[image: image2.png]Stanford Linear Accelerator Center

Stanford Synchrotron Radiation Laboratory

	LCLS Engineering Design Document #

	1.1-xxx
	Global Controls
	Revision

	0

	PNET Detailed Design

	 D. Kotturi
(Authors)

Signature(s)

Date

 B. Dalesio
(System Manager)

Signature

Date

 P. Krejcik
(System Physicist)

Signature

Date

Brief Summary:

The LCLS control system is required to receive the SLAC PNET data and forward it to the LCLS EPICS timing system. The SLAC PNET data consists of a 128 bit buffer of beam code information which is broadcast by the Master Pattern Generator at 360 Hz over a dedicated network, the PNET, an RF modulated signal on the SLC/NET cable. This document describes the detailed design for the LCLS PNET receiver software.
Keywords:
 PNET, VME, EPICS, hardware driver support, device support
Key WBS#’s:
1.1.3.5.6 Timing Controls
Introduction
Until now, the PNET beam code information has only been available to CAMAC crates in the SLAC Linac via a PDU module. During the summer of 2004, a VME PNET receiver module was developed at SLAC. This document is a detailed description of the software for the VME PNET receiver module..

Related Documents

Input to this document
Physics requirement document: 1.1-305 LCLS Timing System Requirements
Engineering specifications document 1.1-xxx PNET Receiver Design Specifications
Documents which will be based on this document

Interface control document 1.1-xxx PNET Receiver to Event Generator
Interface control document 1.1-xxx PNET Receiver to SLC-aware IOC
Interface control document 1.1-xxx PNET Receiver to Beam Position Monitor Controls
Design

Driver Support

[image: image1.emf]ISR Message Receiver Task Initialization

Initialize hardware

Create message queue

Create message receiver thread

Connect interrupt vector to ISR

Enable interrupt level Begins receiving

interrupts

Each interrupt is

processed as follows:

Disable current

interrupt to avoid

pre-emption

Get current EPICS

timestamp into time

portion of message

struct

Copy 128 bit PNET

data into 2Byte word

data portion of message

struct

Copy 128 bit PNET

header into 2Byte word

header portion of

message struct

Re-enable current

interrupt to avoid

pre-emption

Extract message from queue

Copy into circular buffer

Forever:

Check data validity and set

flag in message if bad

Respond to request for

PNET diagnostics by

freezing buffer and writing

new PNET data in another

buffer

Set flag to tell EVG that

data ready

Blue = optional;

could be left out

Red = not sure

how EVG gets

contents of

data. Want to

avoid copying

but want EVG

to not have to

wait for

Receiver task

Device Support
EPICS binary input and multi-bit binary direct input device support allows process variables (PVs) to be mapped to bits in the 128 bit PNET data. The format of the PNET data of the LCLS timeslot is still being defined, so for the PEPII format of the PNET data is used.
The binary input device support maps a single bit into the VAL field of a PV. During EPICS’ iocInit, the init_record routine for each PV is executed to set up the byte and bit offsets to the desired bit.

The multibit binary direct input device support maps a group of (up to 16) sequential bits into the VAL field of a PV. The largest field in the PNET data is 12 bits long, so by handling the PNET data as 2 byte “words”, semaphores can be omitted. During EPICS’ iocInit, the init_record routine for each PV is executed to set up the byte and bit offsets to the first bit; NOBT is an EPICS record field and is used here to specify the size of the variable in bits.
I/O interrupt-driven as well as fixed-rate scan support is provided.
[image: image2.png]_1177757408.vsd
ISR

Message Receiver Task

Initialization

Initialize hardware

Create message queue

Create message receiver thread

Connect interrupt vector to ISR

Enable interrupt level

Begins receiving interrupts

Each interrupt is processed as follows:

Disable current interrupt to avoid pre-emption

Get current EPICS timestamp into time portion of message struct

Copy 128 bit PNET data into 2Byte word data portion of message struct

Copy 128 bit PNET header into 2Byte word header portion of message struct

Re-enable current interrupt to avoid pre-emption

Extract message from queue

Copy into circular buffer

Forever:

Check data validity and set flag in message if bad

Respond to request for PNET diagnostics by freezing buffer and writing new PNET data in another buffer

Blue = optional; could be left out

Set flag to tell EVG that data ready

Red = not sure how EVG gets contents of data. Want to avoid copying but want EVG to not have to wait for Receiver task

