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Betatron Motion in Action-Angle Variables 
 

 The action angle variables for betatron motion are {J, ϕ}.  The Hamiltonian for transverse 
motion in terms of these variables is 

 JH
β

=  (1.1) 

which gives the equations of motion 

 1 ;d H dJ H
ds J ds

0ϕ
β ϕ
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= = = −

∂
=

∂
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The position and angle are related to the action-angle variables through the Twiss 
parameters by 
 2 cosx J β ϕ=  (1.3) 
and 

 (2 sin cosJx )ϕ α ϕ
β

′ = − +  (1.4) 

The Twiss parameters, α, β and γ are related by 
 21βγ α= +  (1.5) 
and they give an ellipse in phase space 
 2 22 2x xx x Jβ α γ′ ′+ + =  (1.6) 
α is related to β by 

 1
2

d
ds
βα = −  (1.7) 

A Gaussian beam is distributed exponentially in action 

 ( ) exp Jf J
ε

= −
 
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and uniformly in angle over the range 0 ϕ π≤ ≤ .  The mean value of the action is 
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Monte Carlo Generation of Gaussian Beams 
 Generate action-angle pairs with the action exponentially distributed and the angle 
uniformly distributed.  If R1 and R2 are uniformly distributed random numbers 0 , , 
then 

1 2R R< ≤1

2R 1ln & 2J Rε ϕ π= − =  (2.1) 
Transform to position and angle using equations (1.3) and (1.4) to get the appropriate 
distributions. 
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Determining Beam Parameters from Particle Distributions 
 Beam parameters can be extracted using the results below 

 2 2 12 cos 2
2

x Jβ ϕ βε= = βε=  (3.1) 

 ( ) ( )2 2 2 2 22 2sin cos 2 cos sin 1
2

x J 1εϕ α ϕ α ϕ ϕ α
β β

′ = + + = + γε=  (3.2) 

 

 ( )22 sin cos cos 2
2

xx J αϕ ϕ α ϕ ε αε′ = − + = − = −  (3.3) 

Combining them 
 22 2x x xx 2ε′ ′− =  (3.4) 
 
Beam Parameter Changes from Multiple Coulomb Scattering 
 Multiple scattering in a thin foil does not change the beam size 
 2

0 0x βε β ε= =  (4.1) 
where the subscript 0 denotes the value before the foil.  The rms angle increases by the multiple 
scattering angle 
 2

0 0 rmsx 2γε γ ε θ′ = = +  (4.2) 
From the Particle Physics Booklet  
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where X  is the foil thickness and 0X  is the radiation length for the foil material.  The x x′−  
correlation after the foil is given by 

 ( )2 0
0 0 0 0 0

0

22 cos cos sin cosJxx J 0α ϕ ϕ ϕ θ
β

′ = − + + ϕ  (4.4) 

This must be averaged over all values of action, angle and multiple scattering angle.  The last 
term will average to zero 0θ = ; 0 0cos sin 0ϕ ϕ = ; 2

0cos 1 2ϕ = , and 0J 0ε= , so 

 0 0xx ε α′ = −  (4.5) 
Combining these expressions 
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 (4.6) 

The new value of α  is  
 ( )0 1signα α βγ= −  (4.7) 

The ( 0sign )α  term says that multiple scattering does not change the orientation of the phase 
space ellipse. 
The results are given by equations (4.1), (4.2), (4.6) and (4.7).  These are the results presented in 
J. B. Rosenzweig and P. Chen, Phys. Rev D 39, 2039 (1989). 
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Connection to Quasioptics and Ray Optics 
The �ABCD Law� (Chapter 3 of P. F. Goldsmith, Quasioptical Systems) for ray optics can be 
cast in the framework of betatron oscillations.  The size of a Gaussian beam propagates from a 
waist as 
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Comparing this to betatron motion 
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for propagation from a focus gives the following equivalences 
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The radius of curvature of the wavefront is 
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The Guoy phase shift leaving the focus is 
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This is the same result that is obtained by integrating the inverse of the β-function. 
 There is a change in effective emittance as the light passes from an index  to index .  
Subscripts 1 and 2 denote values in the two materials.  The beam size does not change at the 
interface 

1n 2n

 2
1 1 2 2x β ε β ε= =  (6.6) 

The angle changes according to Snell's law 
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The rms angular spread is 

 
2

2 2
2 2 2 1

1

nx
n 1γ ε

 
′ = =  

 
γ ε  (6.8) 

The correlation term is 

 ( )2
2 2 1 1 1 1 1 1 1

1 1
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Combining terms 
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Substituting this result into eqs. (6.6) and (6.8) gives 
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; ;n n
n n 1β β γ γ α= = α=  (6.11) 
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