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Laser pointing stabilization and control in the submicroradian regime
with neural networks
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The possibility of controling the pointing stability of a slowly pulsed Ti:Sapphire laser system by
lowpass filters and artificial neural networttéN) is investigated by performing time series analysis

and computer simulations on experimentally measured datasets. The simulations show that at pulse
repetition rates of 20 Hz it is possible to use a feedforward algorithm to reduce the angular standard
deviation from 0.7 to 0.3urad. The properties and advantages of NN methods such as automatic
adaptation characteristics of a time series are discussed0@ American Institute of Physics.
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I. INTRODUCTION pumped by aQ-switched Nd:YAG laser with a repetition
L . : . frequency of 20 Hz. The out-coupled megawatt pulses pass
Many laser applications, such as industrial processing,. . - ) . )

. . . " Zeight mirrors before hitting a four-quadrant photodiode de
medical treatment, and atmospheric or orbital targeting Nector at a distance of 6 m

aeronautical, aerospace, or military fields require high laser h d f the d d |
ower. To realize the high power, the laser energy is often The qua rapts oft € etector are cor_mecte to a sample
P ' ’ nd hold circuit. The induced current in each quadrant,

accumulated and emitted in pulses. An important issue o? o : . ; .
. S . . which is proportional to the illuminated area by a pulse, is

these laser systems is the pointing stability. Since the posi- . .
. - ; converted into a proportional voltage between @ &rVv and
tion deviation of pulsed systems is only recorded when a S
. recorded by a computer. Theandy positions can be deter-

. ¥nined from the voltageq,b,c, andd) of each quadrar(Fig.
be corrected by opto-electronic feedback controllers that ar?) by the linear approximations=(b+c—d—a)/(a+b

designed for high repetition or continuous laser systérhs. _ o o
Instead, the deviation has to be estimated based on the préL-C+d) and y=(atb-c—d)/(atbrctd). This is a

. . . . .""good approximation since the diameter of the pul@mm)
ceding pulses. This extrapolating process is known as tim . L

. o . . . are about 1000 times larger than the measured deviations of
series prediction, which can often be realized by fiftems

often better by neural networkaINs) >~ a few um at the detector. For a radial symmetric Gaussian

In the following, it will be shown how to employ these profile, the relative error of a Zm shift due to nonlinear

g . ) ~>~ changes in the illuminated quadrants will be less than*10
methods for a particular high power laser system: a Ti:Sap- . . . .

: o as can be derived from geometrical considerations. The
phire laser system pulsed at 20 Hz, which is often used for

. . . single pulse position resolution, determined by comparison
laser acceleration experiments using wakeft8fd? The gep P y P

: oo - . .with a second detector, is 0.26m which is equal to an
three major contributions to the pointing fluctuations are air .

T . ) . .angular resolution of 0.04Zrad. Hence, the error due to
convection in the beam path, mechanical vibrations of opti-

cal devices, and instabilities in the pump laser. Whereas thréonlmear changes in the illuminated quadrants is negligible.
first two can be reduced further by changes in the experimen-
tal setup, the noise in the pump laser cannot and so detey-
mines the magnitude of the deviations to aboyirad. The fi. TME SERIES ANALYSIS
goal is to find methods which can reduce this remaining  The following discussion of techniques of time series
standard deviation further. The theoretical limit of earlier analysis are useful to gain insights into the predictability of
implemented lowpass filtefé.PF$** as well as the possibil- time series and how to determine the appropriate method of
ity of new approaches using NNs will be discussed and theithe prediction'* The time series of the Ti:Sapphire laser sys-
results will be determined based on computer simulationgem will be represented irandy components. Although the
which use experimental data. beam wander in thg direction is about twice as strong as in
the x direction, there is no significant difference between the
two components in all other discussed aspects. Furthermore,
no correlation between the two components, which would
A sketch of the experimental setup is shown in Fig. 1.improve a prediction based on both components, is found.
The cavity of the regenerative Ti:Sapphire laser amplifier isThis was verified computationally since there was no predic-
tion improvement on a network which used joint versus
“Electronic mail: ikbreitl@ph.utexas.edu separate components. For this reason, the analysi_s is pre-
PAlso at Lawrence Livermore National Laboratory, Livermore, California sented on only one component. The data sets contain 10 000
94551. succeeding pulses recorded at the 20 Hz pulse repetition rate

Il. EXPERIMENTAL SETUP
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FIG. 1. Experimental setup for the detection of the position deviation of the
pulses emitted from a Ti:Sapphire laser system with a four-quadrant photo-
diode detector and the recording by a computer.

x—position [um]

FIG. 3. Sample section of typical beam wander in kg plane. The de-
viations of the laser pulses indirection are plotted vs the deviations»n

over 8 1/3 min. A sample section of the time series whichdirection. The uncontrolled system has an average radial standard deviation

. . . . o=4.3 um (left-hand side panglthe same system with simulated control-
shows the beam wander in tiey plane is shown in Figs. 2 ing by NN has a reduced average radial standard deviatio?.0 um. The

and 3. amplitude is determined as the difference between the predictions of a NN
computer simulation and the actual deviatieight-hand side pangl

