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Abstract

We demonstrate that despite the superficial divergences in the matrix-valued physical optics propa-
gators, the integrals remain finite, so the divergences do not make the algorithm inconsistent.

1 Introduction

The physical optics vector diffraction technique is a practical method for computing electric and magnetic
fields in a variety of quasioptical systems relevant for accelerator applications. This technique, described
for instance in [1], involves defining equivalent currents on physical or fictitious surfaces in the system and
using matrix-valued Green functions to compute the fields due to these currents.

A superficial examination of the propagators given in [1] seem to indicate singular behavior as the field
point becomes very close to a source surface, and claims have been made that the algorithm is inconsistent
due to this singularity. Here we show that in fact no such singularity occurs, and therefore that modifications
to the propagators in order to avoid this apparent singularity are not necessary.

Since we are interested in exploring the divergence, we need only evaluate the integral in a very small
area around the singularity. We take the dimensions of our integration area to be much smaller than charac-
teristic lengths of both the variation of the current and the curvature of the surface, as well as much smaller
than a wavelength. We can therefore take the surface to be a plane with constant surface current. We let
the surface lie in thexy-plane and have electric and magnetic currents currentsJ = Jyŷ andM = Mxx̂
respectively at all points, and we integrate over a small disc of radiusε around the origin.

We cannot compute the field directly at the surface, since there is a discontinuity in the fields there (recall
that this is the motivation for introducing the currents in the first place). Instead, we compute the field at a
point (0, 0, z) very close to the surface, and show that the integral does not diverge asz → 0. Since we are
taking this limit we can use the approximationz � ε. Thus our approximations can be summarized as

z � ε � λ.

The superficial divergences appear, for instance, in the expressions for the electric field due to the elec-
tric and magnetic currents; the expressions for the magnetic field are similar. Since the electric and magnetic
currents can be defined independently, the fields due to each current must be finite. We examine the expres-
sions for the electric field due to each current separately.

2 Convergence ofEJ

The expression for the electric field due to the electric current, from equation (2.34) in [1], is

EJ(r) = −ikZ0

∫
S
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4πR
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For a field point(0, 0, z) and source pointr′ = (x′, y′, 0), we have

R̂ · J = −Jy
y′

R
, R̂ = −x̂

x′

R
− ŷ

y′

R
+ ẑ

z

R
,

and it is then apparent that by symmetryEJ must point in thêy-direction, since terms odd iny′ will vanish
in the integral. This is because we have taken the field point to lie on thez-axis, but this choice was made
without any loss of generality. We then have

Ey = − ikZ0Jy

4π

∫
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For |r′| = r′, we havey′ = r′ sin θ in polar coordinates, so we can compute the integral:

Ey = − ikZ0Jy

4π

∫ ε

0

∫ 2π
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r′ dθ dr′

= − ikZ0Jy
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∫ ε

0
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SinceR =
√

r′2 + z2, the quantityr′/R does not diverge asz → 0, for anyr′. Thus the integral of the first
term in the brackets is is certainly finite; we wish to examine only the potentially divergent terms. Since
R � λ, we can approximatee−ikR ≈ 1 − ikR; note that terms of higher order inR will not have even
superficial divergences. We then have

Ey = − ikZ0Jy

4
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∫ ε
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Again ignoring finite terms, we obtain

Ey = − iZ0Jy

4k
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asz → 0. This quantity is finite for anyε > 0, so there is no singularity in the fields. The appearance ofε
in the denominator may appear to be a divergence, but remember that we do not takeε → 0; in fact ε need
only be small enough for our approximations to be valid. Also, note that the total current in the disc scales
asJtot ∼ Jyε

2, so the field scales asEy ∼ Jtot/ε
3, which is the behavior we expect in the reactive near field.
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3 Convergence ofEM

The expression for the electric field due to the magnetic current, from equation (2.37) in [1], is

EM (r) =
∫

S

e−ikR

4πR

(
1
R

+ ik

)
R̂ × M d2r′.

For a source pointr′ = (x′, y′, 0), we have

R̂ × M =
Mx

R
(y′ẑ + zŷ).

The first term is odd iny′ so it will vanish in the integral, since again we take the field point to be on the
z-axis without loss of generality. ThenE points in thêy-direction, and we have

Ey =
∫ ε

0

e−ikR

4πR

(
1
R
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)
Mxz

R
2πr′ dr′.

As in the previous section we takee−ikR ≈ 1 − ikR, and obtain

Ey =
Mxz

2
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Keeping only the divergent term,

Ey =
Mxz

2
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2

asz → 0. Thus there are no divergences in the fields.
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