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In this paper we analyze the optics of a high-energy beam which is focused by its own wakefields
in a plasma. We calculate the effects of lens aberrations on the focusing strength of the lens and on
the dilution of the beam’s phase space. From this we derive the minimum spot size achievable using
a bi-Gaussian beam and, after inclusion of the beam-beam pinch effect, the luminosity enhancement
that can be gained in principle. We estimate the luminosity enhancement in the case of SLAC
Linear Collider beam design parameters, and discuss limitations and possible improvements in

plasma-lens performance.

I. INTRODUCTION

The plasma lens has been discussed recently as a
promising candidate for a luminosity-enhancing final
focus element.!™* The calculation of the plasma physics
involved is somewhat intricate, but the basic physical
mechanism is simply understood under certain condi-
tions: (1) the beam is less dense than the plasma n, <<n,,
(2) the beam length o, is large compared to the plasma
wavelength A, = (v, /ny)'”%, and (3) the beam width o,
is small compared to the plasma wavelength. If these cri-
teria are satisfied, then the plasma electrons move to ap-
proximately neutralize the beam charge, leaving the
beam-current self-pinching forces unbalanced. In this
case the focusing wakefields reduce, to a good approxi-
mation, to the magnetic self-fields of the beam. This is
the regime of largest-focusing wakefields inside the beam,
and is the most interesting case for use in final focusing
systems. As a most relevant example, the design parame-
ters of the SLAC Linear Collider (SLC) beam near its
planned final focus can satisfy all these criteria if the plas-
ma density is in the range n,=10%-10'° cm 3. If we as-
sume a cylindrically symmetric bi-Gaussian beam-density
profile given by
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where n, =N /(27)%/%0,02, then the magnetic self-forces
everywhere inside the beam can be easily calculated (to
order ¥ "2 to be
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We have defined here a maximum focusing strength (in
the core of the beam) K, which is calculated as
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where r,=2.82X 10713 cm is the classical electron ra-

K, (3)
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dius, B, is the B function at the lens, and €, is the normal-
ized emittance of the beam. The radial force can be used
to define a radial focusing strength, a function of position
(r,2),
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For a perfect lens, K, would of course be a constant, with
no dependence on position in the beam. For this to be
true for the plasma lens, the beam density must be con-
stant, as this produces a magnetic self-force linear in r
and independent of z (Ref. 1). Bi-Gaussian beams yield
self-forces that are less than this ideal. In this paper we
calculate the effects of these aberrations on the final spot
size one can achieve with a plasma lens, and estimate the
possible enhancement on the luminosity, by taking into
consideration both the contribution from the reduction of
the spot size due to a plasma lens and that from the addi-
tional pinching due to beam-beam disruption.

We would like to employ the notation and formalism
of Twiss parameters in our discussion, so we must take
the expression for focusing strength in cylindrical coordi-
nates and convert to the equivalent effect in Cartesian
coordinates. We first note that for cylindrically sym-
metric distributions we need only examine one transverse
coordinate (x) and we have simply o, =0, and

F, F, cosb

K, = = =K, . (5)
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Thus, K, is a function of all three coordinates (x,y,z) ex-
plicitly
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Since the beam distributions are assumed separable in
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longitudinal and transverse coordinates, the variation in
the focusing strength can be identified as arising from
longitudinal and radial aberrations separately. The longi-
tudinal aberrations are statistical in nature, since the po-
sition in x is uncorrelated to its longitudinal coordinate.
The radial aberrations when projected onto the Cartesian
representation have both a spherical aberration depen-
dent on x (the focusing strength falls off at larger x), and
a statistical portion which enters in through y. Inclusion
of nonzero values of both y and z degrade the calculated
focusing strength.

