SLAC-PUB-504
September 1968
(MISC) -

DSM - A TEXT EDITOR WITH TIME REVERSAL CAPABILITY*

D. Ross, R. T. Braden, ** R. E. Brody, J. O. Crowley,
D. B. Earl,{ J. H. Halperin, R. M. Lonergan,{f and R. T. Stainton

SLAC Facility of the Stanford Computation Center
Stanford Linear Accelerator Center
Stanford University, Stanford, California

ABSTRACT

A conversational program for editing files of card images has the ability to
"reverse time', in addition to the usual editing capabilities of inserting, deleting,
and altering records of text. The program maintains a complete history of all
editing actions, so it is possible to revive any previous editing state of a file.

New text is stored in chronological order, as it is introduced into the file.
Once stored, the text never is altered or deleted. A set of pointers called a "file
map" describes the correspondence between the physical placement of records of
text, and their logicél sequence within the file. Entries in the file map, reflecting
editing changes to the file, also are stored in chronological order. Reversing time
is accomplished by uhlinking the most recent file map entries.

KEY WORDS AND PHRASES

editor, text editor, time reversal, conversational, file.

CR CATEGORIES ‘
3.73, 4.43

INTRODUCTION

DSM is a conversational pregram for editing files of text. In addition to the

usual editing capabilities of inserting, deleting, and altering records of text, DSM

*Work: supported by the U.S. Atomic Energy Commission.
**Currently at UCLA Campus Computing Network.
tCurrently at Control Data Corp.

77IBM Corp.

-1 -

has the ability to "reverse time'". The program maintains a complete history of
all editing actions, so it is possible to revive any previous editingétate of a file.

The currently operating version of DSM is restricted to editing 72-column
card images. Reviving a previous editing state is destructive of all states in the
file which follow the revived state. These restrictions have been removed in a
second version of DSM, which still is being coded. The second version will be
described in this paper, since it is the more interesting of the two.

The files that DSM can- edit are stored in 0S/360 sequential data sets. DSM
runs as a user job under OS/360 MFT or MVT, and is allocated data sets through
standard Job Control Language DD statements. The data sets must reside on
direct-access storage devices, such as disk or drum, while they are being edited.

Because DSM files maintain a history of the editing performed on their text,
an internal bookkeeping system is required using a set of pointers called a "file
map'". A file consists of the text records and a file map. This "DSM internal
format" is not compatible with other OS/360 processor programs, such as the
FORTRAN compiler. DSM has commands for converting an "external format"
(standard 0S/360) data set into internal format for editing, and for converting from
internal format to external format for compilation or other processing.

RECORD FORMATS

Text records in their external format may all be of any fixed length between 1
and 256 bytes, or they may be of variable length between 0 and 256 bytes. The
user has the option of conserving storage space by compressing multiple blank
characters in fixed length external format records, and storing the records in an
internal format of variable length. Multiple blank characters in variable length
external forimat records always are compressed.

DATA SET ORGANIZATION

Each data set may contain several files which can be edited independently. All
text in the data set is stored in a single text area. The files are distinguished by
their scparate file maps. A file map describes the correspondence between the
physical placement of records of text, and the logical sequence of the records
within the file, Different files wilhin a data set may share text in common, if their
file maps point to the same text records. A

All data in DSM internal format data sets are stored in blocks of fixed length,
The blocis are numhbered starting at 0. There are 3 types of blocks in a data set:
booklzecping blocks, file map blocks, and text blocks.

Block 0 is the first of the bockkeeping blocks. Thesc blocks contain the names
of all files in the data set, and the numbers of all file map blocks belonging to each -

file. The bookkeeping blocks also contain other information relevant to the entire

-2 .

data set, including a description of the type of text (alphanumeric or numerié,
record length, etc.), a pointer to the current end of the text, the number of the last
block used, and the various language format parameters declared by the user.

