
t

SLAC-PUB-504 .
September 1968
(IEISC)

DSM - A TEXT EDITOR WITH TIME REVERSAL CAPABILITY*

D. Ross, R. T. Braden, ** R. E. Brody, J. 0. Crowley,
D. B. Earl,? J. H. Halperin, R. M. Lonergan,tP-and R. T. Stainton

SLAC Facility of the Stanford Computation Center
Stanford Linear Accelerator Center

Stanford University, Stanford, California

ABSTRICT

A conversational program for editing files of card images has the ability to

“reverse time”, in addition to the usual editing capabjlit.ies of inserting, deleting,

and altering records of text. The program maintains a complete history of all

editing actions, so it is possible to revive any previous editing state of a file.

New text is stored in chronological order, as it is introduced into the file.

Once stored, the text never is altered or deleted, A set of pointers called a “file

map” describes the correspondence between the physical placement of records of

te.xt, and their logical sequence within the file. Entries in the file map, reflecting

editing changes to the file, also are stored in chroncJogica1 order. Reversing time

is accomplished by unlinking the most recent file map entries.

KEY WORDS AND PHRASES

editor, text editor, time reversal, conversakional, file

CR CATEGORIES

3.73, 4.43

INTRODtTCTION --- .
DSnI is a conversational prcgram for editing files of text. In addition to the

usual editing capabilities of inserting, deleting, and altering records of test, DSM

*Work, supported by the U. S. Atomic Energy Commission.
**Currently at UCLA Campus Computing Network.
tcurrently at Control Data Corp.

TtIBM Corp.

-l- .’ .

.

has the ability to “reverse time”. The program maintains 3 complete history of
‘.

all editing actions, so it is possible to revive any previous editing state of a file.

The currently operating version of DSM is restricted to editing 72-column

card images. Reviving a previous editing state is destructive of all states in the

file which follow the revived state. These restrictions have been removed in a

second version of DSM, which still is being coded. The second version will be

described in this paper, since it is the more interesting of the two.

The files that DSlll can edit are stored in OS/360 sequential data sets. DSM
runs as a user job under OS/360 MFT or hIVT, and is allocated data sets through

standard Job Control Langu,age DD statements. The data sets must reside on

direct-access storage devices, such as disk or drum, while they are being edited.

Because DSM files maintain a history of the editing performed on their text,

an internal bookkeeping system is required using a set of pointers called a “file

map” o A file consists of the te-xt records and a file map. This “DSM internal
format” is not compatible with other OS/360 processor programs, such as the

FORTRAN compiler D DSM has commands for converting an “external format”

(standard 05/360) data set into internal format for editing, and for converting from

internal fornmt to e-xternal format for compilation or other processing.

RECORD I?ORNATS --
Test records in thej.r e?derna.l format may all be of any fisecl length between 1

and 256 bytes, or they may be of variable length between 0 and 236 bytes. The
user h:Ls the option of conservin, m storage space by compressing multiple bkank

characters in fixed length elcternnl format records, and storing the records in an

intern;!1 fOi:iIltLt: of variable length. hfultiple blank characters in v,a.riable length

external for,nnt records always are compressed.

DATA SE’I’ ORGANIZATION ___--- ----
Ench dntn set may contain several files which c,an be etliled inclt3pendentl.y. All

text ii1 the &.:a set is stored in a single test area. The files are distinguished by

their scpnrate file maps. A file map cl escribes the correspondence between the

p!:ySic::l l!!aCelliZnt of records Of test, and the logica!,scquence of the records

within t’nc: lile, Different files wilhin a data Set may share text in common, if their

file map‘. ;)oir?t to the same test recordk.

i

All ci::!-:i. in DS:i: internal forn?zt clata sets are st,ored in blocks of fixed length.

-i?lc Lloc;<s ;xc\ numb?recl starting at 0, There are 3 types of blocks in a data set:

boo!;l;ecping hlo:k, file map blocks, and text blocks.