II. RADIAL AND LONGITUDINAL ABERRATIONS

We first investigate the severity of the radial aberra-
tions and their effect on the final spot size. To accom-
plish this, we digress for a moment to derive the transfor-
mations that a transverse phase space undergoes when it
traverses a thin, aberration-prone lens. We consider a
beam of initial Twiss parameters a, and f3; and emittance
€o- The effect that any source of additional, phase-space
diluting divergence 80 (rms) is given by

e (1+adleg+B06* | -
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We now wish to calculate an rms divergence due to radial
plasma-lens aberrations. The model we are employing as-
sumes that the phase space has an extra source of diver-
gence 80 that is independent of x. This is not precisely
the case, however. The rms divergence arising from an
uncertainty in focusing strength AK /K (K=(K, ), the
average focusing strength at point x) generated through
the random variable y at any given point in x requires an
average over y as follows:

50= Ix <___x__A:1(_> . (10)
f o, K/

To calculate this quantity, we set z=0 in Eq. (6) and
perform the integration by Monte Carlo methods. A plot
of the integral is shown in Fig. 1, which also shows the
average focusing strength K as a function of x. Note that
the average focusing strength falls from approximately
0.8 near the origin to one-half that at x =20 ,. The nor-
malized rms divergence {(x /o ,)(AK /K)), rises from
zero near the origin to approximately 0.2 over much of
the bunch population. Two effects are important here,
the first being that larger impact-parameter particles ob-
viously generate a linearly larger (in x) rms divergence
than smaller impact-parameter particles. On the other
hand, the quantity AK /K is largest at small x, since the
random variable y has its strongest impact there, as can
be deduced from inspection of Eq. (6). If we sum over all
X to obtain a single parameter characterizing radial aber-
rations we find that ({(x/0,)(AK/K)),),~0.2, and
that the average focusing strength is (K ), ~0.7K.
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FIG. 1. The average focusing strength K=(K, >y, and the
rms divergence increase (xAK /o,K ), as a function of x.

The plasma-lens transformations on a phase space are
shown explicitly in Fig. 2. The initial phase-space popu-
lation (B=€=1, a=0) in Fig. 2(a) is transformed by a
linear (aberration-free) lens of nominal focal length
fo=(Kyl)"'=B/3 to the population in Fig. 2(b). The
case of a thin plasma lens of the same focal length is
shown in Fig. 2(c) for comparison, where we have only
considered radial aberrations. Notice that the average
focusing is noticeably smaller for the plasma-lens case,
and that the rms divergence increase is indeed quite uni-
form over the population, with no strong dependence on
x, validating our approach to the Twiss parameter trans-
formations for radial aberrations in Egs. (7)—(9). This re-
sult agrees quite well with the particle-in-cell simulation
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FIG. 2. (a) Initial phase-space population (=1, e=1, a=0).
(b) Transformation of phase space by a thin lens f=pB/3, for
comparison with plasma lens. (c) Transformation of phase
space by a thin plasma lens f,=p/3, radial aberrations includ-
ed. (d) Transformation of phase space by a thin lens f=//3, all
aberrations included.



39 BEAM OPTICS OF A SELF-FOCUSING PLASMA LENS

using the computer code PIC4 developed recently by
Simpson.’

Longitudinal aberrations can be treated easily, since
there is no intricate correlation with the transverse posi-
tion. Unfortunately, the rms-induced divergence angle is
now linear in x, since AK /R is independent of x, and the
longitudinal aberrations do not fit our phase-space dilu-
tion model as well as the radial aberrations. Setting
x =y =0 in Eq. (6), we can calculate analytically the
reduction in average focusing strength from longitudinal
aberrations,

2
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We can also calculate the rms value of AK /K:
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The rms divergence increase comes from a final integral
over x, which gives
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The total divergence increase is obtained by adding the
longitudinal and radial aberrations in squares

2
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A phase-space transformation for a plasma lens that in-
cludes all aberrations is shown in Fig. 2(d). For the
remainder of the discussion we take this coefficient of
0.15 to be designated as the parameter 6. This number
has been calculated for a bi-Gaussian distribution; it
would be smaller for more uniform distributions.

With this understanding of the divergence increase, we
proceed with our Twiss parameter treatment of the aber-
rations. With o2=p¢, substituted into Eq. (14), Egs.
(7)-(9) simplify to

867~

2
Ix ] (14)
K

a=ay/P, B=By/P, €=¢yP , (15)
where
2711/2
Bo
P= |14+ |—6 (16)
f

is defined to be the aberration power, and the focal length
f =~2f, for a bi-Gaussian bunch.

The average focusing in the thin lens changes the
phase-space ellipse orientation further to give the final
value

as=(ag+By/f)/P . (17)
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The total effect of the lens on the phase-space ellipse
orientation is diluted by a factor of P due to the aberra-
tions. The other beam parameters are unchanged by the
average focusing in the lens.

