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Brief Summary:  
 
The LCLS control system is required to receive the SLAC PNET data and forward it to the LCLS EPICS timing system. The SLAC PNET data consists of a 128 bit buffer of beam code information which is broadcast by the Master Pattern Generator at 360 Hz over a dedicated network, the PNET, an RF modulated signal on the SLC/NET cable. This document describes the detailed design for the LCLS PNET receiver software.  
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1.1.3.5.6 Timing Controls
Introduction
Until now, the PNET beam code information has only been available to CAMAC crates in the SLAC Linac via a PDU module. During the summer of 2004, a VME PNET receiver module was developed at SLAC. This document is a detailed description of the software for the VME PNET receiver module..
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Input to this document
Physics requirement document: 1.1-305 LCLS Timing System Requirements
Engineering specifications document 1.1-xxx PNET Receiver Design Specifications
Documents which will be based on this document

Interface control document 1.1-xxx PNET Receiver to Event Generator
Interface control document 1.1-xxx PNET Receiver to SLC-aware IOC
Interface control document 1.1-xxx PNET Receiver to Beam Position Monitor Controls
Design 

Driver Support
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Device Support
EPICS binary input and multi-bit binary direct input device support allows process variables (PVs) to be mapped to bits in the 128 bit PNET data. The format of the PNET data of the LCLS timeslot is still being defined, so for the PEPII format of the PNET data is used.
The binary input device support maps a single bit into the VAL field of a PV. During EPICS’ iocInit, the init_record routine for each PV is executed to set up the byte and bit offsets to the desired bit.

The multibit binary direct input device support maps a group of (up to 16) sequential bits into the VAL field of a PV. The largest field in the PNET data is 12 bits long, so by handling the PNET data as 2 byte “words”, semaphores can be omitted. During EPICS’ iocInit, the init_record routine for each PV is executed to set up the byte and bit offsets to the first bit; NOBT is an EPICS record field and is used here to specify the size of the variable in bits.
I/O interrupt-driven as well as fixed-rate scan support is provided.
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