L;lor:k 0 is t!le i‘irst of t,he bl.)o!;kceping bl~cl~.~. These bIocks contain the names

cl al! fj!cs in the data set, and the numbers of all file map blocks belongin:r to each a

file. The bookkeeping blocks also contain other information relevant to the entire

-2-

data set, including a description of the type of text (alphanumeric or numeric,

record length, etc.), a pointer to the current end-of the text, the number of the last

block used, and the various language format parameters declared by the user.

Block 1 contains the file map for the first file in the data set. As editing is

performed on the file, new entries are appended to the file map. When the file map

becomes too large for a single block, it is continued on the next available block.

Each file in the data set has its own blocks of file map.

Block 2 usually is the first block containing text. The text may belong to any

or all of the files in the data set. As new text is introduced into any of the files, it

is appended to the previously existing text. When text storage becomes too large

for a single block, it is continued on the next available block.

Depending on record length, block length may not correspond to an integral

number of records. Nevertheless, each test block contains an integral number of

records e The beginning of the block coincides with the beginning of the first record.

in the block, Any space at the end of the block which is too small to hold the next

record is wasted.

The remaining blccks in the data set contain extensions of the bookkeeping

information or file maps or text, depending on the editing history of the files.

FILE ORGAi%lZ ATION

A file consists of file map ,and textit. Access to the file map is made via

information in the bookkeeping blocks a Access to the text is made via information

in the file map.

As new text is entered into any file in the data sztj it is appended to the existing

te:d. Once stored, the text never is elmnged or deleted. The alteration of a string

within a record is accomplished by appending a new record, containing the aliitcred

string.

New file map ciltries are created to reflect the consequences of the editing

changes e The new entries are appended to existing entries, so their physical order

of s!oragc is the same as the chronological order in which the ch<anges were made.

Several sets of links maintain the logical order of the*file map entries. Previous

editing states of the file can be revived by unlinking the entries in the inverse order

of their ph)-sjcal stor,age, which also is inverse chronological order,

An edit.& cor~~mand which causes the fi1.e to he changed, also causes the

coantcr of the current state number to be incremented by 1. DSM types the current

state num!~r to the user, prior to waiting for the next editing command, The

command may cause several of the basic editing operations to be executed, such as

insert, delete, copy, etc. DShI leaves a mark in the first file map entry of each *

state-

-3- -?+. :.

Later sections of this paper describe the 3 types of file map entries: directory

entries, dummy entries, and state entries. All file map entries are of equal length, I--
and are numbered 0, I., 2, according to their physical placement within the

file map.

RECORD NUMBERS, REGIONS, AND INTERVALS

A unique record number is associated with each text record in a file. Record

numbers are stored in the file map, rather than with the text. A single physical

text record may appear logically at several places in the file, with different record

numbers D
A “region” of text is a set of records which are both physically consecutive in

storage, and sequential in their record numbers. A region must be contained

within a single block, in those data sets which have variable length internal format

records. A region may span several consecutive blocks, in those data sets which

have fixed length internal format records. Regions are defined such that any record

can be locate~l and accessed with at most one read operation, given the location of

the first record in the region.

An “interval” is the set of records whose numbers lie between the lower and

upper bounds of the interval, inclusive, regardless of where the records are stored.

Editing commands specify record intervals to be acted upon. The commands

result in calls on the basic editing operations, such as: insert an interval of new

test, delete an interval of existing te,ti, or cop3 f an interval of existing text so that

it occupies a new interval. The basic editing operations process each region within

the interval as a unit.

DIRE:CTORY EXTRTES ___. -I__-
The file map contains one currently valid directory entry for each region of

text in the file. After the first text is introduced into the file, the file map contains

a single dircciory entry. As editing changes are made to the test, the initial

cor~CSp~.~iid~nCC: between physical and logical ordering of the records ccascs to be

valid, The initial test becomes fr,~~rnented into several regions, and regions of

new test are appended t.o the file. This causes new directory entries to be appended .-
to the file map. Sonic of the existing entries may cease to be va.lid, because the

r:-‘F;io:i3 they define have been deleted from the logical order of the file, or fragmented

into sn~ixiler regions. All the enl~ies which currently are valid, are linkccl to@hcr

in 2 c I: r-!:(!ii'.g crtlcr of record numlx2rs. Another set of links points from the nen’

currcntl~r v-Jid e:ltries to the old iormcrly valid entries xhich the new entries

c?ispl:!ci!. These links to displaced ent,ri.es save the editing history of the fil.c,

.d
-4-

Directory entries contain the following fields:

(1) Forward link (2 bytes). This link contains the-entry number of the next

--currently-v&id directarg-entry; in the order- of asce@rqz-cord numbers.

