively, in agreement with this prediction. Our mixing scheme for the $\frac{1}{2}^{-}$states should therefore avoid spoiling this ratio.

We do not expect to benefit from trying an overall fit for all the decay modes of these three multiplets, before at least all the missing excited Λ and Σ states are found (presumably around 1900 MeV).
$\Lambda(1405)$ is presumably mostly in an $\operatorname{SU}(3)$ singlet. Its coupling to $\overline{\mathrm{K}} \mathrm{N}$ is much larger ${ }^{43}$ than to $\Sigma \pi$, and some mixing with other $\frac{1}{2}^{-} \Lambda$-states may be necessary.
(b) $\mathrm{J}^{\mathrm{P}}=\frac{1}{2}^{+}$

In addition to the established nucleon-octet we expect two more octets (corresponding to $N(1470)$ and $N(1750)$) and a decuplet for $\Delta(1930)$.

Of these, only the first octet can be discussed in any detail. The recently discovered candidates for the second $\frac{1}{2}^{+}$octet are $\Sigma(1610)$ and $\Lambda(1745)$. For the purpose of a preliminary, tentative, $\mathrm{SU}(3)$ analysis of this octet we assume: (i) There are no mixing effects. (ii) The D / F ratio for the decay rates of this octet is approximately the same as that of the basic baryon octet, i.e. $\mathrm{D} / \mathrm{F} \sim 1.5-2$. Using as input $\Gamma[\mathrm{N}(1470) \rightarrow \mathrm{N} \pi] \sim 130 \pm 30$ MeV and introducing a $\left(\mathrm{p}_{\mathrm{c} . \mathrm{m}}\right)^{2 \ell+1}$ factor as the only phase space correction we predict

$$
\begin{array}{ll}
\Gamma[\Sigma(1610) \rightarrow \Lambda \pi] \sim 15-30 \mathrm{MeV} ; & \Gamma[\Sigma(1610) \rightarrow \Sigma \pi] \sim 10-20 \mathrm{MeV} ; \\
\Gamma[\Sigma(1610) \rightarrow N \bar{K}] \sim 5 \mathrm{MeV} ; & \Gamma[\Lambda(1745) \rightarrow \Sigma \pi] \sim 70-130 \mathrm{MeV} ; \\
\Gamma[\Lambda(1745) \rightarrow \Lambda \eta] \sim 5 \mathrm{MeV} ; & \Gamma[\Lambda(1745) \rightarrow N \overline{\mathrm{~K}}] \sim 80-140 \mathrm{MeV} .
\end{array}
$$

As far as we can tell all these numbers are not inconsistent with the experimental situation. The only "suspicious" prediction here is the large $\Sigma \pi$ decay rate of $\Lambda(1745)$. The presence or absence of this state in the $K^{-} p \rightarrow \Sigma \pi$ phase shifts will be a crucial test of our simple picture. So far $\Lambda(1745)$ has been seen only in $K^{-} p \rightarrow \bar{K} N$.

A few years ago it was proposed that $N(1470)$ might belong to an antidecuplet of $\mathrm{SU}(3)$. If this were the case, the decay $\mathrm{N}(1470) \rightarrow \Delta \pi$ would have been forbidden in the exact $\operatorname{SU}(3)$ limit, and $\gamma \mathrm{p} \rightarrow \mathrm{N}^{+}(1470)$ w ould have been forbidden while $\gamma \mathrm{n} \rightarrow \mathrm{N}^{\mathrm{o}}$ (1470) would be allowed. ${ }^{45}$ The apparent absence of the transition $\gamma \mathrm{n} \rightarrow \mathrm{N}^{\mathrm{o}}(1470)$ reported at this conference, together with the observation of the $\Delta \pi$ decay mode suggest that the octet assignment is favored.
(c) $\mathrm{J}^{\mathrm{P}}=\frac{3+}{2}$

There is no news concerning the well-established $\frac{3+}{2}$ decuplet. A second $\frac{3+}{2}$ decuplet may be emerging, including $\Delta(1690)$ and $\Sigma(1660)$. The existence of $\mathrm{N}\left(1860\right.$) predicts a $\frac{3+}{2}$ octet in the $1850-2250 \mathrm{MeV}$ region. Very little is known about any of these states.
(d) $\mathrm{J}^{\mathrm{P}}=\frac{3-}{2}$
$\Delta(1690)$ and the possible $N(1730)$ and $N(2060)$ are still waiting for their companions in a $\frac{3-}{2}$ decuplet and two $\frac{3-}{2}$ octets to be discovered. In addition, we now have an established $\frac{3-}{2}$ octet and a singlet. The octetsinglet mixing angle between $\Lambda(1520)$ and $\Lambda(1690)$ is probably around 20°, if the relevant Ξ-state is indeed at 1820. Note that such a mixing angle may drastically change the various branching ratio predictions, while the mass values are changed only by 20 MeV . The $\Lambda(1520)$ decay rates are actually inconsistent with a pure $\operatorname{SU}(3)$ singlet assignment, a fact which supports the necessity of octet-singlet mixing. The most interesting new development concerning the $\frac{3-}{2}$ octet is the observation of the $\Xi(1820) \rightarrow \Sigma \overline{\mathrm{K}}$ decay mode, reported by the BNL group. The apparent obsence of this mode used to be the only definite failure of $\operatorname{SU}(3)$ in this octet, and this difficulty is now removed. Remember, however, that 3Ξ-states are expected around 1800 MeV , and we cannot be sure what we mean when we talk about "当(1820)"。
(e) $\mathrm{J}^{\mathrm{P}}=\frac{5}{2}$

No major new development has been reported, and the general situation is satisfactory. No prominent failures of the $\operatorname{SU}(3)$ predictions
are encountered for the $\frac{5-}{2} \frac{2,48}{2}$ octet. If $\Delta(1950)$ exists, we expect a $\frac{5-}{2}$ decuplet.
(f) $\mathrm{J}^{\mathrm{P}}=\frac{5^{+}}{}$

The most troublesome difficulty in the $\frac{5+}{2}$ octet is the apparent absence of the $\Sigma(1910) \rightarrow \Sigma \pi$ mode, which is predicted to have a partial w idth of about 50 MeV . The new $\Xi(2030)$ which is probably a superposition of many states, may be mostly composed of the missing Ξ of the $\frac{5+}{2}$ octet, in the same way that the ancient "third nucleon resonance" at 1680 MeV represents many different N^{*} s but is dominated by the $\frac{5+}{2}$ state. A $\frac{5}{2}+$ decuplet is expected by the $\Delta(1910)$. (g) $\mathrm{J}^{\mathrm{P}}=\frac{7+}{2}$

The $\frac{7+}{2}+\operatorname{decuplet}[\Delta(1950), \Sigma(2030)]$ indicates no major difficulties in the decay rate analysis. If $\Lambda\left(1860, \frac{7+}{2}\right)$ exists it should probably be an $\operatorname{SU}(3)$ singlet, unless we are prepared to associate it with the heavier possible $\mathrm{N}(1980)$.