Block 1 contains the file map for the first file in the data set. As editing is
performed on the file, new entries are appended to the file map. When the file map
becomes too large for a single block, it is continued on the next available block.
Each file in the data set has its own blocks of file map. |

Block 2 usually is the first block containing text. The text may belong to any
or all of the files in the data set. As new text is introduced into any of the files, it
is appended to the previously existing text. When text storage becomes too large
for a single block, it is continued on the next available block.,

Depending on record length, block length may not correspond to an integral
number of records. Nevertheless, each text block contains an integral number of
records. The beginning of the block coincides with the beginning of the first record’
in the block. Any space at the end of the block which is too small to hold the next
record is wasted. - ‘

The remaining blocks in the data set contain extensions bf the bookkeeping
information or file maps or text, depending on the editing history of the files,

FILE ORGANIZATION

A file consists of file map and text. Access to the file map is made via

information in the bookkeeping blocks. Access to the text is made via information
in the {ile map.

As new text is entered inlo any file in the data set, it is appended to the existing
text. Once stored, the text never is changed or deleted. The alteration of a string
within a record is accomplished by appending a new record, containing the altered
strinz. |

New file map cntries are created to reflect the consequences of the editing
changes. The new entries are appended to existing entries, so their physical order
of storage is the same as the chronological order in which the changes were made.
Several sets of links maintain the logical order of the-file map entries, Previous
editing states of the file can be revived by unlinking the entries in the inverse order
of their physical storage, which also is inverse chronological order..

An editing coramand which causes the file to be changed, also causes the
counter of the current state number to be incremented by 1. DSM types the current
state number to the user, prior to waiting for the next editing command. The
command may cause several of the basic editing operations to be executed, such as
insert, delete, copy, etc. DSM leaves a mark in the first file map entry of each

state.

-3~ o

Later sections of this paper describe the 3 types of file map entries: directory
entries, dummy entries, and state entries. All file map entries are of equal length,
~and are numbered 0, 1, 2,according to the_i’r physical placement within the
file map. A -

RECORD NUMBERS, REGIONS, AND INTERVALS

A unique record number is associated with each text record in a file., Record

numbers are stored in the file map, rather than with the text. A single physical
text record may appear logically at several places in the file, with different record
numbers.

A "region" of text is a set of records which are both physically consecutive in
storage, and sequential in their record numbers. A region must be contained
within a single block, in those data sets which have variable length internal format
records. A region may span several consecutive blocks, in those data sets which
have fixed length internal format records. Regions are defined such that any record
can be located and accessed with at most one read operation, given the location of
the first record in the region. | A

An "interval' is the set of records whose mﬁnbers lie hetween the lower and
upper bounds of the interval, inclusive, regardless of where the records are stored.

Editing commands specify record intervals to be acted upon. The commands
result in calls on the basic editing operations, such as: insert an interval of new
text, delete an interval of existing text, or copy an interval of existing text so that
it occupies a new interval. The basic editing operations process each region within
the interval as a unit.

DIRECTORY ENTRIES

The file map contains one currently valid directory entry for each region of
text in the file, After the first text is introduced into the file, the file map contains
a single dircctory entry. As editing changes are made to the text, the initial
correspondence between physical and logical ordering of the records ceases to be
valid., The initial text becomes fragmented into several regions, and regions of
now text are appended to the file, This causes new directory entries to be appended

.-

to the file map. Some of the existing entries may cease to he valid, because the
recions they define have been deleted from the logical order of the file, or fragmented
into smailer regions. All the entries which currently are valid, are linked togethor
in ascending crder of record numbers. Another set of links points from the new
currently valid entries to the old formerly valid entries which the new entries

displace. Thesa links to displaced entries save the editing history of the file,

T ‘ -

Directory entries contain the following fields:

(1) Forward link (2 bytes). This link contains the entry number of the next

—————urrentty vatid directory entry, in the order of ascending record numbers.

Entry 0 of the file map does not correspond to a region, but points to the
first and last currently valid directory entries, |

(2) Backward link (2 bytes). This link contains the entry number of the preceding
currently valid directory entry, in the order of ascending record numbers. -

(3) Record number of the first record in the region (4 bytes).

(4) Count of the number of records in the region (2 bytes).

