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Laser pointing stabilization and control in the submicroradian regime
with neural networks

F. Breitling,a) R. S. Weigel, M. C. Downer, and T. Tajimab)

Department of Physics, The University of Texas, Austin, Texas 78712

~Received 6 December 1999; accepted for publication 16 October 2000!

The possibility of controling the pointing stability of a slowly pulsed Ti:Sapphire laser system by
lowpass filters and artificial neural networks~NN! is investigated by performing time series analysis
and computer simulations on experimentally measured datasets. The simulations show that at pulse
repetition rates of 20 Hz it is possible to use a feedforward algorithm to reduce the angular standard
deviation from 0.7 to 0.3mrad. The properties and advantages of NN methods such as automatic
adaptation characteristics of a time series are discussed. ©2001 American Institute of Physics.
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I. INTRODUCTION

Many laser applications, such as industrial process
medical treatment, and atmospheric or orbital targeting
aeronautical, aerospace, or military fields require high la
power. To realize the high power, the laser energy is of
accumulated and emitted in pulses. An important issue
these laser systems is the pointing stability. Since the p
tion deviation of pulsed systems is only recorded when
pulse is emitted, the deviation of a later pulse cannot dire
be corrected by opto-electronic feedback controllers that
designed for high repetition or continuous laser systems1–4

Instead, the deviation has to be estimated based on the
ceding pulses. This extrapolating process is known as t
series prediction, which can often be realized by filters6 or
often better by neural networks~NNs!.5–9

In the following, it will be shown how to employ thes
methods for a particular high power laser system: a Ti:S
phire laser system pulsed at 20 Hz, which is often used
laser acceleration experiments using wakefield.10–12 The
three major contributions to the pointing fluctuations are
convection in the beam path, mechanical vibrations of o
cal devices, and instabilities in the pump laser. Whereas
first two can be reduced further by changes in the experim
tal setup, the noise in the pump laser cannot and so de
mines the magnitude of the deviations to about 1mrad. The
goal is to find methods which can reduce this remain
standard deviation further. The theoretical limit of earl
implemented lowpass filters~LPFs!13 as well as the possibil
ity of new approaches using NNs will be discussed and th
results will be determined based on computer simulati
which use experimental data.

II. EXPERIMENTAL SETUP

A sketch of the experimental setup is shown in Fig.
The cavity of the regenerative Ti:Sapphire laser amplifie
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pumped by aQ-switched Nd:YAG laser with a repetition
frequency of 20 Hz. The out-coupled megawatt pulses p
eight mirrors before hitting a four-quadrant photodiode d
tector at a distance of 6 m.

The quadrants of the detector are connected to a sam
and hold circuit. The induced current in each quadra
which is proportional to the illuminated area by a pulse,
converted into a proportional voltage between 0 and 5 V and
recorded by a computer. Thex andy positions can be deter
mined from the voltage (a,b,c, andd! of each quadrant~Fig.
1! by the linear approximationsx5(b1c2d2a)/(a1b
1c1d) and y5(a1b2c2d)/(a1b1c1d). This is a
good approximation since the diameter of the pulses~2 mm!
are about 1000 times larger than the measured deviation
a few mm at the detector. For a radial symmetric Gauss
profile, the relative error of a 2mm shift due to nonlinear
changes in the illuminated quadrants will be less than 1024

as can be derived from geometrical considerations. T
single pulse position resolution, determined by comparis
with a second detector, is 0.25mm which is equal to an
angular resolution of 0.042mrad. Hence, the error due t
nonlinear changes in the illuminated quadrants is negligib

III. TIME SERIES ANALYSIS

The following discussion of techniques of time seri
analysis are useful to gain insights into the predictability
time series and how to determine the appropriate metho
the prediction.14 The time series of the Ti:Sapphire laser sy
tem will be represented inx andy components. Although the
beam wander in they direction is about twice as strong as
thex direction, there is no significant difference between t
two components in all other discussed aspects. Furtherm
no correlation between the two components, which wo
improve a prediction based on both components, is fou
This was verified computationally since there was no pred
tion improvement on a network which used joint vers
separate components. For this reason, the analysis is
sented on only one component. The data sets contain 10
succeeding pulses recorded at the 20 Hz pulse repetition
9 © 2001 American Institute of Physics
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1340 Rev. Sci. Instrum., Vol. 72, No. 2, February 2001 Breitling et al.
over 8 1/3 min. A sample section of the time series wh
shows the beam wander in thex–y plane is shown in Figs. 2
and 3.

