CS “Enterprise” Database Status and Questions

Compiled by Greg White from minutes by Terri Lahey after group meeting

December 2, 2003, SLAC.

This document is the annotated minutes of a group meeting held in late-summer 2003, whose objective was to map out our questions about how to leverage our unix based enterprise database. In practical terms, it was about how to make the Oracle development process easier, both for db maintenance, and db application development.

However, the meeting specifically did not go into answering these questions; we concentrated instead on getting everybody’s concerns into the open.

Exiting Oracle Usage

At present, we use Oracle for the following:

1. Artemis

2. Leave Report

3. Button Macros

4. Primary Micro Unit list for cater/artemis validation

5. Ground Faults

6. Archiver

7. PV List db

8. “Universal PV” database

9. Tracking History Use

10. SCP Bump Generation coefficient db

11. “General Value Store” – ad hoc persistent store for miscellaneous applications.

12. Channel Watcher

13. Release and Distribution Logging

14. The SLC db scheme

15. Aida Name Server

16. Mode db

17. ELOG

The consensus was that this was a surprisingly long list.

Questions and Concerns

Members of the group had the following questions (Judy and I’ve annotated these a little, and organized them into related groups):

Programming

1. Should we promote a single confined set of programming IDEs and tools, or leave it open to the developer?

2. Should we promote all-in-one tools that help a programmer program and inspect and organize the db in one tool, like Jdeveloper and the Sun Forte suite, or promote specialized tools (make and command line for programming, with Toad or sql-plus for db management).

3. Should we standardize on a User Interface building technology, such as Swing, AWT, Java Beans, Enterprise Java Beans, Dynamic HTML, PHP, JDBC, ODBC, JDO? Should we deliberately confine ourselves to a subset in order to develop core expertise? If so what subset? When is each indicated?

4. Should we use start using cgi, or jump straight to something like PHP? If cgi how do we streamline the release process (now each script must be validated by SCS, and there is no programmers guide or formal standard).

5. Will we allow independent executables which each have a user interface component? If so how will they communicate? Will scripting work between the programs such as for button macros? Would there be a common top level program to bind the sub-programs together for ease of navigation?

6. Web interfaces- should we be assuming that most user interfaces should be web accessible (at least inside SLAC), or not. That is, will we be creating applets, connecting to servlets, and servlets hosted by Application Servers, or are we going to write standalone programs that access the Dbs directly using (ODBS/JDBC) and are not hosted by persistency container architectures?

7. Which Application Server? We probably have a license for the Oracle AS as part of the site license, but JBOSS is free, more standard and has very good reputation. Who will look at that and work with SCS to install one?

8. How will enterprise database oriented apps live in the same control system user interface as EPICS based displays?

9. Which tools should we use for each kind of problem?

a. DB schema Modeling

b. Programming db applications

c. Data entry

10. On which platform should each tool be used?

11. Can MS Access be used to develop applications and manage an Oracle Db?

12. Other labs are developing Oracle applications for EPICS data management that we may want to adopt, adapt, and/or collaborate on (for example, Matthias' Oracle Forms application, the Java/Oracle application JERI at Oakridge, the possibility of integrating VDCT and Oracle). At least for EPICS-related applications, it makes sense to evaluate these apps first before selecting specific tools.

We had a repeated concern: Need technical support for the installation of the tools (at least a SLAC specific installation guide), and an entry-level user guide for connecting to “our databases”. This support must be available for both Unix and Windows.

Schema and DB management

1. How will programmers do schema discovery (how do they find out what the existing schema is as a technical issue)?

2. How will programmers discover the intended or planned schema – a management and communications issue.

3. Should we make an effort to verify inter-database consistency? Should this be done formally or only by a nominated DBA?

4. Should we each have our own account? What is the relationship between an account and a “database”? Does SCS care about our account standard?

Databases

1. Which “databases” should we use (NLCDEV, NLCDB etc)? Which new ones should be created?

2. Where should new Oracle instances be placed?

3. Do we need a “development” and “production” database?

a. How would that be implemented?

b. Should the dev db only be available on “dev” machines and prod database only be available on “prod” machines – or some other demarcation?

c. How would a client program switch between them in a consistent way?

Data Entry

1. Who will be responsible for data entry?

2. How will the enterprise schema be shared among programmers and enforced?

3. Should we create a framework for data entry, equivalent to dbedit; or should we assume that the tools, in conjunction with a well publicized schema, are enough to allow programmers to do their own db editing?

Management

1. Who shall be the DB Administrator?

2. Who will be the technical DBA - our equivalent of Ian MacGregor.

3. What will be the organizational structure and responsibility of the db team? To whom will they report? Will they be integrated with Nancy’s SLC db team?

4. How shall we treat SCS? – Distance ourselves from needing their support, or try to make ourselves part of their performance criteria. If we rely on SCS:

a. How will we get SCS to support enterprise DB hosting and access tools (PHP, cgi, servlet engine, XML db, Application Servers, J2EE, .Net, Web Service foundations).

b. How will we get SCS to support programming tools (Jdeveloper, Forte for Java) on an ongoing basis.

5. What will be the organizational structure for DB administration between SCS and us?

6. What support can we expect from Campus?

Education and Training

1. How will we be trained? Can we expect some group training course, or will we be expected to each do our own job specific self-education?

2. What is the budget like for training?

3. How should we promote intra-group training; there’s a lot to learn and we need to help each other?

Operating Systems

1. Should Windows based tools be promoted or discouraged? Windows based tools are advanced and good, but require systems management, will fractionate our collective expertise, and inevitably lead to some CS applications being delivered on Windows. So, what should be the acceptability standard for Windows tools?

2. Linux? Channel Watcher in particular is hosted at other labs on Linux but seemed to work fine on Solaris.

Hardware

1. How many Oracle Servers do we need?

2. What should be their network visibility to outside and to control system networks. How does this interact with the possible desire for “dev” and “prod” dbs?

3. What should be SCS’s role in Oracle databases hosted here?

4. Do we need our own Web Server for Oracle Access?

5. Do we need our own Application Server?

Licensing

How much is the group willing to spend on support software in ballpark terms? This clearly has to be answered with reference to the utility of the tools and the extent to which we adopt enterprise db solutions. Also it depends on whether we’re talking about IDEs or server side components like Application Servers. Still, the meeting wanted some terms of reference.

� This is probably very dependent on the extent to which we try to adopt an Enterprise DB architecture going forward, but I think people just wanted to know if they could expect a training course or remuneration for classes.