(2)

(3)
(4)
(5)

(6)

(7)

(8)

P)

Entry 0 of the file map does not correspond to a region, but points to the

first and last currently valid directory entries.

Backward link (2 bytes). This link contains the entry number of the preceding

currently valid directory entry, in the order of ascending record numbers.

Record number of the first record in the region (4 bytes).

Count of the number of records in the region (2 bytes).

Index to record number increments (1 byte). The increment is the difference

between any two consecutive record numbers in the region, DSM recognizes

only a few increments as valid: those which are 1, 2, or 5 * some power of

10. The valid increments are stored in a table which is part of the DSM

program, but not part of any data set. This field contains an index into that .

table which identifies the increment used in this region.

Text block number (2 bytes). This field contains the nunlber of the block,

relative to the start of the data set, which contains the first record in the

region. The first record in the region may be anywhere within this block.

Count of the number of intervening records (2 bytes). This is the number

of records intervening between the start of block (6) and the first record in

the region,

Link to displaced directory entries (2 bytes), This link points from the
logicrtlly first (lowest record numbers) of the new directory entries to the

logically last of the old directory entries being displaced as a result of a

single basic editing operation,

Miscellaneous (1 byte) D This field contains some redundancy for debugging

purpOSCS, and bits marking named records, control records, a.nd the first

directory entry in a new state.

The physical lag-out of the fields within a directory entry is not in the order

they are described above, but rather in the order shown in Figs. 1, 2, 3, and 4. .
ESANPLE OF EDITING

Figs, 1, 2, 3, and 4 show an example of editing demonstrating the use of the

file map. In this exunple, the records are of fised length and of such a size that

6 records 1.:‘;ny be stored in each text block.

Initially the file is empty. The first text introduced into the file consists of

500 records. The test fills 83 blocks, and partly fjlls an 84th block. As descrjbcd

in “Data Set Organization”, the first of the 84 blocks is block 2 in the data set. The

records form a single region and the file map contains one directory entry, shown

in Fig. 1.

-5-

The first editing change is the deletion of record 4, shown in Fig. 2. The text

remains unchanged, but the file map is altered to indicate the deletion. r-- Entry 1 in

- .- -----the file map is displaced by entries 2 and 3:. Entry 3 corresponds to the region

from record 5 to record 500. This region starts in block 2, with 4 records

intervening between the start of block 2 and the start of the region. Observe that

the forward link of the last of the displaced entries (entry 1) has been changed to

point to the first of the displaced entries (also entry 1). This speeds the process

of reviving former states.

The insertion of records 2.01, 2.02, md 2.03 is shown in Fig. 3. The new

records are appended to the existing text, forming a new region. Records 1, 2,

and 3 no longer form a single region, because the new inserted records interrupt

their logical sequence.

The deletion of records 2.03 and 3, shown in Fig. 4, causes the displacement

of 2 entries in the file map. The entry for records 2.01 to 2.03 is displaced by a .
neii’ entry indicating the shorter extent of the region. The entry for record 3 is

displaced, with no new entry replacing it.

DUhlrcSY ENTRIES

Deleting an interval of text possibly may cause the displacement of previously

valid directory entries, without creating any new directory entries. This occurs

when the louver bound of the i.nterval also is the lower bound of some esisting region,

and the upper bound of the interval also is the upper bound of some esisting region.

In this event, a dummy entry is created solely to point to the displaced directory

entries. The dummy entry occupies the same position among the forward and

bxcl;\v;ird lin!ts that previously was occupied by the displaced entries.. The only

sjgllifica& fields in a dummy entry are the forward link, backwad link, link to

clisplnccd entries, and the bit in the “miscellaneous” field marking a new state.