III. THE THICK-LENS CORRECTION

We now have all the optics tools to conceptually design
a thin plasma-lens final focus system. Unfortunately, the
present phase-space densities in linear collider beams may
not be large enough to provide sufficient focusing in a
thin lens. The normalized focal length, which should be
moderately small compared to unity, is

f _ 2 _ V8mo., 18
Bo BoKol  NrJg (18)

where for SLC design parameters N =5X10, og,=1
mm, €, =3X 1073 mrad, and [ is the length of the thin
lens. Thus, we can estimate

LN 1
By _——————9.3[1 (em)] for SLC . (19)

Note that if we want to take f/B,=05 to maximize the
focusing efficiency, we calculate that / =3.6 mm, which is
not small compared to the conventional final focus beta
B3 =7 mm. Thus, the thin-lens approximation, which as-
sumes that the beam size is constant inside the lens, does
not hold in this case. We are in need of a thick-lens mod-
el.

We start by writing the equation of motion for the
beam S function, and attempt to solve analytically what-
ever differential equation arises. The starting point is the
first-order Twiss parameter equations

a=KB—y, (20)

p'=—2a, (21)
and

v'=2Ka . (22)

The prime indicates differentiation with respect to dis-
tance along the beamline s. From these, we can derive
the familiar third-order linear differential equation for
the B function

B'""+4KpB +2K'B=0 . (23)
For the situation at hand we take
K=0.7K,=¢{/B (24)

to examine the transverse slice at z =0, where § is a
quantity proportional to the total phase-space density of
the beam which is numerically equal to 1.3 X 10°> m 3 for
SLC parameters.

To solve Eq. (23) we must first integrate through the 8
function in K’ at the start of the lens

ABy=—2KpB, . 25)

The other two initial conditions are just continuity re-
quirements B'=p;, and B=p,. Also note that By =2/8;
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just before the lens, where B3 is the value at the waist
that would be formed in the absence of the lens.

Now that we have the correct initial values, we can
rewrite Eq. (23), with Eq. (24) inserted, as a nonlinear
third-order elliptical differential equation:

3'"+—LZBB' =0 26)

The first integral of this equation is, using the derived ini-
tial conditions,

B +2¢[In(B/By)+1]1—2/B%=0 . @7

This nonlinear equation may also be integrated easily by
multiplying by f’, and applying the continuous initial
conditions on 8 and f3":

' BB
B3

We can numerically integrate Eq. (28) to provide the
correction to the thin-lens theory. As an example, we
take a lens which starts 5 mm from the final focus of an
SLC beam, and has a thickness / of 3 mm. The plasma
density is taken to be ny=5X10'® cm™3. The effective
thin-lens focal length for this case is calculated, with the
thin lens placed at the midpoint of the plasma region, and
found to be 3.34 mm. A naive calculation from the thin-
lens formula would yield f=(KI!)"'=3.64 mm. This is
in contrast with conventional thick-lens behavior, where
the focal length of the lens would rise with use of the
correct thick-lens expression, because of the non-
negligible phase advance. The focal length drops in a
thick plasma lens because the lens gets stronger as the
beam pinches.

B
2

+&B[In(By/B)] - (28)

IV. LUMINOSITY ENHANCEMENT

There are two sources that contribute to luminosity
enhancement in a final focus system invoking a plasma
lens. The first enhancement, designated as Hp,, is associ-
ated with the reduction of the beam-spot size. The
second enhancement H,, comes from the beam-beam dis-
ruption effect. We shall estimate them in the following.

We wish to see what improvement can be made in ulti-
mate spot size using a strong yet aberration-prone lens.
We note first the reduction in spot size from the lens posi-
tion to the next waist is, using Egs. (15)-(17),

B*e_ _ P2
Bo€o P +(ag+By/f)?

