Compact Motion Solutions in Hardware and Software

Dr. Josef Papenfort
Product Manager TwinCAT

Michael Jost
Product Manager I/O Systems
1. TwinCAT Motion – from PTP to CNC
2. Compact Motion in Hardware
3. Summary
1. TwinCAT Motion – from PTP to CNC
2. Compact Motion in Hardware
3. Summary
1. TwinCAT Motion – from PTP to CNC
 – Motivation and Architecture
2. Compact Motion in Hardware
3. Summary
Scalable solutions (stepper, ..., servo drive)
Several abstraction layer
→ PLC/SCADA/HMI accesses always identical objects, independent of axis type and fieldbus
Conversion from mechanical to electronically system
(electronic cam, electronic gear, electronic clutch, electronic camshaft, „flying saw“)

Benefits:

- More flexibility in used technique (stepper, servo drive, ...)
- More flexibility in changes to the products
- Shorter time of delivery and development time
- Shorter time for commissioning,
 because of the lack of mechanical parts
- Decreasing costs

→ All to configure, program and debug in one TwinCAT System
PC-based control technology from Beckhoff sets new standards in automation. Motion Control is one important part of the system.
Functionality

<table>
<thead>
<tr>
<th>NC PTP</th>
<th>NC I</th>
<th>CNC</th>
<th>Robotics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point-to-point movement</td>
<td>Interpolated motion</td>
<td>Complete CNC functionality</td>
<td>Interpolated motion</td>
</tr>
<tr>
<td>-- gearing</td>
<td>with 3 axes and 5 additional axes</td>
<td>-- interpolated movement for up to 32 axes per channel</td>
<td>for robotic control</td>
</tr>
<tr>
<td>-- camming</td>
<td>-- programming</td>
<td>-- technological features</td>
<td>-- support for a wide range of kinematic systems</td>
</tr>
<tr>
<td>-- superposition</td>
<td>-- according to DIN 66025</td>
<td>-- straightforward</td>
<td>-- optional torque</td>
</tr>
<tr>
<td>-- flying saw</td>
<td>-- technological features</td>
<td>utilisation through</td>
<td>pre-control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>function blocks from the PLC</td>
<td></td>
</tr>
</tbody>
</table>

PLCopen
motion control
TwinCAT IO Mapping:
- Separates the physical world from the logical world
- Fieldbus independent

TwinCAT Motion Control
- Separates physical axis from logical axis objects

→ Goal: flexibility in configuration!
→ Change from stepper to servo: one click
1. TwinCAT Motion – from PTP to CNC
 – Configuration and Diagnosis
2. Compact Motion in Hardware
3. Summary
TwinCAT NC PTP

- easy setup and maintenance
- full simulation possible
- open for all axis types
 - servos, stepper, DC Motors
 - hydraulic axes
- digital+analog interfaces with different fieldbusses
- position control on the PC or in drive
- jerk limited profile
- PLCopen MC FBs
 - positioning
 - camming
 - gearing
Profile Generation and Control

\[T_t \]

Deadtime compensation

\[k_p, T_n, T_v \]

Position control

Limitation

\[k_v \]

Velocity Preset (Scaling)

Output Scaling and Limitation

\[V_{ref} \]

\[y_{min}, y_{max} \]

Setpoint generator

\[p_a \]

Position measurement

Process

\[y_v \]

\[y_{vv} \]
NC axes diagnostics

- **Current position**: 703.2000 mm
- **Override**: 100.0000%
- **Ready/References current state**: Ready, NOT Moving, In Pos. Range, Has Job
- **Set points**: 703.2000 mm
- **Manual drive commands**: F1, F2, F3, F4, F5, F6, F7, F8, F9
TwinCAT 3 Bode Plot Base

- Integrated in TwinCAT Measurement Project
- Useful when optimizing drives (AX5000)
- Frequency-Range and steps can be set
- Filter-Simulation
- Multiple curves in ONE view
- For free!
Agenda

1. TwinCAT Motion – from PTP to CNC
 - Programming
2. Compact Motion in Hardware
3. Summary
Motion Control Library for PLC

- Standardized by PlcOpen
- Function blocks for axis handling
- Motion commands
 - Single axis command
 - Multi axis commands
- Configuration commands
- Data structures
Gearing

- One Slave-axis: position-set points will be determined through an affine transformation of the position-set points of another axis,
- linear slave-axis
- Slave position set points = coupling factor × master-position + offset