STATE EXT RIES - -
The user may identify the current state of the file by its state number, which

is typed out precedin, n each command, or by naming the state. Subsequently he may

have thz.‘i st,ate revived, identifying it either by number* or name. .
Stzte r,nmes and their corre spending numbers are stored in the file map in

st3tcl eutrics. State entries are connected with backward links, ou the assumption

thnt users are most likely to be interested in the recently created states. Fig. 5
shows nl: e-sample of state entries in the file map.

E‘r;A;\fPL,E OF EDITING, .&ND REVIEXG BACKWARD AND THEN FOW\VARD IN __---
TIXE

&Iuch of the complica.tion of the file map can be eliminated for the illustration ~

of this esample. Fig. 6 shows a reduced diagram which represents both a directory

-6-

I
entry and its corresponding region of text. The letter A in the diagram represents

the number of the directory entry in the file map.,& the following‘discussion,

“region A” means the text region corresponding to directory entry number A.

Fig. 7 shows the file after some initial editing, which has left the file at state

number S. The forward and backward links indicate that the records in region B

are numbered higher than the records in region A, the records in region C are

numbered higher than the records in region B, etc. ; but no assumption is made

about the relative physical order of the directory entries numbered A, B, C, D, E.

In response to an editing command, an existing record interval which spans

part of region B, all of region C, and part of region D, is replaced by new text.

Fig. 8 shows the file map after the replacement. The new text is appended to all

previously existing text, forming a single region at the end of text storage, The

interval of new text coincides with this region, for which directory entry number

J is created. Directory entry number I is created for the part of region B that was .

not replaced, and directory entry number K is created for the part of region D that

was not rep?.aced. Directory entry numbers I, J, K may be in any order among

themselves, but as a set they must be contiguous, since they represent a single

editing change. Numbers I, J, K must be greater than any of numbers A, B, C,

D, E, since I, J, K are new directory entries which are appended to the file map.

In order to make this example more concrete, it is assumed that J=I+l and K-I-f-2.

Fig. 8 shows that the forward link of the last of the displaced entries (D) has

been changed to point to the first of the displaced entries (B)O

More editing could be performed subsequently, but at some later time the

command is issued to revive a state numbered less than or equal to S. Reviving

state S-i-1 Ieaves the file as shown in Fig. 8. Figs, 9, 10, and 11 show the process

of reviving from state S+l to state S. At each step in the process, the highest

numbered directory entry is unlinked from its position in the file map, and replaced

by any entries it has displaced. Entries K and J have not displaced any other entries,

so they are unlinked without replacement. Entry I has displaced entries B, C and

D. Entry B, the first of the displaced entries, has th,e same backward pointer as

entry I. Entry B could have been found by following along the back\vard links from

entry D, had its number not been put in the forward link of entry D. But following

along the backward links could require unnecessary direct access I/O, if the file

map occupies more thm one block of storage.

Reviving forward again to state S+l is just the reverse of the process shown

in Figs, 9, 10, and 11. At each step, the lowest numbered directory entry is

relinked into the file map. The backward and forward links of the new entry indicate

which existing links must be broken. The link to displaced entries and the backward

link of the new entry indicate which existing entries become displaced. The steps

in reviving forward are shown in Figs. 11, 10, 9, and 8. ‘.
,-- -.

Reviving forward is impossible once any editing changes are made. DSM has .’
a command for duplicating a file map into a new file in the same data set. This

allows the user to edit a file, and still keep a version that can be revived both

backward and forward.