However, the eventual spot size would be given by B¢,
in the absence of the added lens, with

Bo=B3[1+(s/B§)*] . (30)

The net compression factor (or the luminosity enhance-
ment excluding beam-beam disruption effects) realized is
thus

29y
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This expression shows clearly the limitations of an
aberration-prone lens such as the plasma lens. The
compression one obtains is a strongly increasing function
of the parameter (3,/f) in the absence of aberrations.
The aberration term in the denominator is (B,8/f)%
however, and we note that the aberration effects are
amplified by the strong compression force. For our as-
sumed & and f <f,, the function given by Eq. (31) is a
maximum at about Sy~f33 +f. Thus, in the case of large
compression force (By>>f), the optimum placement of
the plasma lens is very near the minimum spot one ob-
tains from conventional focusing and Eq. (31) becomes,
for large §,

Bieo _B5 1
B*e By 8

Thus, the limitation on luminosity enhancement due to
aberrations is about 1/82~6.7. If one overdoes the
focusing, i.e., makes f3,/f >>1/8, the consequences are
more severe than merely saturation of the luminosity,
however. The rms angle of the beam leaving the lens be-
comes very large in this case, and that poses the problem
of damaging conventional final focusing elements, as well
as lowering the possible luminosity boost due to beam-
beam disruption. We will return to this point later.

It is of interest also to calculate the position of the next
waist. We obtain in a similar manner the distance as
measured from the strong lens:

(32)

B 1/2
Bo[ -2 -1 +/30/f]
B
L= P A — -~ ®
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IR R

The luminosity enhancement that one calculates from ap-
plication of Eq. (31) with the thick-lens corrected param-
eters, i.e., with n,=5X10"®/c.c., /=3 mm, and the prin-
cipal plane at f=3.34 mm, is about H,~4.1. The new
waist is about 0.8 mm in front of the old waist, so there
must be some adjustment of the conventional optics to
get the final foci for both beams to coincide. The emit-
tance __has been blown wup by a factor
P=V'1+6.58’~1.4, and the final B function B*=7
mm/(4.1X1.4)~1.2 mm.

Next we estimate the contribution from beam-beam
disruption effects. The disruption effects from the in-
teraction of round e *e ~ beams have been recently stud-
ied in detail by Chen and Yokoya.® It occurs that the
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luminosity enhancement in this case is influenced by two
factors: the strength of the pinch, represented by the dis-
ruption parameter D,

Nr,o, Nr,o,

yo  vB'e

D (34)

and the inherent divergence of the beam, represented by
the parameter 4,

o,

B*
The luminosity enhancement is found to -satisfy the
empirical scaling law

A=

(35)

D3
1+D3

0.8

Hp,=1+D'* In(VD +1)+21n

(36)

The above expression reproduces all the computer simu-
lation data shown in Fig. 3 to an accuracy of around
+10%. The results of these simulations do not take into
account the correlations between final focusing and longi-
tudinal position in the beam due to the plasma lens. To
this extent, our analysis below is approximate.

With the design parameters of SLC, we see that with
the given values of B3 and e,

D,=0.51 and A4,=0.14 . (37

Therefore, from Eq. (36), one expects to have an enhance-
ment

HD021.4 . (38)

On the other hand, with the insertion of a plasma lens,
we expect to have

D=2.1 and 4=0.83. (39)
The new enhancement factor would then be
Hp,~1.9. (40)

Our overall enhancement on luminosity can now be es-
timated easily,

30 T |IVIIIT’ T IYI'I'YWT( T T T 11117
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Tl 10° 10! 10?
D

FIG. 3. Luminosity-enhancement factor as a function of D,
computed with five different values of A (taken from Ref. 5).
The A values are so chosen that they are equally separated on
the logarithmic scale.
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H
—P22.56. (a1)
Hp,

It can be seen that although we are able to push the
disruption parameter D up by a factor of 4.1, the fact
that we have substantially reduced B* in turn has made
the inherent divergence of the beam more severe. The
net result is that one does not benefit too significantly
from the mutual pinching during beam-beam interaction.

V. DISCUSSION

To conclude, we have studied in this paper the beam
optics of a self-focusing plasma lens by taking into ac-
count the aberrations due to nonlinear focusing strength
and the correction due to finite thickness of the plasma
lens. Furthermore, we have formulated the estimation of
the luminosity enhancement, taking into account both
the reduction of the effective spot size due to the plasma
lens, and the pinch effect due to beam-beam interaction.

The design parameters of SLC were taken as an exam-
ple to investigate the possible performance of a plasma
lens. All the calculated parameters for an SLC plasma
lens are listed in Table I. Our conclusion is that with the
parameters so chosen, one could expect an enhancement
on luminosity by a factor of around 5-6. To appreciate
the performance of the plasma lens, let us consider a hy-
pothetical strong lens which is free of aberration. The
only effect that the strong lens introduces is the reduction

Hj,=Hp,

TABLE I. A set of plasma-lens parameters for SLC.