3. Baryon Resonances and the Quark Model

The description of baryon states in terms of the quark model proceeds along the following lines:
(a) The basic assumption states that at least the "low-lying" baryons are constructed from three quarks. This immediately predicts the existence of $\operatorname{SU}(3)$ singlets, octets and decuplets and the absence of any other $\operatorname{SU}(3)$ multiplet. The open question at this stage is: Do we have
"exotic baryons" ($\mathrm{I}=2$, or $\mathrm{S}=+1$, or $\mathrm{I}=\frac{5}{2}$, etc.), and if we do, how far above the "ground state" of the $3 q$ system we will find the first $q \bar{q}$ excitation.

Experimentally, all the states listed in the previous sections can be accommodated in singlets, octets and decuplets. The existence of "exotic baryons" other than the $S=+1, I=0,1$ states is not claimed by any experiment at this time. The question of whether the Z_{1} and Z_{o} "bumps" in the $\mathrm{K}^{+} \mathrm{p}$ and $\mathrm{K}^{+} \mathrm{n}$ total cross sections are really resonances remains open and will have to await a detailed KN phase shift analysis. Such an analysis, in turn, necessitates much better polarization information on this process. We will return to the theoretical aspects of the possible existence of Z-states in Section IV-4-(e), IV-5-(a), (b).
(b) The next step is to assume a well-defined overall symmetry for the entire $3 q$ wave function. There are models in which the three quarks are in a totally antisymmetric state, while others prefer the symmetric possibility. ${ }^{49}$ Regardless of the specific chosen symmetry property, the states will have definite overall symmetry with respect to the quarkspin and the $\mathrm{SU}(3)$ indices, and will therefore "fall" into $\mathrm{SU}(6)$ multiplets. SU(6) here is not necessarily an invariance group of any kind. It may simply be a device for counting all states having a specific overall symmetry for their spin and $\operatorname{SU}(3)$ indices. The allowed $\mathrm{SU}(6)$ representations are the 56,70 and 20 , corresponding, respectively, to total symmetry, mixed symmetry and total antisymmetry among the spin $+\mathrm{SU}(3)$ properties of the three quarks. This leads, in all versions of the quark model, to the grouping of states into $\operatorname{SU}(6)$ multiplets wi th a definite "orbital angular
momentum" L and definite parity. At this stage, still without specifying the statistics that the quarks should obey we can look at the baryon spectrum and try to identify [$\mathrm{SU}(6), L^{\mathrm{P}}$] supermultiplets. Figure 12 illustrates the established as well as the more speculative $\operatorname{SU}(3)$ multiplets. The positive parity baryons form two $\left[56,0^{+}\right]$supermultiplets, a $\left[56,2^{+}\right]$ with one $\operatorname{decuplet}\left(J^{P}=\frac{3+}{2}\right)$ missing and, presumably, a third $\left[56,0^{+}\right]$in which only one excited nucleon state, $\mathrm{P}_{11}(1750)$ exists so far. The low-lying negative parity baryons fall very neatly into a [$70,1^{-}$] multiplet with no missing $\mathrm{SU}(3)$-multiplets and no redundant states. This is a remarkable success for this extremely naive quark picture. The possibility of grouping such a large number of $\operatorname{SU}(3)$ multiplets with the correct spins and parities to 4 or $5\left[\mathrm{SU}(6), \mathrm{L}^{\mathrm{P}}\right]$ multiplets is definitely a non-trivial matter, and we should probably take this success very seriously. Whether the physical picture of quarks is correct, or it just reflects some deeper dynamical structure, we do not know.
(c) The third stage in developing this kind of quark description is to specify the type of statistics that the quarks obey, and to try to understand the "force" or "potential" which is responsible for the observed baryon states. In the last few years the symmetric quark model, first 50 proposed by Greenberg, emerged as the most hopeful version of the quarkscheme. The antisymmetric (ordinary Fermions) model is not completely 49 ruled out, but it is much more complicated and has no other virtues except for the familiarity of ordinary Fermi statistics.

The symmetric quark model assumes that the three-quarks possess a totally symmetric wave function. There are two almost equivalent ways of achieving this - (i) Assume that the quarks are para-

Baryon SU(3) Multiplet and the Quark Model

1142A. 12

Figure 12: The quark model $\left[\mathrm{SU}(6), \mathrm{L}^{\mathrm{P}}\right]$ supermultiplets. The mass scale corresponds to the approximate mass of the $\mathrm{S}=-1$ members of the various $\mathrm{SU}(3)$ singlets, octets and decuplets. The solid, dashed and dotted boxes correspond to probable, possible and doubtful $\operatorname{SU}(3)$ multiplets, respectively. fermions of order three. (ii) Assume that we have three integral-charge triplets (the Han-Nambu model). The possibility of paraquarks which was proposed by Greenberg in 1964 has the advantage of being so unfamiliar, that we may even try to blame the apparent non-existence of free quarks on some mysterious ununderstood property of parafermions. (Can free parafermions exist?)

Various details of these different models are discussed elsewhere in these proceedings. ${ }^{49}$ Here we would like to discuss very briefly only one aspect of the symmetric model - the sequence of [$S U(6), L^{P}$] multiplets predicted by a harmonic-oscillator shell-model description of an overall symmetric $3 q$ system. Table 6 indicates the sequence of single and double quantum excitations predicted by such a model (All "spurious multiplets" corresponding to motion of the center of mass are removed.). The first four multiplets listed in the table are precisely those which are observed experimentally (Figure 12). Two questions remain open within the framework of this simple model: (i) Why don't we see a $\left[70,0^{+}\right]$, a $\left[70,2^{+}\right]$and a $\left[20,1^{+}\right]$multiplet somewhere in the $1500-2000 \mathrm{MeV}$ region? (ii) Why do we observe the radially excited states (the second [56, $\left.0^{+}\right]$) at the same mass region of the first orbital excitation? Both problems hint that the appropriate level structure of the potential is at least slightly shifted with respect to an ideal harmonic oscillator scheme. In fact, all indications are that the (1 p) excited quark is very close to the (2 s) level. In other words - the radially excited states are lower than expected for an oscillator. This conclusion is strengthened by the existence of the $\mathrm{P}_{11}(1750) \mathrm{N}$-state which might very well be the first state of the second radially excited [$56, n^{+}$], having $n=3$. Various specific models for the
quark-quark forces within the symmetric model framework have been proposed in order to explain the observed level sequence. In particular, Mitra ${ }^{52}$ has proposed an S-wave qq interaction which allows only the $\left[56,(2 \ell)^{+}\right\rceil$and $\left\lceil 70,(2 \ell+1)^{-}\right\rceil$multiplets.