NAMED RECORDS

For certain types of text, it is natural to associate names with selected records

of the te.xt. For esample, the statement number in a FORTRAN statement might be

used to identify that record. DSM allows users to refer to named records by their

names, as well as by their record numbers. Record names may be used in DSM

commands in any way that record numbers may be used,

Routines appropriate to the text language being edited are called by DSM, to

extract record names from the text itself. When new tex% is introduced into a file, .

these routines force DSRI to start a new region at every named record. A bit in

the “m.isceIlaneous” field of the directory entry indicates that the first record of

the region is a named record. Subsequently, when a record name is used, the

routines scan all the named records until the desired record is located. In effect,

record names invoke an automatic search of a selected subset of the records in the

file,

COXTROL RECORDS
Certain editing applications can take advantage of DSM control statements

embedded Ivithin the text. For example, when using DSM to compose business

letters, a PAUSE control statement may be embedded within the text at the end of

each pqe. DSM v:ill pause in the display of the final “clean copy”, allowing the

typist time to insert a fresh sheet of paper. PAUSE also is useful when generating

form lolicrs, ,allo?ving the typist tim e to type in the recipientOs name a~ld address.

Like na:nctl recol-d3, records containing cont.rol statements always start a

ne\lr rei+on .7 0 A bit in the “miscclkaneous’! field of the directory entry indicates that

tliC! first, ~C?COrCl in the I? egion contains control statements. .
Sl’OI:?LGE CONSIDERATIOI’LS --

In 3 typical large file, Say 5000 card im‘ages, the amount of space required for

storage of Ihe file n:q~ is insignific,znl, But if the file has been !ieavily edited, the

data set :n:ty conL.ain a large amcunt of obsolete ted;. Tcti storage space is not

recovered when a previous editing state is revived, because the file might be

revilrccl forward qLin, or some other file might be sharing the test, The o:11y WV;
to recover space is to copy the. currently valid text into a new file in another data _
set. The old data set then can be copied onto a permanent storage medium, such
ai tape, .so the editirg history will not be lost.

-a-

Our limited experience with the use of DSM has shown that once a file has,been

created and the irrelevant history cleaned out, abcc@ l/3 to l/2 of the subsequent

changes will be incorrect, resulting in wasted text storage space. If the changes

are minor, then the waste space will be insignificant. In one ‘case, using DSM to

modify its own source code from operation on ar.IBM 2741 typewriter terminal to

operation on an IBM 2260 CRT display unit, the change required about 15% additional

storage. Future modifications to enable operation on 2 other types of 2260 displays

are expected to require about 10% more storage. We then will have 4 separate

source programs, requiring only 2500 storage more than any one of the programs.

Storage of only one record number per region, in the file map rather than with

the text, makes a record length of 1 byte economical. Typical applications for

l-byte records are examining storage dumps, or inserting patches into programs

without forcing recompilation.

EXECUTION CONSIDERATIONS -
The only expensive operations in DSM are content searches of the text, <and

conversion from internal format to external format prior to compilntion. not11

these operations involve sequential processing of the records. An I/O scheduling

routine tailored to sequential processing is used to minimize the number of direct

access I/O calls. For other typical editing operations, statistical knowledge of the

structure of the files is employed in I/O scheduling routines to minimize t.he

expected number of direct access I/O calls. Many editing operations require no

direct access I/O, since the last partly fill.ed file map block and the last partly filled

text block usually ‘are retained in core memory buflers until they have been filled

complct.cl jr*

The only execution overhead directly aitributable to maintaining the editing

history is the possible I/O call neccssnry to change the forward link of the last

displaced directory entry. During DSiVI format conversion there is some nd:litionnl

I/O recluirerri to re,u-range the ,Zlterecl records of all previous editing runs, r&hzr

thzn just rearranging the altered records of the most recent editing run. This

additional I/O properly should be charged to DSM’s ability to keep record nulnb~rs .
const:u?t from compilation to compilation, rather th,ul to its ability to maintain an

editing hist;nry,

The motivation Por keeping record numbers constant from compilation to

ccmpilatio:~~ is to enable print-off compilations after minor debugging i:l:,‘r.z;~~~. Aily

editor which allows r,andom access changes to a file must have a final pass over all

the currently valid tex+, rearranging it into sequential fOlW~3t fey SUi;i:C:lU2:lt

compilation. But keeping the record numbers constant prevents resequencing the .

file during the final pass. Therefore the increment to record numbers cannot be

-9-

uniform throughout the file. The space saving achieved by not storing the record

-numbers with the text leads to some pointer scheme such as the DSM file map,

with its consequent additional I/O during format conversion. -- -- - . -

MAINTAINING FILE INTEGRITY

Any scheme requiring the use of pointers is subject to complete failure if even

one pointer is incorrect. In DSM, the pointers contained in the file map may require

several blocks of storage. While one block of the file map is being updated to reflect

an editing change, another block of the same file map still may contain pointers

appropriate to the previous state of the file. If a system crash or hardware failure

terminates DSM execution before all the relevant file map blocks have been updated,

the file map will contain inconsistent pointers, rendering it useless.