Plasma-lens parameters Values
ne (cm™3) 5x10'®
! (mm) 3.0
Beam parameters
N 5x10'"
& (GeV) 50
€, (mrad) 3.0X1073
€ (mrad) 4.2X10°°
o, (mm) 1.0
& (m™3 1.3X10°
Beam-optics parameters
sy (mm)? 3.5
f (mm) 33
a, —0.5
Bo (mm) 8.8
By (mm) 7.0
B* (mm) 1.2
6 0.39
P 1.4
Luminosity enhancement
Dy 0.51
D 2.1
4o 0.14
A 0.83
Hpo 1.4
Hp, 4.1
Hp, 1.9
Hp 5.6

#Measured from lens midpoint.
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of B*. Now since both D and A4 vary as 1/B%, it can be
seen from Eq. (36) that there is an optimum value of B*
below which Hj, will be degraded. For the SLC parame-
ters (except B*) this optimum B* occurs at 2.24 mm,
which corresponds to D =2.7, 4 =0.45, and Hj,=8.59.
This optimum value of Hp,, however, does not corre-
spond to the best possible performance when the contri-
bution from Hp, is also included. When the final lens is
free of aberration, we have simply

*
Hpy = B . (42)
B3
The variation of the combination HyHp, as a function
of B* is plotted in Fig. 4. For the SLC parameters, the
optimum is found to be B*=1.05 mm, and Hp,Hj,
=12.7. Thus,

Hp,
Hp=Dp, >
D D1 HDO

~9.3. (43)

With all other parameters fixed except *, the above
value is the best luminosity enhancement that one could
achieve for SLC, independent of the specific nature of the
strong inserted lens. We thus find that the plasma lens in
this case has a performance which is about 60% of that
of an optimized ideal, aberration-free lens.

To improve the performance of the plasma lens, it is
necessary to reduce the radial and longitudinal aberra-
tions. As was pointed out earlier,! since the focusing
strength in a plasma lens is self-induced by the beam-
charge density, a proper shaping of the bunch can, in
principle, mitigate the problem. One way to reduce the
radial aberration is to install an octupole somewhere
upstream from the plasma lens such that the transverse
distribution can be more “flat-topped” than the Gaussian
distribution.

For a bi-Gaussian distribution, the longitudinal aberra-
tions have been shown to be more severe than the radial
aberrations. In order to make the longitudinal distribu-
tion more uniform, we can in principle debunch the beam
slightly by applying a nonlinear accelerating wave form
to the beam and sending it through a transport line con-

FIG. 4. The variation of Hp,Hp, as a function of B*.
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FIG. 5. (a) Longitudinal wakefields and profile for beam of
length o, in iris-loaded structure with fundamental wake wave-
length A=20,. (b) Longitudinal profile after wakefield de-
bunching.

taining bend magnets with nonzero longitudinal disper-
sion. This could be done, for example, at the exit of the
damping rings. ,

As an aside, we note that the nonlinear wave form
could in principle be derived from the self-wakefields of
the beam in an iris loaded tube.” We take the case of the
beam length o, equal to one-half the fundamental wave-
length of the wakefields. The initial beam profile and as-
sociated wakefields for this case are shown in Fig. 5(a).
We take the initial rms momentum spread as Ap/p
=0.1%. If the amplitude of the wakefield-induced
momentum spread is taken to be 1.5Ap /p, and the longi-
tudinal dispersion of the transport line is 17, = —6000,,
the final longitudinal distribution is flattened
significantly, as shown in Fig. 5(b). Since the wave form
for debunching is nearly sinusoidal this scheme is not
dependent of wakefields, yet they may prove to be the
handiest source of strong, short-wavelength fields.

After proposing improvements in the plasma lens, it is
necessary to temper the discussion by noting that the pa-
rameters used in this paper describing the phase-space
density of the beam at final focus are marginal for
plasma-lens focusing. If the actual values of these param-
eters in any way reduce the phase-space density of the
beam, the effectiveness of the plasma-lens focusing system
degrades dramatically. We also have not mentioned the
problems of background event generation from beam-
plasma ion collisions, or the effects of misalignment due
to beam jitter. Both considerations may place constraints
on the effective implementation of a plasma lens.
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