Shell Model State	$\mathrm{SU}(6)$	L	Parity
$(1 s)^{3}$	56	0	+
$(\mathrm{ls})^{2}(\mathrm{lp})$	70	1	-
$\left.\begin{array}{l} (1 \mathrm{~s})^{2}(2 \mathrm{~s}) \\ (\mathrm{ls})^{2}(\mathrm{ld}) \\ (\mathrm{ls})(\mathrm{lp})^{2} \end{array}\right\}$	56	0	+
	56	2	+
	70	0	+
	70	2	+
	20	1	+

Table 6: Single and Double Quantum Excitations in the Harmonic Oscillator Shell Model for the Symmetric 3q System.
(d) Once we have a "potential" or a "force" which correctly predicts or explains the observed spectrum (including spin dependence, 53, 54, 55 L-S splitting, etc.) we may proceed to compute transition rates. Several such calculations were submitted to this conference with an overall fair degree of success. This, however, is the most sensitive aspect of the baryon-spectrum since small amounts of level mixing which barely affect the observed masses may induce enormous corrections to the computed transition rates.

4. Other Theoretical Schemes for Baryons

Various dynamical calculations outside the framework of the quark model lead to interesting predictions for baryon properties.
(a) The static model can account for the entire observed baryon spectrum, but predicts "exotic" states such as an $I=\frac{5}{2} N^{*}$ and $S=+1$ states. ${ }^{56}$ It is interesting to note, however, that all the "conventional" $\mathrm{I}=\frac{1}{2}, \frac{3}{2}$ N^{*}-resonances which are assigned according to the static model to "exotic" $\mathrm{SU}(3)$-representations, were never observed outside the phase shift analysis. Assuming that the same situation occurs for the $S-+1$ states, we cannot use the absence of established Z-states as evidence against the various static model results.
(b) Bootstrap calculations for baryon states, either using the N/D-method or the finitc-cnergy-sum-rule idea, have not led to any satisfactory quantitative predictions. The baryon spectrum is much more complicated than the meson spectrum, and it is not surprising that the early quantitative successes of the FESR-bootstrap are all related to meson states.
(c) The idea of parity-doublet baryon trajectories has had some 57 but the absence of parity doublets for the $\frac{1+}{2}$-octet, $\frac{3+}{2}-$ decuplet, $\frac{1-}{2}$ and $\frac{3-}{2}$ singlets, the four lowest-lying $\mathrm{SU}(3)$ multiplets, (Figure 12) has to be explained. One possible explanation is that some dynamical scheme (the quark model ?) should tell us when the paritydoublet trajectories materialize into particles and when their residue functions develop zeros in the right-signature points, and thus avoid making particles. It is a fact, however, that all existing parity doublets
correspond to those states in the positive parity 56 ($L=0$ or 2) multiplets which have counterparts in the $\left[70,1^{-}\right]$.
(d) Chiral $\mathrm{SU}(2) \times \mathrm{SU}(2)$ has led to one interesting mass relation: $\mathrm{m}_{\Delta}^{2}=\cos ^{2} \theta \mathrm{~m}_{\mathrm{N}}^{2}+\sin ^{2} \theta \mathrm{~m}_{\mathrm{X}}^{2}$ where θ is the mixing angle which indicates how strong are the components of all the $\mathrm{I}=\frac{1}{2}$ excited N -states in the basic $\left(\frac{1}{2}, 1\right) \operatorname{SU}(2) \times \operatorname{SU}(2)$ representation which mainly accommodates $\mathrm{N}(940)$ and $\Delta(1240)$. The width $\Gamma(\Delta \rightarrow N \pi)$ gives $\cos \theta \sim 0.8$ and that leads in the above mass formula to $\mathrm{m}_{\mathrm{X}} \sim 1650 \mathrm{MeV}$, a reasonable value for a weighted average mass of the excited $I=\frac{1}{2}$ states which mix with the nucleon.
(e) The model of Gell-Mann and Zweig can be extended ${ }^{19}$ to the baryon spectrum, predicting many additional low-lying baryons. Most of these are still missing. The model includes a prescription for answering the question raised above (III-4-(c)) concerning the existence of particles on parity doublet trajectories.

IV. s-Channel Resonances, t-Channel Trajectories
 and Loops in the Argand Diagram

1. Resonances in Partial Wave Analysis and Schmid's Proposal

The hunt for resonances in the partial wave analysis of various elastic processes, is based on the following simple logic:
(a) A resonance formula, such as the Breit-Wigner expression, leads to an energy variation of the resonating phase shift which can be described by a circle in an Argand diagram for the real and imaginary part of the relevant partial wave amplitude.
(b) The radius of this circle represents the elasticity of the resonance. The circle can be shifted from the central lowest point of the unitarity circle, if some non-resonating "smooth" background contributions are present.
(c) Until a short time ago, we did not know of any simple mechanism other than the Breit-Wigner type of formula, which can produce circles in the Argand plot of a given partial wave.
(d) It was therefore assumed that every circle (or "any substantial part of a circle") appearing in the Argand plots for the various phase shifts, actually corresponds to a resonance in the same partial wave.

This logic is extensively used by the various phase-shift analysis groups and a large fraction of the baryon resonances discussed in Section III were actually discovered using this technique.

Several months ago Schmid pointed out that we do know another simple mechanism of creating circles in the phase-shift Argand diagram. He showed that the expression for the exchange of a Regge-trajectory in the t-channel, when analysed in terms of s-channel partial waves, produces circles in the Argand diagram. These circles strongly resemble the "resonance circles". At this point, if we return to our previous discussion of the "Argand Circles" we find that point (c) is not true any more and therefore the conclusion (d) cannot be drawn without a further study of the dynamical meaning of s-channel resonances and t-channel trajectories. But before we proceed (in Section IV-2) to discuss this problem, let us first see how the t-channel Regge trajectories are actually capable of producing such circles. At first glance it seems strange that a function like $\mathrm{A}(\nu, \mathrm{t})=\xi(\alpha) \nu^{\alpha(\mathrm{t})}$ which has a "smooth" energy dependence can lead to bumps in specific partial wave amplitudes $(\xi)(\alpha)$ includes the signature factor and the necessary "ghost killing" factors). It turns out, however, that when the "smooth" curve describing $\operatorname{Im} \mathrm{A}(\nu)$ as a function of ν is decomposed into its partial waves, every one of them peaks at a different set of energy values and they all combine to give the "bumpless" $\nu^{\alpha(\mathrm{t})}$ form. Such a situation is schematically illustrated in Figure 13.