During the editing of the file, DSM keeps two copies of the file map in secondary

storage. One cdpy is in the permanent data set itself, and the other copy is in a

temporary utility data set named “SYSUTl”. One or more of the file map blocks .

from the copy in SYSUTl are kept in core memory buffers, where they are updated

to reflect each editing change. These blocks are written to SYSUTl whenever their

buffer space is needed for other blocks. Most of the time SYSUTl contains an

inconsistent file map, since some updated file map blocks still are in core memory.

At regul,ar but comp,aritively infrequent intervals, ,211 the file map blocks in

core memory are written to SYSUTl, givin, 0’ SYSUTl a consistent file map. Then

the file map in the permanent data set is updated from the contents of SYSUTl. At

all times there is at least one consistent file map in secondary storage.

A “FAIL SAFE” message is issued each time the file map in the permanent

data set is updated. System failure cannot cause the loss of ecliting done prior to

the most recent “FAIL SAFE”. Should the system crash during the updating of the

permanent data set from SYSUTl, a later editing run may be used to restore the

file map in the permanent data set.

THE EDITING IAXGUAGE

In designing the editing language, we adopted the philosophy that typing a few

extra characters in each editing command is an insignificant part of the total effort

of editing a file. The editing commands were chosen for clarity and uniformity,

rather th>_ul for brevi.iy, A typical editing command might be:

TEXT AFTER 35
M&ere 35 is the number of a record already esisting in the file. This would be

followed by typed-in records of new text. An extra carriage return for conversational

editing, or a b!anJ; card for nonconversational editing, signifies the end of the text

and m,akes DSM receptive to the next command. A.

Normally DSM chooses the starting record number and the increment to
.

record numbers, using an algorithm which produces “pleasing” record numbers
- 10 -

based on an examination of the available interval into which the record numbers

must be fit. The user can override this feature byspecifying desired values of

starting record number or increment.

The typical editing commands below give the flavor of the language:

DELETE 15 TO 17.2
COPY 7 TO 12 AT 20.1 STEP o 005
SHOW 40 TO END
MOVE 43 OVEI: 50 TO 51
SEARCH BEGIN TO 30 FOR ‘SIN(X)’
CHANGE * “SIN(X)“COS(Y-X)”

PROGRAM INSTALLATION

.lly, using a 2741 typewriter termina DSM operates either conversationa .l, or

nonconversationally, obtaining commands and text from the SYSIN data stream.

Conversational use of DSM requires 2741’s with both the incoming and outgoing

“break” features.

APPLICATIONS OF TIME REVERSAL

There are many application areas where it is important that files retain their
history in a recoverable form. For example, files of medical records ~~lilst: be

org‘anized so as to allow convenient scanning of their entire history. Another
esample is the generation of computer programs, where small parts of the p’rogr:t:Il

may be experimentally modified. The ability to revive certain preselectccl editing

states allows the modifications to be retracted if they prove undesirable, without

requiring the storage of a second copy of the entire program.

A third example is the debugging of programs which. modify files. For these

programs, “snapshot ‘and restart” methods (implied in [1]) are L111~c0n03nica.1, Chic

to the cost of !a.king snapshots of the entire file being modified. Instead, these

programs could be executed interpretively, with the interpreter record!‘ng the

changes to all program variables. (An appropriate interpreter v:ould hnlie io lx

written for exh source kanguage.) When a program bug is detected, bO?!i ti!C

program variables and the files that were modified could be reversed in tj.me u::til

the program hug first appears, The time reversal would be under conveysxtion?f

controi of the progl.‘~illl~lEX~. This method of debugging would obsolete most of the

uses of bre‘ak points, but could be coupled effectively with other convcntionnl

on-lint debnggjng techniques @].