(5) Index to record number increments (1 byte). The increment is the difference
between any two consecutive record numbers in the region. DSM recognizes
only a few increments as valid: those which are 1, 2, or 5 * some power of
10. The valid increments are stored in a table which is part of the DSM
program, but novt part of any data set. This field contains an index into that
table which identifies the increment used in this region.

(6) Text block number (2 bytes). This field contains the number of the block,
relative to the start of the data set, which contains the first record in the
region., The first record in the region may be»anywhere within this block.

(7) Count of the number of inlervening records (2 bytes). This is the number
of records intervening between the start of block (6) and the first record in
the region.

(8) Link to displaced directory entries (2 bytes). This link points from the
logically first (lowest record numbers) of the new directory entries to the
logically last of the old directory entries being displaced as a result of a
single basic editing operation.

(9) Miscellancous (1 byle). This field contains some redundancy for debugging
purposcs, and bits marking named records, control records, and the first
directory entry in a new state,

The physical layout of the fields within a directory entry is not in the order

they are described above, but rather in the order shown in Figs. 1, 2, 3, and 4.

EXAMPLE OF EDITING

Figs. 1, 2, 3, and 4 show an example of ‘editing demonstrating the usc of the
file map. In this example, the records are of fixed length and of such a size that
6 records mnay be stored in each text block.

Initially the file is empty. The first text introduced‘ into the file consists of
500 records. The text fills 83 blocks, and partly fills an 84th block. As described
in "Data Set Organization', the first of the 84 blocks is block 2 in the data set. The
records form a single region and the file map contains one directory entry, shown

in Fig. 1.

-5 -

The first editing change is the deletion of record 4, shown in Fig. 2. The text

remains unchanged, but the file map is altered to jgdicate the deletion. Entry 1 in

-—the file map is displaced by entries 2 and 3.- ‘Entry 3 corresponds to the region
from fecord 5 to record 500. This region starts in block 2, with 4 records
intervening between the start of block 2 and the start of the region. Observe that
the forward link of the last of the displaced entries (entry 1) has been changed to
point to the first of the displaced entries (also entry 1). This speeds the process
of reviving former states.

The insertion of records 2,01, 2.02, and 2.03 is shown in Fig. 3. The new
records are appended to the existing text, forming a new region. Records 1, 2,
and 3 no longer form a single region, because the new inserted records interrupt
their logical sequence. 7

The deletion of records 2.03 and 3, shown in Fig. 4, causes the displacement
of 2 entries in the file rriap.. The entry for records 2.01 to 2,03 is displaced by a
new entry indicating the shorter extent of the region. The entry for record 3 is
displaced, with no new entry replacing it.

DUMMY ENTRIES

Deleting an interval of text possibly may cause the displacement of previously
valid directory entries, without creating any new directory entries. This occurs
when the lower bound of the interval also is the lower bound of some existing region,
and the upper bound of the interval also is the upper bound of some existing region.

In this event, a dummy entry is created solely to point to the displaced directory
entries. The dummy entry occupies the same position among the forward and
backward links that previously was occupied by the displaced entries.. The only
significant fields in a dummy entry are the forward link, backward link, link to
displaccd entries, and the bit in the "miscellancous' field marking a new state.
STATE ENTRIES

The user may identify the current state of the file by its state number, which
is typed out preceding each command, or by naming the state. Subsequently he may
have that state revived, identifying it either by numbe.r or name,

State names and their corresponding numbers are stored in the file map in
state entrics, State entries are connected with backward links, oun the assumption
that users are most likely to be interested in the recently created states. Fig. 5
shows an example of state entries in the file map.

JXAMPLE OF EDITING, AND REVIVING BACKWARD AND THEN FORWARD IN
TINME

Much of the complication of the file map can be eliminated for the illustration

of this example. Fig. 6 shows a reduced diagram which represents both a directory

-6 -

entry and its corresponding region of text, The letter A in the diagram represents
the number of the directory entry in the file map. -In the followingldiscussion,
"region A" means the text region corresponding to directory entry number A.

Fig. 7 shows the file after some initial editing, which has-ieft the file at state
number S. The forward and backward links indicate that the records in region B
are numbered higher than the records in region A, the records in region C are
numbered higher than the records in region B, etc.; but no assumption is made
about the relative physical order of the directory entries numbered A, B, C, D, E.