A simple way of understanding how this type of decomposition comes about is the following: consider an elastic scattering process of equal mass particles with an amplitude of the form $\mathrm{A}(\nu, \mathrm{t})=\mathrm{e}^{\mathrm{i} \pi \alpha(\mathrm{t})}$ where $\alpha(\mathrm{t})=\mathrm{a}+\mathrm{bt}$. At any given energy the angular dependence of both $\operatorname{Re} \mathrm{A}(\nu, \mathrm{t})$ and $\operatorname{Im} \mathrm{A}(\nu, \mathrm{t})$ will be given by curves similar to those of Figure 14. In order to extract (for example) the S-wave projection of this amplitude at a given energy, we simply have to integrate the curves of Figure 14 over the

1142A13

Figure 13: A typical decomposition of an amplitude of the form $\mathrm{A}(\nu, \mathrm{t})=\xi(\alpha)\left(\nu / \nu_{0}\right)^{\alpha(\mathrm{t})}$ into its various partial wave contributions, for $\alpha(\mathrm{t})=\frac{1}{2}+\mathrm{t} . \operatorname{Im} \mathrm{A}(\nu, 0)$ is plotted against ν in the range $3 \leq \nu \leq 14$ in units of ν_{0}.

1142A14
$a_{0}\left(E^{*}\right)=\int_{0^{\circ}}^{180^{\circ}} A\left(E^{*}, \dagger\right) d(\cos \theta)$

Figure 14: $\operatorname{Re} \mathrm{A}(\nu, \mathrm{t})$ and $\operatorname{Im} \mathrm{A}(\nu, \mathrm{t})$ plotted against $\mathrm{t} . \mathrm{A}(\nu, \mathrm{t})=\mathrm{e}^{\mathrm{i} \pi \alpha(\mathrm{t})}$; $\alpha(\mathrm{t})=0.5+\mathrm{t}$. The $\theta=180^{\circ} \mathrm{t}$-values at various c.m. energies E^{*} are marked, assuming that the process under discussion is elastic $\pi-\pi$ scattering. The S-wave projection of $\mathrm{A}(\nu, \mathrm{t})$ is plotted below as a function of E^{*} in an Argand plot.

Figure 15: The P-wave Argand plot of $\mathrm{A}(\nu, \mathrm{t})=\mathrm{e}^{\mathrm{i} \pi \alpha(\mathrm{t})}$. The figure is taken from Chiu and Kotanski, reference 59.
interval from $\theta=0^{\circ}$ to 180°. Since $\theta=180^{\circ}$ corresponds to different values of t at different energies, the integration range will continuously increase with energy, and both real and imaginary parts of the S-wave projection will oscillate between zero and $1 / 2 \pi b q^{2}$ (where q is the center of mass momentum). We should therefore expect the S-wave phase shift to describe in the Argand plot a spiral with a radius which decreases like $1 / \nu$. Similar considerations hold for all other partial waves. A typical Argand plot for the $\ell=1$ projection of the above amplitude is given in Figure 15.

The full Regge amplitude is of course more complicated than our $\mathrm{e}^{\mathrm{i} \pi \alpha(t)}$ example. The other terms can change the relative size of the circles, their position and the frequency of their occurrence, but the basic feature of a "spiraling phase shift" in the Argand diagram would remain in almost all cases.

We have therefore learned from Schmid's work that the Argand circles can result from the exchange of Regge trajectories in another channel, as well as from ordinary S-channel resonances. How do we interpret a circle which is actually found in some phase shift analysis?

2. The Interpretation of Circles in the Argand Plot

Every scattering amplitude in the physical region can be, in principle, expanded in terms of partial waves in the s-channel and represented as a sum of many s-channel resonances and a background contribution. Presumably, the same amplitude can also be described in terms of a sufficiently large number of t-channel Regge poles, cuts, a background
integral, and perhaps other types of t-channel singularities (fixed poles?). Every one of these two descriptions is a complete parametrization of the physical amplitudes. Dolen, Horn and Schmid have shown that it would be erroneous to assume that the correspondence between these two descriptions is such that the leading trajectories in the t-channel are always included in the s-channel background. They argue that the s-channel resonances are actually "building" at least part (and in some cases, most) of the contribution of the leading t-channel trajectories. Our perturbation theory intuition, which is implicitly based on secretly drawing Feynman diagrams for strong interaction processes, tells us that we could add s-channel resonances and t-channel exchanges. This is now known to be generally incorrect. ${ }^{60}$ It may work in a few cases but, in general, severe double counting is involved.

All of these remarks lead us to the principle that we will use in interpreting the circles in the Argand diagram: It is perfectly possible that at a given energy region, a physical scattering amplitude can be approximately described either by a few s-channel resonances or by a few t-channel Regge trajectories. Both descriptions will be complementary in such a case, and any one of them would be an adequate interpretation of the data. Note that we do not actually claim that this is always the case. From a pure mathematical point of view, we can probably always parametrize the amplitudes in terms of an arbitrarily complicated sum of resonances or an arbitrarily horrible combination of Regge poles. However, the real issue here is the simplicity of such descriptions.

We can envisage four different situations (with "smooth"
transition regions between them):
(a) In some cases the s-channel resonance description is simple while the t-channel characterization is complicated and useless. It is clear, for example, that $\pi \mathrm{N}$ scattering at, say, $1200-1300 \mathrm{MeV}$ c. m. energy can be simply described in terms of s-channel resonances (one of them is sufficient, in fact), while a t-channel description of the scattering in this region would require an extremely awkward and highly artificial collection of exchange terms.
(b) The reverse situation occurs, for example, in $\pi-\mathrm{N}$ charge exchange scattering at $10-20 \mathrm{BeV}$, which can be simply parametrized in terms of t-channel trajectories while an s-channel resonance description would, at best, involve a huge number of overlapping inelastic resonances.
(c) There could be cases in which both descriptions are complicated.
(d) Finally, there may exist regions in which both pictures are relatively simple.

