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Systematic study of polarized electron emission from strained GaAs/GaAsP
superlattice photocathodes
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Spin-polarized electron photoemission has been studied for GaAs/GRAstrained superlattice
cathodes grown by gas-source molecular beam epitaxy. The superlattice structural parameters are
systematically varied to optimize the photoemission characteristics. The heavy-hole and light-hole
transitions are reproducibly observed in quantum efficiency spectra, enabling direct measurement of
the band energies and the energy splitting. Electron-spin polarization as high as 86% with over 1%
quantum efficiency has been observed2@4 American Institute of Physics
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Polarized electrons have been essential for high-energyrres have been reported in the literature. However, the
parity-violating experiments and measurements of nucleostrained superlattice structure has many parameters, and a
spin structure, and polarized electron beams will be requiregrocedure for systematic optimization is lacking. This letter
for all future linear colliders. Polarized electrons are readilyreports an investigation of strained GaAs/GaAsP superlattice
produced by GaAs photocathode sources. When a circularlyamples in which the principal structural parameters are sys-
polarized laser beam tuned to the band gap minimum is ditematically varied to define the optimum structural details.
rected to the negative-electron-affinitNEA) surface of a The samples were grown using gas-source molecular
GaAs crystal, longitudinally polarized electrons are emittedoeam epitaxGSMBE). Group V sources were Asaind B
into vacuum. The electron polarization is easily reversed byhermally cracked from Askland PH. High purity elemen-
reversing the laser polarization. The theoretical maximuntal Ga provided the Group-III source. A O2m-thick p-type
polarization of 50% for natural GaAs was first exceeded inGaAs buffer layer was grown on @00 n-type GaAs sub-
1991 using the lattice mismatch of a thin InGaAs layer epi-strate. In order to produce a strain-relieved Ga, layer
taxially grown over a GaAs substrate to generate a strain ifn GaAs, a 2.5um-thick GaAs P, layer was grown with
the former that broke the natural degeneracy between th@n increasing phosphorus fraction frgm0 to x to accom-
heavy- and light-hole valence band®olarizations as high modate_ the lattice m|smatc_h, foII_owed by an addltlone_ll 2.5
as 78% were produced for the Stanford Linear Collider#M-thick GaAs P, layer with a fixed phosphorus fraction.
(SLC) from photocathodes based on a thin GaAs epilayefrhe superlattice .stru.cture was then grown on this layer. The
grown on GaAsB® However, after 10 years of experience phosphorus fract|on in the superlattice barrier Gaf was
with many cathode samples at several laboratdrfetye € Same as in the buffer GagPy layer so that the super-
maximum polarization using the GaAs/GaAsP singlelatt'ce GaAs well layers were fully strained while the super-

strained-layer cathode remains limited to 80%, while the@tlice GaAsP barrier layers were fully relaxed. The su-

- : ; erlattice layers were doped with beryllium to a value of 5
quantum efficiencyQE) for a 100 nm epilayer is only 0.3% P 7 3 . .
or less. Two known factors limit the polarization of these X 10" cm™®, On top of the superlattice layers, a 5-nm-thick

cathodes(1) a limited band splitting; an{?) a relaxation of GaAs surface layer was grown with a Be doping concentra-

i 9 a3 ; ;
the strain in the surface epilayer since the 10-nm-criticz(!0n of 5x 10% cm™. Four parameters specify the superlat

thicknes§ for the 1% lattice mismatch is exceeded. Strained co struciure: the GaAs WPT" width, the GaAgd, barner.

X o . idth, the phosphorus fraction, and the number of periods.
superlattice structures, consisting of very thin guantum wel able | summarizes the eleven superlattice samples studied
layers alternating with lattice-mismatched barrier layers are

excellent candidates for achieving higher polarization sincesere' In addition to the superlattice samples, a 90-nm-thick
they address these two issues. Due to the difference in th ingle strained-layer reference samgl® nm GaAgod%.os

i . . on GaA was grown for comparison using the same
effective mass of the heavy- and light-holes, a superlattic 866034 9 P 9

exhibits a natural splitting of the valence band, which adds t rowth method.

the strain-induced solitina. In addit h of th It The crystallographic structure was analyzed with a
ne strain-induced spihitting. In addition, €ach ot the superiaty ouble-crystal x-ray diffractometer. Diffraction patterns of
tice layers is thinner than the critical thickness. Polarize

o . 004) symmetric reflection and asymmetric reciprocal-space-
photoemission from strained InGaAs/GaAs 4 sy y P P

8 %10 . ' maps around th€224) reflection were recorded. The grown
InGaAs/AlGaAs, and GaAs/GaAsP™ superlattice Struc-  gampjes had the phosphorus fraction withie=0.01 and the

superlattice period within 0.4 nm of the values shown in
¥Electronic mail: tym@slac.stanford.edu Table I. Assuming abrupt superlattice interfaces, x-ray simu-
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TABLE |. Strained GaAs/GaAs,P, superlattice samples. 25 T T 790 ~
’ >
. 88| s (]
GaAs well GaAs P, barrier 3 L’ 4 £
Sample (nm) (nm) X No. of periods Too+S | E } ?’ o
~ c c
. e —180
1 4 4 0.25 12 & % a4l { - =1
2 4 4 0.30 12 Sq5LN / % V{9
(o] @ — 7 >
3 4 4 0.36 12 2 5 K 5
4 4 4 0.40 12 < Ceor- q702
5 4 4 0.36 9 LOIJ 1.0+ 8 , e Polarization ?EJ
6 4 4 0.36 15 o ’ © QE Anisotropy _IJ
7 4 4 0.36 20 76 |-« -2+ HH-LH Splitting g::
8 4 4 0.36 30 L ' ' L_=60
9 3 3 0.36 16 025 030 035 040
. P .
10 4 3 036 14 hosphorus Fraction
11 5 3 0.36 12