In response to an editing command, an existing record interval which spans
part of region B, all of region C, and part of region D, is replaced by new text.
Fig. 8 shows the file map after the replacement. The new text is appended to all
previously existing text, forming a single region at the end of text storage. The
interval of new text coincides with this region, for which directory entry number
J is created. Directory entry number I is created for the part of region B that was .
not replaced, and directory entry number K is created for the part of region D that
was not replaced. Directory entry numbers I, J, K xhay be in any order among
themselves, but as a set they must be contiguous, since they represent a single
editing change. Numbers I, J, K must be greater than any of numbers A, B, C,

D, E, since I, J, K are new directory entries which are appended to the file map.
In order to make this example more concrete, it is assumed that J=I+1 and K=I+2,

Fig. 8 shows that the forward link of the last of the displaced entries (D) has
been changed to point to the first of the displaced entries (B).

More editing could be performed subsequently, but at some later J'cime the
command is issued to revive a state numbered less than or equal to S. Reviving
state S+1 leaves the file as shown in Fig. 8. Figs. 9, 10, and 11 show thc process
of reviving from state S+1 to state S. At each step in the process, the highest
numbered directory entry is unlinked from its position in the file map, and replaced
by any entries it has displaced. Entries K and J have not displaced any other entries,
so they are unlinked without replacement. Entry I has displaced entries B, C and
D. Entry B, the first of the displaced entries, has the same backward pointer as
entry I. Entry B could have been found by following along the backward links fromn
entry D, had its number not been put in the for{vnrd link of entry D. But following
along thé backward links could require unnecessary direct access I/0, if the file
map occupies more than one block of storage. |

Reviving forward again to state S+1 is just the reverse of the process shown
in Figs. 9, 10, and 11. At each step, the lowest numbered directory entry is
relinked into the file map. The backward and forward links of the new entry indicate

which existing links must be broken. The link to displaced entries and the backward

-7 =

iink of the new entry indicate which existing entries become displaced. The steps
in reviving forward are shown in Figs. 11, 10, 9,rgnd 8.

Reviving forward is impossible once any editing changes are made. DSM has
a command for duplicating a file map into a new file in the same data set. This
- allows the user to edit a file; and still keep a version that can be revived both
backward and forward.
NAMED RECORDS

For certain types of text, it is natural to associate names with selected records
of the text. For example, the statement number in a FORTRAN statement might be

used to identify that record. DSM allows users to refer to named records by their
names, as well as by their record numbers. Record names may be used in DSM
commands in any way that record numbers may be used.

Routines appropriate to the text language being edited are called by DSM, to
extract record names from the text itself. When new text is introduced into a file,
these routines force DSM to start a new region at every named record. A bit in
the "miscellaneous" field of the directory entry indicates that the first record of
the region is a named record. Subsequently, when a record name is used, the
routines scan all the named records until the desired record is located. In effect,
record names invoke an automatic search of a selected subset of the records in the
file.

CONTROL RECORDS

Certain editing applications can take advantage of DSM control statements

embedded within the text, For example, when using DSM to compose business
letters, a PAUSE control statement may be embedded within the text at the end of
each paze. DSM will pause in the display of the final "clean copy", allowing the
typist time to insert a fresh sheet of paper, PAUSE also is useful when generating
form leiters, allowing the typist time to type in the recipient's name and address.
Like named records, records containing control statements ahways start a
new regsion., A bif in the "misccllaneous” field of the directory entry indicates that
the first record in the region contains control statemsents.
STORAGE CONSIDERATIONS