The last type of situation is the most interesting from the point of view of strong interaction dynamics, since the consistency requirements between the s-channel and t-channel descriptions are essentially bootstraptype equations. This possibility is discussed elsewhere in these proceedings. ${ }^{62}$

Here we will utilize this analysis only for the purpose of understanding the Argand circles. The philosophy outlined above, essentially tells us that we should continue to interpret the circles found in the phase shift analysis as resonances. In some or all cases, the same circles may be alternatively generated by t-channel trajectories, but that does not
contradict our resonance interpretation, in view of the principle which tells us that the two descriptions can peacefully coexist.

One might wonder whether we have forgotten that a resonance should always be accompanied by a pole in the unphysical region, on the second sheet, and that this is a unique, well defined, characterization of a resonance. We do not ignore this point. We would like, however, to make two remarks connected to the question of the existence of such poles.

1. It has been shown ${ }^{17,63}$ that it is possible to build mathematical examples which have asymptotic Regge behavior in s, and s-channel resonance poles. This means that, in principle, we may assume that every Argand circle does correspond to a second-sheet pole but that at the same time it can be described by a typical Regge term.
2. In principle, because of the finite experimental errors, we will never be able to analytically continue the physical amplitude to the unphysical region in a unique way, and therefore will never be able to prove beyond any doubt the existence of the resonance pole. This remark which should normally be of a purely academic nature is relevant here in view of the possibility of constructing the following example: Given a physical scattering amplitude in a given section of the physical region, and a preassigned degree of accuracy, one can always build two different representations which will both reproduce the physical amplitude within the required degree of accuracy. One representation would have the second sheet poles (and will essentially be a sum of Breit-Wigner-type expressions) and the other will not possess such poles and will be of the form $\sum_{i} \xi\left(\alpha_{i}\right) \nu \nu_{i}{ }^{(t)}$.

If both representations are simple there is no harm in using either one of them. In other words, there is nothing wrong with assuming that the observed Argand circles are both resonances and the products of t-channel trajectories, and the "unique" definition of a resonance as a second sheet pole is not going to resolve this dual nature of the amplitude.

3. The Properties of a Resonance

If we accept the interpretation outlined above, we will have to demand that resonances obey all the usual requirements of a physical state:
(a) A resonant state should have a well-defined set of quantum numbers - spin, isospin, etc.
(b) The same resonances with the same characteristics (mass and the total width) should appear in all channels which can couple to a particular set of quantum numbers.
(c) An s-channel resonance should obey factorization in the s-channel.
(d) Every resonance should, in principle, be produced in production experiments in which it would appear in the final state together with other particles.

These are non-trivial requirements for an object which can be alternatively described as a sum of t-channel trajectories!

There are two different points of view that one can take with respect to these requirements:
(i) One may simply state that an expression based on simple t-channel properties cannot satisfy such requirements, and therefore the correspondence between s-channel resonances and t-channel trajectories cannot hold.
(ii) One may interpret requirements (a)-(d) as further restrictions imposed on the dynamical equations which emerge from the consistency between the two complete descriptions of the amplitude.

As long as the second "optimistic" point of view has not been proved wrong, we prefer to accept it and to hope that such restrictions actually lead to rclations between the parameters in the different channels (see also Section V-2).

Now that we have discussed the more philosophical aspects of this interesting question, we should return to the real world and ask ourselves: How useful is this picture and do we actually have regions in which the s-channel and the t-channel descriptions are simultaneously simple?

4. Applications, Tests and General Remarks

(a) Schmid, in his original paper ${ }^{58}$, actually presented an approximate calculation of a few s-channel partial-wave projections of the t-channel ρ-trajectory in $\pi \mathrm{N}$ scattering. He produced the correct positions of some of the high mass N^{*} - states. Collins, Johnson and Squires ${ }^{64}$ carried the analysis in a more quantitative way down to much lower energies and obtained some results in remarkable agreement with the actual "experimental" phase shifts and some which do not resemble them at all. The successful results are displayed in Figure 16, but we must add that the failures are equally impressive. Kreps and Logan ${ }^{65}$ performed a calculation similar to that of Schmid but omitted some of his approximations and used a different high energy parametrization for the ρ-residue. Their results are entirely different than his.

Figure 16: Argand diagrams for partial waves in which the projected t and u channel trajectories in πN scattering correspond most closely to the "experimental" phase shifts. The full lines are the trajectory projections and the dashed lines are the phase shifts of reference 37. The figure is taken from Collins et al., reference 64.

As far as we can see there are two lessons to be learned here:
(i) The precise form of a given partial wave projection of a t-channel trajectory may depend on relatively minor details of the t-channel parametrization (which is always derived from the high energy data). This is especially correct at the lower energy region, where even the small backward peak becomes crucial. 64
(ii) One should always try to separate those aspects of the analysis which arc relatively independent of the unknown details of the high encrgy data, from those which crucially depend on a specific detail. Features of the first type should be used in order to test the general ideas which are under discussion here. Those of the second type may be perhaps used in resolving ambiguities in the high energy parametrization, once the general idea is proved successful.

A detailed analysis of this kind is clearly needed before we can decide whether or not the correspondence between the two channels can be a useful concept.
(b) Alessandrini and Squires ${ }^{66}$ pointed out that the resonances appearing in $\pi N \rightarrow \pi N$ should also appear in the reaction $\pi^{-} p \rightarrow K^{+} \Sigma^{-}$, in which no (doubly charged) trajectory is known to be exchanged. They considered this an argument against the relevance of t-channel exchanges at the resonance region. It seems to me, however, that the absence of $I=\frac{3}{2}$ t-channel trajector ies merely predicts here that the $\mathrm{I}=\frac{1}{2}$ and $\mathrm{I}=\frac{3}{2} \quad \mathrm{~N}^{*}-$ resonances in $\pi^{-} p \rightarrow \mathrm{~K}^{+} \Sigma^{-}$should approximately cancel each other, at least in some average sense. It will be interesting to find out whether this is confirmed by future $\pi N \rightarrow K \Sigma$ phase shift analysis.
(c) Rubinstein, Schwimmer, Veneziano and Virasoro ${ }^{16}$ considered the s-channel partial wave projections of the t-channel ρ-exchange in the reaction $\pi \pi \rightarrow \pi \omega$. They found that not only the resonances on the ρ-trajectory are produced in the Argand plots, but also additional states which may be interpreted as building a set of parallel secondary trajectories (daughters?). This cannot be tested experimentally, at present, but the general structure of the N and Δ spectra hints that the result may be true (see Section IV-5).
(d) Chew and Pignotti ${ }^{67}$ pointed out that in the same way that s-channel resonances are alternatively described as combinations of t-channel trajectories, one can describe a resonance-production process such as $\pi+N \rightarrow A_{1}+N$ as a sum of multi-Regge exchanges in $\pi+N \rightarrow \pi+\rho+N$. The main moral here is that we should not add the A_{1}-production amplitude to the multiparticle-exchange diagram known as the "Deck mechanism". This would involve the same type of double-counting as the one committed by the interference model. ${ }^{61}$ It is therefore apriori incorrect to subtract the "Deck background" from the $\pi+N \rightarrow \pi+\rho+N$ amplitude and then look for the A_{1} enhancement. The subtracted part may include a large portion of the A_{1} itself!
(e) It has been argued ${ }^{68}$ that the Z_{1} enhancement in $\sigma_{t}\left(\mathrm{~K}^{+} \mathrm{p}\right)$ around 1900 MeV follows from a sharp rise at threshold of $\sigma\left(\mathrm{K}^{+} \mathrm{p} \rightarrow \mathrm{K} \Delta\right)$, and that this sharp rise can be accounted for by some kind of a ρ-exchange mechanism. Within the framework of the dual description of amplitudes, this argument cannot be considered as evidence against the existence of the Z_{1} - state:
(f) From the point of view of the quark model, it is extremely hard to understand how real physical quarks could build resonance states that satisfy such interchannel conditions. If, however, the quark model merely reflects some deeper dynamics and some algebraic order among the resonant states, no such difficulties should emerge here.
5. Are the t-Channel Trajectories Reflected in the Observed Meson and