A. Power spectrum

The power spectrum is an important tool for determini
the composition of periodic contributions to the position d
viation below the 10 Hz Nyquist frequency. The power sp
trum in Fig. 4 is obtained by the Welch’s average method15

which gives a smoothed power spectrum by dividing the d
into nonoverlapping subsections. Contributions at frequ
cies below 0.5 Hz are very significant. This shows that
major deviations originate from slow beam drifts. Slow bea
drifts indicate that a LPF will provide a good correction. A
higher frequencies, no significant periodic contributions
found and therefore further correction will be difficult, sinc
the deviations that cannot be corrected by the LPF have
a small contribution.

B. Autocorrelation function

To find periodicities and estimate the effective dime
sion of the dynamical system which produces a time ser
the autocorrelation function can be used:

c~t!5
^~yt2 ȳ!~yt1t2 ȳ!&

^~yt2 ȳ!2&
, ~1!

FIG. 1. Experimental setup for the detection of the position deviation of
pulses emitted from a Ti:Sapphire laser system with a four-quadrant ph
diode detector and the recording by a computer.

FIG. 2. Sample section of the time series showing typical beam wander.
y component of the radial pulse deviations at the detector are plotte
time. For comparison, the deviation predicted by a NN is also shown.
LPF prediction is similar and omitted for clarity.
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whereN is the number of samples,yt is the sample at timet,
andt is the time lag. Equation~1! reflects the mean correla
tion between each element of the time series and itst-next
neighbor. Ifc(t) reaches an amplitude significantly differe
from zero after a few zero crossings, then the underly
process possesses a short term predictability. On our d
the autocorrelation function of the Ti:Sapphire series d
not reveal any additional information besides that due to
dominant low frequency components.

C. Dimensional analysis

Based on the previous results, we additionally want
consider a dimensional analysis of the data which can
used to determine not only chaotic behavior but also
optimal size of the time delayed input vectors to be used
the prediction using a NN. For a chaotic system, the diffic
ties of prediction increase with the effective number of d
grees of freedom, which can be measured by the dimens
ality of the embedding. The number of inputs presented
the predicting system should be at least equal to the em

e
o-

FIG. 4. Power spectrum of the time series of they deviation of the pulses
sampled at the pulse repetition rate of 20 Hz. Significant is the contribu
at frequencies below 0.5 Hz representing a dominant slow beam wand

he
vs
e

FIG. 3. Sample section of typical beam wander in thex–y plane. The de-
viations of the laser pulses iny direction are plotted vs the deviations inx
direction. The uncontrolled system has an average radial standard dev
s54.3 mm ~left-hand side panel!, the same system with simulated contro
ing by NN has a reduced average radial standard deviations52.0 mm. The
amplitude is determined as the difference between the predictions of a
computer simulation and the actual deviation~right-hand side panel!.
IP license or copyright, see http://ojps.aip.org/rsio/rsicr.jsp
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1341Rev. Sci. Instrum., Vol. 72, No. 2, February 2001 Laser pointing stabilization
ding dimension so that it contains the necessary informa
for a correct prediction. The embedding dimension is de
mined by the correlation integral

C~r !5
1

N~N21! (
i , j 51

N

Q~r 2uyW i2yW j u!, ~2!

whereN is the data set size,Q(x)50, for x,0 andQ(x)
51, for x>0.16–18 Applying this method to the laser serie
does not provide the optimal input vector size, since a
mension above ten is found. Since the amount of data
quired to accurately determine embedding dimensions sc
asAD whereD is the embedding dimension andA.2, there
is a tremendous demand for data and the required comp
tional effort is prohibitive.19 Hence the optimal input vecto
size will be determined by trial and error by testing inp
vectors of various lengths and choosing the minimum len
above which the predictive performance does not impr
further.

IV. RELATION BETWEEN LPF AND NN

A lowpass filter is mathematically described b
a(dyt

out/dt)5yt2yt
out whereyt is the input,yt

out is the output
signal, anda is a time constant. If this equation if dis
cretized, it is found that

yt11
out 5(

j 51

t

wjyj , ~3!

where the weights (wt) are functions ofa and the sample
frequency. Equation~3! describes already a primitive neur
network.