In a typical large file, say 5000 card images, the amount of space required for
storage of the file map is insignificant. But if the file has been heavily edited, the
data sct may contain a large amount of obsolete text., Text storage space is not
recovered when a previous editing state is revived, because the file might be
revived forward azain, or some other file might he sharing the text. The only way
to recover space is to copy the currently valid text into a new file in another data
set, The old data sct then can be copied onfo a permanent storage medium, such

as tape, so the editing history will not ke lost.,

-8 -

Our limited experience with the use of DSM has shown that once a file has been
created and the irrelevant history cleaned out, about 1/3 to 1/2 of the subsequent
changes will be incorrect, resulting in wasted text storage space. If the changes
are minor, then the waste space will be insignificant. In one 'éé.se, using DSM to
modify its own source code from operation on an IBM 2741 typewriter terminal to
operation on an IBM 2260 CRT display unit, the change required ahout 15% additional
storage. Future modifications to enable operation on 2 other types of 2260 displays
are expected to require about 10% more storage. We then will have 4 separate
source programs, requiring only 25% storage more than any one of the programs.

Storage of only one record number per region, in the file map rather than with
the text, makes a record length of 1 byte economical, Typical applications for
1-byte records are examining storage dumps, or inserting patches into programs
without forcing recompilation.

EXECUTION CONSIDERATIONS

The only expensive operations in DSM are content searches of the text, and

conversion from internal format to external format prior to compilation. Both
these operations involve sequential processing of the records. An I/0 scheduling
routine tailored to sequential processing is used to minimize the number of direct
access I/O calls. For other typical editing operations, statistical knowledge of the
structure of the files is employed in 1/O scheduling routines to minimize the
expected number of direct access I/O calls. Many editing operations require no
direct access I/0O, since the last partly filled file map block and the last partly filled
text block usually are retained in core memory buffers until they have been filled
completely. ‘

The only execution overhead directly attributable to maintaining the editing
history is the possible I/0O call necessary to change the forward link of the last
displaced directory entry. During DSM format conversion there is some additional
I/0 required to rearrange the altered records of all previous editing runs, rather
than just rearranging the altered records of the most recent editing run. This
additional I/0 properly should be charged to DSM's ability to keep record numbers
constant from compilation to compilation, rather than to its ability to maintain an
editing history.

The motivation for keeping record numbers constant from compilation to
compilatior is to enable print-off compilations after minor debugging changes. Any
editor which allows random access changes to a file must have a final pass over all
the currently valid text, rearranging it into sequential format for subscguent
compilation. But keeping the record numbers constant prevents resequencing the .

file during the final pass. Therefore the increment to record numbers cannot be

-9 -

uniform throughout the file. The space saving achieved by not storing the record
numbers with the text leads to some pointer scheme such as the DSM file map,
with its consequent additional /O during format conversion. =~ -
MAINTAINING FILE INTEGRITY

Any scheme requiring the use of pointers is subject to complete failure if even
one pointer is incorrect. In DSM, the pointers contained in the file map may require
several blocks of storage., While one block of the file map is being updated to reflect

an editing change, another block of the same file map still may contain pointers

appropriate to the previous state of the file. If a system crash or hardware failure
terminates DSM execution before all the relevant file map blocks have been updated,
the file map will contain inconsistent pointers, rendering it useless.

During the editing of the file, DSM keeps two copies of the file map in secondary
storage. One copy is in the permanent data set itself, and the other copy is in a
temporary utility data set named "SYSUT1". One or more of the file map blocks
from the copy in SYSUT1 are kept in core memory buffers, where they are updated
to reflect each editing change. These blocks are wriften to SYSUT1 whenever their
buffer space is needed for other blocks. Most of the time SYSUT1 contains an
inconsistent file map, since some updated file map blocks still are in core memory.

At regular but comparitively infrequent intervals, all the file map blocks in
core memory are written to SYSUT1, giving SYSUT1 a consistent file map. Then
the file map in the permanent data set is updated from the contents of SYSUT1. At
all times there is at least one consistent file map in secondary storage.

A "FFAITL, SAFE" message is issued each time the file map in the permanent
data set is updated. System failure cannot cause the loss of editing done prior to
the most recent "FAIL SAFE". Should the system crash during the updating of the
permanent data set from SYSUT1, a later editing run may be used to restore the
file map in the permanent data set.