Baryon Spectrum?

A quantitative answer to this question has not been given so far, and much more careful work will have to be done before any conclusions are reached. Some qualitative remarks should be made, however:
(a) The apparent absence of "exotic" mesons and baryons corresponds, from the t-channel point of view, to cancellations between the contributing trajectories. These cancellations are precisely those of the "exchange degeneracy" picture. ${ }^{69}$
(b) Since the exchange degeneracy relations are only approximately true, it is likely that "small" exotic resonances, such as the Z states, will be found.
(c) While the absence of prominent states with a given set of internal quantum numbers is easy to interpret, it is very hard to imagine that states with specific spin-parity assignments will be consistently absent. In fact, the simplest conclusion that we can draw from the t-channel picture is that every partial wave amplitude should sooner or later show circles in its Argand plot. While it is not entirely impossible, we find it hard to see how a certain J^{P} sequence can be forbidden while others are allowed. Such
considerations lead us to the following conclusions:
(i) Mesons with all possible $J^{P C}$ values should exist. This supports the new Gell-Mann-Zweig proposal ${ }^{19}$ (Section II-2) and contradicts the "old" quark model.
(ii) Every single partial wave should resonate in the baryon spectrum. Figures 5-8 demonstrate clearly that this is actually the case.
(iii) While all J^{P} values should eventually correspond to resonances, there could be some J^{P} sequences with more prominent resonances than others in a channel with a given set of internal quantum numbers. Chiu and Kotanski ${ }^{59}$ have showed, for example, that the prominent N^{*} states should obey the relation $\mathrm{J}-\mathrm{L}=\mathrm{I}-1$, if the t -channel representation is to be trusted. This is experimentally verified: $\mathrm{N}(940), \Delta(1240), \mathrm{N}(1520)$, $\mathrm{N}\left(1690, \frac{5}{2}^{+}\right)$and $\Delta(1950)$ are all J-L $=\mathrm{I}-1$ states!
(d) In any given partial wave amplitude we should expect a sequence of resonances with decreasing elasticities and more or less equal spacing in mass (or squared-mass). This is implied by the general features of the partial-wave-analyzed Regge amplitude (see, e.g., Figure 15). The N and Δ spectrum, which are known up to 2 BeV (Figures 5,6) indeed show that all the partial waves that resonate below 1600 MeV , exhibit at least one more resonance-candidate at a higher mass. From this point of view, we should have been worried if the $\mathrm{N}\left(1470, \frac{1}{2}\right)$ state did not exist! (Contrary to the usual attitude of theorists who always considered this state as an undesirable feature of our world...)

We offer these speculative remarks only as an indication that this approach is worth studying, and not as an attempt to summarize its
predictions. This entire concept, which was developed only in the last few months, certainly deserves a lot of attention on the part of both theorists and experimentalists who are more directly involved in the actual search and interpretation of new resonant states.

V. A World of Resonances

1. Is Everything Made Out of Resonances?

We close this report with a short discussion of an intriguing possibility which has perhaps become a little more realistic in the last year or two.

Can we describe the entire world of strong interaction processes in terms of resonances only?

If we have an infinite number of secondary trajectories, and if all of them are infinitely rising, we should not be surprised if scattering amplitudes at, say, 50 BeV can be described in terms of a huge number of s-channel resonances. Moreover, if we look at the many invariant mass plots included, for example, in Dr. French's report to this conference, we find that an imaginative theorist could interpret every one of them as a sum of resonance bumps with very little or no background. We know that the $\rho \pi$ or $\mathrm{K}^{*} \pi$ invariant mass plots can be mostly accounted for if we believe that $A_{1}, A_{1.5}, A_{2}^{L}, A_{2}^{H}, A_{3}, K^{*}(1230), K^{*}(1320), K^{*}(1420), L$ and perhaps H and $\mathrm{K}^{*}(1280)$, exist. But even the $\pi \pi$ and $\mathrm{K} \pi$ invariant mass plots can be shown to include very little "meat" in addition to the $\sigma, \rho, \mathrm{S}^{*}, \mathrm{f}^{\mathrm{o}}, \mathrm{g}$ mesons in $\pi \pi$ and the $\mathrm{K}^{*}(890), \mathrm{K}^{*}\left(1100,0^{+}\right)$and $\mathrm{K}^{*}(1420)$ in $\mathrm{K} \pi$. If this is a general feature, and it may very well be, we are approaching a situation in which:
(i) All two-body final state processes will be described in terms of many direct-channel resonances or t-channel trajectories. (For an exception see Section V-2.)
(ii) All three-body final state processes will be described either as a sum of quasi two-body final states or as a sum of multiperipheral exchanges.
(iii) The quasi two-body description of three-body final states will itself have the features mentioned in (i) above.

The most extreme point of view that one could take is illustrated in Figure 17, where every one of the schematic diagrams is supposed to give by itself a complete description of the process $a+b \rightarrow c+d+e$. This is a gross oversimplification of the situation and it certainly cannot be true in this naive form. Moreover, even if it were true, it would have been entirely useless in most cases. We bring it here only in order to provoke some thought in this direction in view of the accumulating experimental evidence for the multiresonance-dominance assumption, and the theoretical developments described in Section IV.