However, the most general application of time reversal is to :1 convcrs:~tion:ll

text ecditor 0 Time reversal makes DSM tolerant of human errors. A mistyped.

digit in a record number, or m incorrect character trmsmitted over a

communication line, could result in the accidental deletion of most of a file, l11

the absence of timexeversal, these records would have to be typed in a second ”
time 0 Other error-tolerant programs are designed to save computer effort lvhen

- 11 -

errors are detected [3,4]. DSM is designed to save a significant amount of human

effort when errors are detected. ,;=-

REFERENCES .
1. Van Horn, E. C. Three criteria for designing computing systems to facilitate

debugging 0 Comm. ACM 11,5 (May 1968), pp. 360 -365. -
2. Evans, T. G., and Darley, D. L. On-line debugging techniques: a survey.

Proc. AFIPS 1966 FJCC, Vol. 29, pp. 37-50.

3. Irons, E. T. An error correcting parse algorithm. Comm. ACM 6,ll

(Nov. 1963), pp. 669- 673.

4. Wirth, N. A programming language for the 360 computers. Tech. Rpt. CS53,

Computer Science Dept., Stanford University, Stanford, California (Dec. 1966).

- 12 -

TEXT:

1 2 3 4 5 6 7 8

t I k
&art of block 2. &art of block 3. ‘Start of block 65.

0:

1:

FIG. 1

Text and file map after the original 500 records have been introduced
into the file.

TEXT:

A
of block 2. hart of block 3. b tart of block 85.

FILE MAP:

0:

1:

I I I I I I

I I I I I I I I I I

FIG. 2

Text and file map after deleting record 4. Record 4 has not been altered
in storage.

TEXT :

t
start of block 2.

498 499 500 2.01 2.02 2.03

t t
Start of block 3. Start of block 85.

0:

1:

2:

3:

4:

5:
I I I I

Index
6: 3 5 3 1 2 2 0 1 of 1.0 1 O1

FIG. 3

Text and file map after inserting records 2.01, 2.02 and 2.03.

TEXT:

Start of block 2. Start of block 3. Start of block 65.

FILE MAP:

5:

6:

7:

FIG. 4

Text and file map after deleting records 2.03 and 3.

FIG. 5

1: Other entry for state 1. I

2: Other entry for state 2.

3: Other entry for state 2.

4: 1 Other entry for state 2.

5: 0 2 ADAMS 02

6: Other entry for state 3.

7: 5 3 JEFFERSN 02

8: Other entry for state 4.

9: 1 Other entry for state 4.

10: Other entry for state 4.

11: Other entry for state 4.

12: 1 Other entry for state 4.

13: Other entry for state 5. I

17: I Other entry for state 7.

18: Other entry for state 7. I

19: 1 7 1 7 1 JACKSON I 02 I
20: 1 0th er entry for state 8. I

File map containing state entries. JACKSON, JEEFERSN, and ADAMS are
state names.

Link to last of the
displaced entries

Forward link Forward link
from preced ing +) to following
file map entry

A
file map entry

Backward link
to preceding <
file map entry

Backward link
4 from following

file map entry

I I
Specification of a
record interval within
the region

A q number of the directory entry, also used
to identify the corresponding region.

FIG. 6

Reduced diagram of both a directory entry and its
corresponding region of text.

I

EnstIng nterval whtch
WIII be replaced by
new lntervol

FIG 7

Reduced diagram of the file after some initial edltlng.

State number = S.

u
New interval

FIG. 8

Reduced diagram of the file after replocmg the Interval.
stnte numher = s + 1

FIG 9

Reduced dmgram of the file after unllnklng entry K.
State number S IS bemg revived from state number S+ 1.

FIG 10

Reduced diagram of the file after unhnklng entry J.

State number S IS bemg revived from state number S+l.

FIG 11

Reduced dlagrom of the file after unlmklr?g entry I.

State number = S. 111782