THE EDITING LANGUAGE
In designing the editing language, we adopted the philosophy that typing a few

extra characters in each editing command is an insignificant part of the total effort

of editing a file. The editing commands were chosen for clarity and wiformity,
rather then for brevity. A typical editing command might be:
TEXT AFTER 35
where 35 is the number of a record already existing in the file. This would be
followed by typed-in records of new text. An extra carriage return for conversational
editing, or a blank card for nonconversational editing, signifies the end of the text
a.hcl makes DSM receptive to the next command. : -

Normally DSM chooses the starting record number and the increment to
récord numbers, using an algorithm which produces "pleasing' record numbers

- 10 -

based on an examination of the available interval into which the record numbers
must be fit. The user can override this feature by specifying desired values of

starting record number or increment.

The typical editing commands below give the flavor of the language:

DELETE 15 TO 17.2

COPY 7 TO 12 AT 20.1 STEP .005
SHOW 40 TO END

MOVE 43 OVER 50 TO 51

SEARCH BEGIN TO 30 FOR 'SIN(X)"
CHANGE = "SIN(X)"COS(Y-X)"

PROGRAM INSTALLATION

DSM operates either conversationally, using a 2741 typewriter terminal, or
nonconversationally, obtaining commands and text from the SYSIN data stream.
Conversational use of DSM requires 2741's with both the incoming and outgoing
"break' features;.

APPLICATIONS OF TIME REVERSAL

There are many application areas where it is important that files retain their
* history in a recoverable form. For example, files of medical records must be
organized so as to allow convenient scanning of their entire history. Another
example is the generation of computer programs, where small parts of the progrum
may be experimentally modified. The ability to revive certain preselected editing
states allows the modifications to be retracted if they prove undesirable, without
requiring the storage of a second copy of the entire program.

A third example is the debugging of programs which modify files. For these
programs, ''snapshot and restart' methods (implied in [1]) are uneconomical, due
to the cost of taking snapshots of the entire file being modified. Instead, these
programs could be executed interpretively, with the interpreter recording the
changes to all program variables. (An appropriate interpreter would have to be
written for each source language.) When a program bug is detected, both the
program variahles and the files that were modified could be reversed in time until
the program bug first appears. The time reversal would be under conversational
control of the programmer. This method of debugginy would obsolete most of the
uses of break points, but could be coupled effectively with other conventional
on-line dehugging techniques [EJ .

However, the most general application of time reversal is to a conversational
text editor. Time reversal makes DSM tolerant of humian errors. A mistyped
digit in a record number, or an incorrect character transmitted over a
communication line, could result in the accidental deletion 6f most of a file. In
the absence of timelre‘versal, these records would have to be typed in a second

time, Other error-tolerant programs are designed to save computer effort when

- 11 -

errors are detected [3,4]. DSM is designed to save a significant amount of human

effort when errors are detected. e)

REFERENCES D

1. Van Horn, E. C. Three criteria for designing computing systems to facilitate
debugging. Comm. ACM 11,5 (May 1968), pp. 360-365.

2. Evans, T. G., and Darley, D. L. On-line debugging techniques: a survey.
Proc. AFIPS 1966 FJCC, Vol. 29, pp. 37-50. ‘

3. Irons, E. T. An error correcting parse algorithm. Comm. ACM 6,11
(Nov. 1963), pp. 669-673.

4, Wirth, N. A programming language for the 360 computers. Tech. Rpt. CS33,
Computer Science Dept., Stanford University, Stanford, California (Dec. 1966).

- 12 -

TEXT:

T [(e)

Start of block 2. Start of block 3. Start of block 85.
FILE MAP: B g z ° g
: T g v 588 3ES u 8, & =
o 2 “-E_guhguth R <89 E;<]
Ed <% EQE 58% 558 8% y5E &E g§<
3 83 RéZ2 S5 CE8 w2 388 B EE

FIG. 1

Text and file map after the original 500 records have been introduced
into the file.