2. An Exception: The Pomeranchon

One outstanding exception to the above speculation is the Pomeranchon, or the simple optical diffraction mechanism. This type of contribution to elastic and quasielastic scattering amplitudes seems to be outside the domain of resonance dominance. ${ }^{70}$ We will not discuss this in detail here, but simply point out that processes in which s-channel resonances are absent (e.g. $\mathrm{K}^{+} \mathrm{p}$, pp or $\pi^{+} \pi^{+}$elastic scattering or the invariant mass plots of the same particles) do have as large a Pomeranchon contribution as processes with a rich resonance spectrum (such as $K^{-} p, \bar{p} p, \pi^{+} \pi^{-}$). This implies that the t-channel Pomeranchon corresponds to some isospinindependent background in the direct channel. ${ }^{70}$ This conjecture leads to

1142A15

Figure 17: Schematic diagrams for various possible descriptions of the process $a+b \rightarrow c+d+e$. Every diagram is supposed to represent (when summed over all possible intermediate single particle states) a complete description of the reaction in an extreme model in which all channels are dominated by sums of resonances (or trajectories).
a large number of interesting predictions which are all consistent with (and sometimes in remarkable agreement with) experiment. ${ }^{70,71}$

3. Infinitely Rising Trajectories: A Few Remarks

We close our discussion of a world "made of resonances" with a few remarks on the subject of infinitely rising trajectories.
(a) Experimentally there are strong indications for linearly rising trajectories, both in the N^{*} - spectrum and the meson spectrum (R-S-T-U, etc.). Whether this trend will continue, or will gradually change into some other type of energy-dependence of the trajectories, remains to be seen. The boson-spectrometer experiments are probably the easiest way of studying this problem.
(b) All bootstrap-type models which have been suggested so far and which have Regge behavior in all channels and resonances in all channels, involve linearly rising trajectories. We do not know whether this is a necessary feature in such a model, and it would be interesting to analyze this problem.
(c) The simple-minded optical "absorption" picture suggests that inelastic processes are dominated at a given c.m. momentum k by a "ring" of partial waves having $\ell_{\min } \leq \ell \leq \ell_{\text {max }}$, where $\ell_{\text {min }}$ and $\ell_{\text {max }}$ are proportional to $\mathrm{k} \propto \sqrt{\mathrm{s}}$. From the point of view of s -channel trajectories this would mean that most of the "strength" of the amplitudes would come from a chain of resonances obeying $\ell \propto \sqrt{s}$. This could happen if (i) The trajecotires rise like $\sqrt{5}$. (ii) The trajectories are linear but the "important" states on the trajectories lie on a \sqrt{s}-type curve.
(d) The same conclusion with respect to a $\sqrt{\mathrm{S}}$ behavior of the contributing s-channel resonances can be reached by high energy s-channel phase shift analysis of an ordinary t-chanmel trajectory. The same two possibilities as in (c) exist. ${ }^{72}$
(e) If the trajectories are linear, low partial wave decays of the higher states on the leading trajectories will become more and more difficult, since the spacing in mass $(\propto \sqrt{s})$ between two adjacent states tends to zero. If low- ℓ decays are energetically forbidden and large- ℓ decays are weak because of angular momentum barriers, the high-mass states on the leading trajectories may become narrower and narrower! ${ }^{73}$

The discovery of high mass states and the determination of the trajectory form at high energy should be an extremely interesting challenge to experimentalists.

VI. Summary

I would like to conclude by presenting an (obviously biased) brief summary of the main theoretical aspects of the hadronic resonance spectrum, which were discussed in this conference:
(1) $\mathrm{SU}(3)$ symmetry emerged, again, as an extremely powerful classification scheme, in view of the recent discovery of many of the missing hyperon resonances. The applicability of $S U(3)$ predictions to transition rates remains limited, due to complicated mixing effects.
(2) The quark model classification of mesons remains successful but the theoretical inconsistency with a parallel-daughter Regge picture deserves attention. An experimental search for natural parity abnormal charge conjugation states is desired.
(3) The quark model description of the baryon spectrum is extremely successful. Among the various versions, the symmetric model is the most attractive.
(4) The new dynamical interpretation of Argand-diagram circles as projections of t-channel exchange mechanisms has had some success. More quantitative tests of this extremely interesting theoretical idea are badly needed.
(5) The description of scattering amplitudes in terms of sums of resonances is at least partly supported by the data. A careful theoretical analysis of this question is especially important in view of its immediate connection with the experimental resonance-searching techniques.