FIG. 2. Peak polarizatiofsolid circleg, QE anisotropyopen circleg and
measured HH-LH energy splittingriangleg as a function of the phos-
phorus fraction.
lation softwaré® based on a dynamic x-ray diffraction theory
was used to measure the strain in the superlattice well layers. . o :
Electron polarization and QE were measured in theconductlon band excitation, while the second §tep corre-
SLAC Cathode Test SystefCTS) equipped with a load- spo_nds to the_hght-hoIeLH) band to the c_or_lductlon band
lock for cathode introduction/removal and a compactexc'tat'on'wh'le an observable_energy splitting between t_he
medium-energy20 kV) retarding-field Mott detector for po- heavy- and_ light-hole bands i expec'ged for superlattlcg
larization measurementé.When excited by linearly polar- structures, it has never been observed in QE spectra previ-

: : : . : ly. By fitting with a step function, the band-gap energies
ized light, strained photocathodes show an azimuthal anisg2YS . .

; . : of the HH and LH bands relative to the conduction band are
tropy in the QE. The QE anisotropy is caused by anmeasured to b&,,=1.58 eV andE, ,=1.66 eV, indicated

asymmetric strain relaxation along the two orthogonal d|rec—by arrows in Fig. 1. The energy splitiing between the HH-

tions [110] and[110].® The measured QE anisotropy is a and LH-bands is 82 meV. In the single strained-layer
measure of the overall strain relaxation and can be used @ample, the HH-LH splitting is not observed in the QE spec-
gauge _if strain relaxation is causing any dgpolarization. Therum. An earlier photoluminescence study performed on
QE anisotropy is measured at the excitation photon energyingle strained-layer samples measured an energy splitting of
that yields a maximum polarization. _ 55 meV2? indicating that the energy splitting of the super-

Figure 1 shows the polarization and QE as a function ofggiice structure is more than 25 meV larger than that of the
the excitation photon energy for Sample 3 and the singl&jngle strained-layer structure. The measured QE anisotropy
strained-layer reference sample. The peak polarization igf the superlattice samples was only 1.5%, while that of the
86% for Sample 3 and 81% for the single strained-layersing|e strained-layer sample was 10%.
sample, while the QE at the peak polarization is 1.2% and “when the phosphorus fraction is varied, the lattice mis-
0.3%, respectively. The superlattice-cathode QE spectrurphaich between the well and the barrier changes, thus the
shows two distinct steps as expected from the density of,perlattice strain can be varied. While a larger phosphorus
states for the two-dimensional structure, whereas theraciion generates a larger strain and therefore a larger en-
cathode-QE spectrum for the single strained-layer cath0d<=ergy splitting between the HH- and LH-bands, the strain
which hgs a three-dimensional density of states, follows &ithin a layer may relax. For Samples 1, 2, 3, and 4, the
smooth\E~Eg behavior at the band-gap ener@,)."* The  phosphorus fraction was increased from 0.25 to 0.40 keeping
first step corresponds to the heavy-holéH) band to the the total superlattice thickness constant. Figure 2 shows the
peak polarization and QE anisotropy as a function of the
phosphorus fraction for constant total thickness. The mea-
sured HH-LH energy splitting is also shown in the figure.
Although the HH-LH energy splitting increased from
60 to 89 meV, the peak polarization and the QE anisotropy
did not change significantly at about 85% and 1.7%, respec-
tively, indicating that this degree of energy splitting is suffi-
cient to maximize the spin polarization.

Using samples with the same Well(4 nm)/
Barrier (4 nm) thickness and phosphorus fractigr=0.36),
the total superlattice thickness was varied. Figure 3 shows
the peak polarization and QE anisotropy as a function of the
number of superlattice periods using Samples 3, 5, 6, 7, and
8. Also shown in Fig. 3 is the strain relaxation in the super-
lattice GaAs well layers measured using x-ray diffraction.
FIG. 1. Polarization and QE as a function of excitation light energy forAIthOUgh the well W-Idth IS $ma”er- than the Crltlcal thlcknegs,
Sample Jsolid circles for polarization, and solid curve for Q&nd a single increased :;uperlatthe penods WI_” result in s;ram relaxation.
strained-layer sampléopen circles for polarization and dashed curve for AS the strain relaxation steadily increases with the superlat-

QB). tice thickness, the peak polarization and QE anisotropy ap-
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5- I I ; | | fer matrix method> While the changes in the band structure
—~ 86 — differentially affected the polarization spectra for energies
- | & ' { ‘ 120 2 zati i izt
2 (D) s abo_ve the polarization peak, the_ maximum polarization re-
~ 4 84l 3 c mained constant at about 86%, indicating that the valence-
g 2 } 2 band splitting for this range of well thicknesses was suffi-
8 g 91 E  cient
G 3r & 821~ { * Polarization "3 In conclusion, we have investigated polarized photo-
c S : §E|A"':°"°py 10 & emission from strained GaAs/GaAsP superlattice structures
E ol x 80F ! gadion 91U ¢ by systematically varying the superlattice parameters. The
€] s % g heavy- and light-hole excitations have been observed for the
o 78l lk ¢ { } 5 » first time in the QE spectra, enabling direct measurements of
N %1 | | | | n the heavy- and light-hole energy bands. Spin polarization as
5 15 25 35 high as 86% is reproducibly observed with the QE exceeding
Number of Periods 1%. The superlattice structures presented here have superior

polarization and QE compared to the single strained-layer
FIG. 3. Peak polarizatiogsolid circley, QE anisotropyopen circleg and structures of GaAs/GaAsP photocathodes.
strain relaxatior{triangleg as a function of the superlattice period.
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