TEXT:

T[zlamsle 7Ts| L498 499|500]
Start of block 2, Start of block 3. Start of block 85.
FILE MAP: s a %" -

7 :.4 W ErE = w ° 8 _

i 3, . eECRBOCRE .Bsesz £ %

E¥ % BSE B9 84g rEEgE GS 89

23 A3 ExZ ks SE& B2 .-‘lgld E5 =22

0 2 | 3 00
. Index

1: 1 0 1 | 500 0 2 o | ool 8t
Index

2: 3 0 1 3 0 2 1 |grol 8t
Index

3: 0 2 5 | 496 4 | 2 0 |otol|®

FIG, 2

Text and file map after deleting record 4. Record 4 has not been altered
in storage.

TEXT:

G [L] T [[[[[o]

Start of block 2. Start of block 3. Start of block 85.
. = -
FILE MAP: o g Y- "5%5 « B, & _
d E. BB oER opE L8 352 B ¥
Fa €4 ESE S3a EES §E wx2f 2% g4
S ! g **&%5 28 288 S5 €8¢ 0% 2%
[O REZ OEZS OS5 mz ARG &S5 =2
0 4 3
1 1 Q
Index
2 2 0 1 3 0 2 1 |oriol8t
Index
3 0 6 5 496 4 2 o lgtolo
Index
4 5 0 1 2 0 2 2 |2 T0l 81
Index
5: 6 4 2.01| 3 2 85 0 |of.o1|®
Index
6: 3 5 3 1 2 2 0 lorrol®

FiG. 3
Text and file map after inserting records 2.01, 2,02 and 2.03.

7 l ﬂ—__lﬁis 499 I 500 l 2,01 I 2.02

Start of block 2. Start of block 3. Start of block 85.
o g
L P: : T &
FILEMAP: 2§ Lpvafsts oy %, 0
E, .82 SEB 2T L2 338 € 5
E¥ Ty EgE 5g% 58 RE g2k BE ¢2
=3 A3 REZ OX8 OEf ®mz ARG S8 S5
0 4 | 3 0 00
|1 o} 1 [so0 0 2| o f)’;dle"o 81
2 2 0 1 3 0 2 1 i‘;df’; 81
3 o | 7 5 |a96 4 21 o i‘f"’f"o o1
4 7 0] 1 2) 2| 2 z‘;df"o 81
5 6 | 4 | 201 3 2 8 | o z‘f‘de(’)‘l o1
6: | s | s | 3 |1 2 2 | o |[Ddexig
7. | 3 | 4| 202 2 | s | 6 |DdX e
FIG. 4

Text and file map after deleting records 2. 03 and 3.

=]
14
<
£
<
[*]
=
0

State
Pointer

—
H
<

1: Other entry for state 1.

2: Other entry for state 2,

3: Other entry for state 2.

4: Other entry for state 2.

5; 0 I 2 l ADAMS J 02
8: Other entry for state 3.
7: 5 I 3 JEFFERSN l 02

8: Other entry for state 4.

9: Other entry for state 4.

10: Other entry for state 4.

11: Other entry for state 4.

12: Other entry for state 4.

13: Other entry for state 5.

14: Other entry for state 5,

15: Other entry for state 6.

16: Other entry for state 7.

17: Other entry for state 7.

18: Other entry for state 7.

19: 7 7 JACKSON 02

20: Other entry for state 8.

FIG. 5

File map containing state entries. JACKSON, JEEFERSN, and ADAMS are
state names.

Link to last of the
displaced entries

Forward link Forward link
from preceding to following
file map entry file map entry
Backward fink Backward link
to preceding from following
file map entry file map entry

| I—

Specification of a
record interval within
the region

A = number of the directory entry, also used
to identify the corresponding region.

=

FIG. 6

Reduced diagram of both a directory entry and its
corresponding region of text.

S]]

|

Existing interval which
will be replaced by
new interval

FiG. 7
Reduced diagram of the file after some initial editing.
State number = S.

New interval

Reduced diagram of the file after replocing the interval.
State number = S+ 1,

Reduced diagram of the file after unlinking entry K.
State number S is being revived from state number S+ 1.

FIG. 10

Reduced diogram of the file after unlinking entry J.
State number S is being revived from state number S+ 1,

P 7Y g TN P) P 61 P

A S s PR e

FIG 11

Reduced diagram of the file after unlinking entry I,
State number = S, 13782