REFERENCES

1. B. French, These Proceedings.
2. R. D. Tripp, These Proceedings.
3. A. Donnachie, These Proceedings.
4. W. H. Barkas and A. H. Rosenfeld, UCRL-8030 report, unpublished, March 1958.
5. Particle Data Group, UCRL-8030, August 1968 Rev., unpublished.
6. M. Gell-Mann, Phys. Letters 8, 214 (1964); G. Zweig, CERN report, unpublished, 1964.
7. A detailed discussion of various aspects of these effects was presented by R. H. Dalitz, Rapporteur talk at the 13th International Conference on High Energy Physics, Berkeley, California, 1966.
8. V. Barnes et al., paper 259; R. Ammar et al., paper 350.
9. B. French (reference 1) reported the observation of the decay $\mathrm{D}(1280) \rightarrow \delta(960)+\pi$ in a $\overline{\mathrm{p}} \mathrm{p}$ experiment at CERN.
10. T. G. Trippe et al., paper 542; P. E. Schlein, Proceedings of the Philadelphia Conference on Boson Spectroscopy, 1968, to be published; C. Fu et al., UCRL-18201 report, 1968.
11. S. Marateck, V. Hagopian and W. Sclove, paper 803; L. J. Gutay et al., paper 789; W. Selove, paper 801; E. Malamud and P. E. Schlein, Phys. Rev. Letters 19, 1056 (1967); J. F. L. Hopkinson and R. G. Roberts, paper 166; W. D. Walker et al., Phys. Rev. Letters 18, 630 (1967).
12. D. H. Miller et al., paper 804.
13. G. Goldhaber, A. Firestone and B. C. Shen, Phys. Rev. Letters 19, 972 (1967); G. Goldhaber, Phys. Rev. Letters 19, 976 (1967); R. Gatto
and L. Maiani, Phys. Letters 26B, 95 (1967); H. J. Lipkin, Princeton preprint PUC-937-323, 1968; G. L. Kane and H. S. Mani, Phys. Rev. 171, 1533 (1968).
14. A. Barbaro-Galtieri and P. Soding, paper 826.
15. G. Cosenza, A. Sciarrino and M. Toller, Rome preprint, 1968.
16. H. R. Rubinstein, A. Schwimmer, G. Veneziano and M. Virasoro, Phys. Rev. Letters 21, 491 (1968).
17. G. Veneziano, Nuovo Cimento 57A, 190 (1968).
18. D. Z. Freedman and J. M. Wang, Phys. Rev. 153, 1596 (1967).
19. M. Gell-Mann and G. Zweig, report at the conference and private communication.
20. D. J. Crennell et al., Phys. Rev. Letters 20, 1318 (1968).
21. D. Bollini et al., paper 196.
22. R. Van-Royen and V. F. Weisskopf, Nuovo Cimento 50A, 617 (1967),
A. Dar, MIT preprint, unpublished, 1967.
23. J. E. Augustin et al., papers 649, 650, 651; U. Becker et al., DESY preprint, August 1968; D. Bollini et al., papers 198, 199. For earlier experiments see reference 25 .
24. T. Das, V. S. Mathus and S. Okubo, Phys. Rev. Letters 19, 470 (1967);
N. M. Kroll, T. D. Lee and B. Zumino, Phys. Rev. 157, 1376 (1967);
A. Dar and V. F. Weisskopf, MIT preprint; J. J. Sakurai, Phys. Rev. Letters 19, 803 (1967).
25. S. C. C. Ting, These Proceedings.
26. V. Barger and M. Olsson, Phys. Rev. Letters 18, 294 (1967).
27. Some of the relevant references, in addition to reference 1, are: CERN
boson spectrometer group, paper 240; D. J. Crennell et al., reference 20; G. Chikovani et al., Phys. Letters 25B, 44 (1967); W. Kienzle, Proceedings of the Philadelphia Conference on Boson Spectroscopy, 1968, to be published.
28. These and other speculative models for the observed splitting of the A_{2} were proposed by many authors, including: D. C. Peaslee, paper 526; A. S. Goldhaber, Proceedings of the Philadelphia Conference on Boson Spectroscopy; K. E. Lassila and P. V. Ruuskanen, Phys. Rev. Letters 19, 762 (1967); P. W. Coulter and G. L. Shaw, paper 764; S. Y. Chu and P. Kaus, paper 535.
29. For a detailed discussion and references, see S. Weinberg, These Proceedings.
30. F. J. Gilman and H. Harari, Phys. Rev. 165, 1803 (1968).
31. J. Ballam et al., SLAC-PUB-475, to be published, 1968.
32. L. Brown and H. Munczek, Phys. Rev. Letters 20, 680 (1968).
R. Arnowitt et al., Phys. Rev., to be published; H. J. Schnitzer and S. Weinberg, Phys. Rev. 164, 1828 (1967); J. Schwinger, Phys. Letters 24B, 473 (1967); I. S. Gerstein and H. J. Schnitzer, Phys. Rev. 170 , 1638 (1968); J. Wess and B. Zumino, Phys. Rev. 163, 1727 (1967).
33. R. Arnowitt et al., Phys. Rev., to be published.
34. H. J. Lipkin, Phys. Rev. 159, 1303 (1967); J. Uretzki, Argonne preprint, unpublished, 1967.
35. G. Ascoli et al., Phys. Rev. Letters 20, 1411 (1968).
36. M. Ademollo et al., Phys. Letters 27B, 99 (1968); M. Bishari et al., Weizmann Institute preprint, 1968.
37. A. Donnachie, R. G. Kirsopp and C. Lovelace, Phys. Letters 26B, 161 (1967); C. Lovelace, Proceedings of the Heidelberg Conference, 1967.
38. CERN-Heidelberg-Saclay collaboration, papers $523,524,525,627,629$, and 630 .
39. M. Derrick et al., Phys. Rev. Letters 18, 266 (1967).
40. D. J. Crennell et al., Phys. Rev. Letters 21, 648 (1968).
41. J. Alitti et al., paper 379.
42. A. N. Mitra and M. Ross, Phys. Rev. 158, 1630 (1967).
43. C. Weil, Phys. Rev. 161, 1682 (1967).
44. A. Donnachie, Phys. Letters 24B, 420 (1967).
45. H. J. Lipkin, Phys. Letters 12, 154 (1967).
46. J. Alberi et al., paper 184.
47. G. B. Yodh, Phys. Rev. Letters 18, 810 (1967).
48. R. D. Tr ipp et al., Nuclear Phys. B3, 10 (1967).
49. G. Morpugro, These Proceedings.
50. O. W. Greenberg, Phys. Rev. Letters 13, 598 (1964).
51. M. Y. Han and Y. Nambu, Phys. Rev. 139, Bl006 (1965).
52. A. N. Mitra, paper 12.
53. D. Faiman and A. W. Hendry, paper 675.
54. D. R. Divgi, paper 748.
55. A. N. Mitra, Rutherford Laboratory preprint, August 1968.
56. C. Dullemond, Nijmigen preprint, August 1968.
57. V. Barger and D. Cline, Phys. Rev. Letters 20, 298 (1968); Phys. Letters 26B, 85 (1968).
58. C. Schmid, Phys. Rev. Letters 20, 689 (1968).
59. C. B. Chiu and A. Kotanski, paper 177.
60. R. Dolen, D. Horn and C. Schmid, Phys. Rev. 166, 1768 (1968).
61. This was the basic idea of the "interference model" of V. Barger and M. Olsson, Phys. Rev. 151, 1123 (1966).
62. W. R. Frazer, These Proceedings.
63. N. N. Khuri, Berkeley preprint, August 1968, to be published.
64. P. D. B. Collins, R. C. Johnson and E. J. Squires, Phys. Letters 27B, 23 (1968).
65. R. E. Kreps and R. K. Logan, paper 881.
66. V. A. Alessandrini and E. J. Squires, Phys. Letters 27B, 300 (1968).
67. G. F. Chew and A. Pignotti, Phys. Rev. Letters 20, 1078 (1968).
68. R. W. Bland et al., Phys. Rev. Letters 18, 1077 (1967).
69. R. C. Arnold, Phys. Rev. 153, 1506 (1967).
70. H. Harari, Phys. Rev. Letters 20, 1395 (1968).
71. P. G. O. Freund, Phys. Rev. Letters 20, 235 (1968); C. Schmid, Phys. Rev. Letters 20, 628 (1968) and reference 58; F. J. Gilman, H. Harari and Y. Zarmi, Phys. Rev. Letters 21, 323 (1968); C. B. Chiu and J. Finkelstein, CERN preprint, August 1968; J. L. Rosener, Phys. Rev. Letters, to be published.
72. M. Kugler, Phys. Rev. Letters 21, 570 (1968).
73. II. Goldberg, Phys. Rev. Letters 21, 778 (1968).