The difference between a NN and a LPF is that the N
has more freedom for choosing weights, allows a nonlin
input–output response through an activation function~g! and
allows more freedom in the choice of input variables. Hen
a neural network can be more accurate in mapping in
vectors to output vectors. Therefore, it is used in time se
prediction for mapping time delayed input vectors (yW t) onto
their next values (yt11). UsingyW t as an input, the form of a
three layered feed-forward network, also known
multilayer perceptron, that was used for the predictions
given by

yt11
out 5(

j 51

M

wj
~b!gS (

i 5t2t

t

wji
~a!yi D , ~4!

whereg is the activation function,w are weights in the layers
a andb, M is the number of units in the hidden layer, andt
is the input vector size. In the training process, the weig
are adapted so that the actual value matches the predict
well as possible. Mathematically this is expressed by m
mizing the error function

E5
1

N (
t51

N

~yt
out2yt!

2, ~5!

whereN is the data set size. In practice, the data is split i
a training and a validation set to ensure a go
generalization.20
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V. PREDICTION AND RESULTS

Because of its simplicity, the delay line is briefly me
tioned. It already gives surprisingly good predictions due
the dominant low frequency beam wander. A delay line si
ply predicts the next pulse deviation to be equal to the c
rent. This is already a simple LPF. To simulate controlin
the predicted deviation is subtracted from the actual o
Hence, for the delay line, the previous deviation is subtrac
from the current which reduces the radial standard devia
by about one third~Table I!.

Better results are obtained by controling through a L
which is adapted to the time series. Only first order Butt
worth LPFs are considered. To find the optimal LPF, t
standard deviations for various cut-off frequencies are de
mined for the same data set. The optimal cut-off frequenc
found at 0.09 Hz, where the simulated controling by the L
prediction reduces the standard deviation of the time se
by more than 50%; in thex direction (sx) from 0.577 to
0.247mrad and in they direction (sy) from 0.880 to 0.467
mrad ~Table I!.

Controling by NNs is simulated by feed-forward, elma
and cascade-forward NNs. They can be constructed by
neural network toolbox of theMATLAB software package.21

Powell–Beale and Levenberg–Marquardt back propaga
training algorithms as well as hyperbolic tangent sigmo
and linear transfer functions are used in various combi
tions. The network structure varies from~3-4-1! to ~20-20-1!
and even four-layered networks~a-b-2-1! are examined. The
notation (a-b1-b2--c) stands fora units in the input layer,
b1 in the first hidden,b2 in the second hidden, ..., andc units
in the output layer. The input vector size is varied from 3–
elements and the time lagt was chosen for up to 50 sample
The results are not very sensitive to the network type or
these parameters. The best performance is achieved by
feed-forward network~4-5-1! trained using the Powell–
Beale algorithm, sigmoid transfer functions in the first lay
linear transfer functions in the second layer, and time
layed vectors ofyW5(y1 ,y2 ,y3 ,y4) corresponding to the lat
est four samples. The correction by this method reducessx

to 0.245 mrad and sy to 0.463 mrad ~Figs. 3, 4, and
Table I!.

We have shown that the angular deviation of this puls
laser system can be reduced by more than 50% using eith
LPF or NN. A comparison between the two methods show
slightly improved but similar controling by NNs. This is no

TABLE I. Standard deviation of thex and y components before and afte
different simulations of controling. The dominance of slow beam wan
already allows a good improvement by a delay line. Improved results
obtained by the optimized LPF and a feed-forward NN which can reduce
overall deviation by more than 50%.

Data
sx

~mrad!
sy

~mrad!

uncontrolled 0.577 0.880
delay line 0.308 0.588
LPF 0.247 0.467
NN 0.245 0.463
IP license or copyright, see http://ojps.aip.org/rsio/rsicr.jsp
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surprising due to the dominance of slow beam wander. S
the NNs find predictable components automatically, their
plication is attractive where the power spectrum is m
complex, no prior spectral characteristics are established
where they are bound to change. The experimental im
mentation of the NN is straightforward. The theoretical c
rections determined here for the NNs can be directly app
to a controller if the controling is applied on a separate m
ror which is later in the beam path~after the position detec
tor!. This will prevent direct feedback from changes due
controling. A second detector might be required to calibr
or supervise the controling. On the other hand, NNs do
always provide significant prediction performance improv
ments, and hence do not generally justify the additional co
putational effort required for their realization. The examin
Ti:Sapphire series is an example where dominant low
quencies conceal the superior adoption and prediction a
ties of the NNs. The application of NNs to pulsed laser s
tems can be useful, and the success of NNs in nonlin
forecasting encourages our hopes towards a feed-forw
controlled laser wakefield accelerator, since linear accel
tors cannot be controlled by feedback.
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