Camming

- Software solution for electronical cams.
- To the position of the master axis (upright shaft) a corresponding position of the slave axis will be approached in a table.
1. TwinCAT Motion – from PTP to CNC
 - Example
2. Compact Motion in Hardware
3. Summary
1. TwinCAT Motion – from PTP to CNC
 – Where is the control loop closed?
2. Compact Motion in Hardware
3. Summary
- Often used in the passed and in special application
- Position control loop closed in the PC
- Possible with fast EtherCAT fieldbus
- Most used configuration
- Position Control loop closed on the drive
- Only setpoint generation on the PC in TwinCAT
- For special cases – Velocity Control loop closed on PC
- Only Current Control loop closed in drive
- Only possible with
 - Fast control cycles on the PC
 - Deterministic realtime on the PC
 - Fast fieldbus: EtherCAT
Scalable Drive Technology

Servo Drives from 0.2 to 120 KW
Servomotors from 0.2 to 180 Nm
The Beckhoff servo terminal
One Cable Technology reduces installation and cabling costs

- One Cable Technology: power and feedback system in a single standard motor cable
- reduced material costs
- reduced installation costs
- simplified commissioning
- more efficient inventory management
- reduced footprint of the machine/system
- servo drives in terminal block format
- supply voltage up to 50 V DC
- direct motor connection, for permanent magnet synchronous motors
- high servo performance in a very compact design
- integrated resolver interface
- fast control technology for highly dynamic positioning tasks

EL7201-0010 and EL7211-0010
- servo terminal with One Cable Technology (OCT)
- absolute feedback system
Servo terminals

- EL7201 servo terminal
 - 50 V DC
 - 2.8 A_{rms}
 - EL7201-0000 with resolver
 - EL7201-0010 with OCT

- EL7211 servo terminal
 - 50 V DC
 - 4.5 A_{rms}
 - EL7211-0000 with resolver
 - EL7211-0010 with OCT
Servo terminal with Safe Torque Off input (STO)
- One Cable Technology and absolute feedback integrated
- Fast control technology for highly dynamic positioning tasks
- Power feedback into the DC-Link when braking
- Numerous monitoring parameters offer maximum operational reliability.
- Application layer: CoE
- Plug-and-play solution for motors from the AM81xx series
- STO according to DIN EN ISO 13849-1:2008 (Cat 3, PL d)
The Beckhoff stepper terminal
Advantages of stepper motors
- step accurate positioning
- holding torque at rest
- sensorless positioning
- cost effective

Disadvantages of stepper motors
- torque reduction in speed increase
- low efficiency, especially at part load
Advantages of vector control

- less power loss
- less heat emission
- no resonances, no step losses
 - motor does not stall
- smooth movements

- Vector control works with Beckhoff motors AS10xx
 - third party motors can be controlled with standard control
Stepper Terminals

- **EL7041 w/o Vector Control**
- **EL7047 with Vector Control**
 - 50 V DC
 - 5 A
 - travel distance control
- **EL7031 w/o Vector Control**
- **EL7037 with Vector Control**
 - 24 V DC
 - 1,5 A
 - travel distance control
Brake chopper terminal & brake resistor

- **EL9576 brake chopper terminal**
 - voltage adjustable up to 72 V DC
 - capacity of 155 µF
 - connections for external ballast resistor

- **ZB8110 brake resistor**
 - 100W
 - Works with EL9576
- Forced air circulation
- Increase of power output
- Extension of the operation temperature range
- Variation of the mounting position
- Diagnosis: Fan defected

- Operation modes:
 - Temperature controlled
 - Continuous operation
 - Frequency controlled
IPC
- 7 Industrial PCs C6525

Motion
- 1216 servo terminals EL7201
- 1216 servomotors AM3121 with holding brake

Automation
- TwinCAT NC PTP
- TwinCAT NC Camming
- Motion means Software Motion and Hardware Motion
- Motion in TwinCAT means
 - Fully integrated configuration and diagnosis tools
 - Easy to use Function Blocks in PLC – PLCopen compliant
 - Integrated Motion related Safety functionality
- Hardware
 - Standard Interface to the control SW
 - Scalable: small to big drives
 - Integrated Safety
 - Various motor technologies supported
 - DC, Stepper, Servo
 - High efficiency