A. Power spectrum

The power spectrum is an important tool for determiningwhereN is the number of sampley, is the sample at timg
the composition of periodic contributions to the position de-and 7 is the time lag. Equatiofil) reflects the mean correla-
viation below the 10 Hz Nyquist frequency. The power spection between each element of the time series and-itext
trum in Fig. 4 is obtained by the Welch's average method, neighbor. Ifc(7) reaches an amplitude significantly different
which gives a smoothed power spectrum by dividing the datdrom zero after a few zero crossings, then the underlying
into nonoverlapping subsections. Contributions at frequenprocess possesses a short term predictability. On our data,
cies below 0.5 Hz are very significant. This shows that thghe autocorrelation function of the Ti:Sapphire series does
major deviations originate from slow beam drifts. Slow beamnot reveal any additional information besides that due to the
drifts indicate that a LPF will provide a good correction. At dominant low frequency components.
higher frequencies, no significant periodic contributions are
found and therefore further correction will be difficult, since
the deviations that cannot be corrected by the LPF have only
a small contribution. C. Dimensional analysis

Based on the previous results, we additionally want to

B. Autocorrelation function consider a dimensional analysis of the data which can be
To find periodicities and estimate the effective dimen-used to determine not only chaotic behavior but also the
sion of the dynamical system which produces a time seriePtimal size of the time delayed input vectors to be used for

the autocorrelation function can be used: the prediction using a NN. For a chaotic system, the difficul-
_ ties of prediction increase with the effective number of de-
c(r)= <(Yt_y)(y_t+ ) (1) grees of freedom, which can be measured by the dimension-
((ye=y)? ality of the embedding. The number of inputs presented to

the predicting system should be at least equal to the embed-

g
=
c
2
=
[7]
a
=
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FIG. 2. Sample section of the time series showing typical beam wander. The

y component of the radial pulse deviations at the detector are plotted vEIG. 4. Power spectrum of the time series of thdeviation of the pulses

time. For comparison, the deviation predicted by a NN is also shown. Thesampled at the pulse repetition rate of 20 Hz. Significant is the contribution

LPF prediction is similar and omitted for clarity. at frequencies below 0.5 Hz representing a dominant slow beam wander.
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ding dimension so that it contains the necessary informatioRABLE I. Standard deviation of th& andy components before and after

for a correct prediction. The embedding dimension is detergifferent simulations of controling. The dominance of slow beam wander
’ already allows a good improvement by a delay line. Improved results are

mined by the correlation integral obtained by the optimized LPF and a feed-forward NN which can reduce the
1 N overall deviation by more than 50%.
Cry=—c—~ O(r—\yi—vi|, 2
(0= RN=1y 2, O~ 1¥-3iD )] o -
Data (urad (urad
whereN is th%i%ta set_3|zeﬁ)_(x)=0, for x<0 and(x)_ uncontrolled 0577 0.880
=1, for x=0. Applying this method to the laser series delay line 0.308 0.588
does not provide the optimal input vector size, since a di- LPF 0.247 0.467
mension above ten is found. Since the amount of data re- NN 0.245 0.463

quired to accurately determine embedding dimensions scalés
asAP whereD is the embedding dimension add>2, there

is a tremendous demand for data and the required computa-

tional effort is prohibitivet® Hence the optimal input vector V- PREDICTION AND RESULTS

size will be determined by trial and error by testing input o . i

vectors of various lengths and choosing the minimum length Because of its simplicity, the delay line is briefly men-

above which the predictive performance does not improvdioned. It already gives surprisingly good predictions due to
further. the dominant low frequency beam wander. A delay line sim-

ply predicts the next pulse deviation to be equal to the cur-
rent. This is already a simple LPF. To simulate controling,
IV. RELATION BETWEEN LPE AND NN the predicted deviatipn is subtra_cted from _the. actual one.
Hence, for the delay line, the previous deviation is subtracted
A lowpass filter is mathematically described by from the current which reduces the radial standard deviation
out

a(dy?'7dt) =y,— y?" wherey, is the inputy?is the output by about one thirdTable ).

signal, anda is a time constant. If this equation if dis- Better results are obtained by controling through a LPF

cretized, it is found that which is adapted to the time series. Only first order Butter-

t worth LPFs are considered. To find the optimal LPF, the

you => Wy, , (3y  standard deviations for various cut-off frequencies are deter-
j=1

mined for the same data set. The optimal cut-off frequency is

where the weightsw,) are functions ofa and the sample found at 0.09 Hz, where the simulated controling by the LPF
frequency. Equatiori3d) describes already a primitive neural prediction reduces th.e standgrd (_1eV|at|on of the time series
network. by more than 50%; in the direction (o) from 0.577 to

The difference between a NN and a LPF is that the NNO-247 urad and in they direction (oy) from 0.880 to 0.467
has more freedom for choosing weights, allows a nonlinea¢rad (Table ). o
input—output response through an activation functgrand Controling by NNs is simulated by feed-forward, elman,
allows more freedom in the choice of input variables. Hence@nd cascade-forward NNs. They can be constructed by the
a neural network can be more accurate in mapping inpu@eural network toolbox of theIATLAB software packagé:
vectors to output vectors. Therefore, it is used in time serie§owell-Beale and Levenberg—Marquardt back propagation
prediction for mapping time delayed input vectogg)(onto  training algorithms as well as hyperbolic tangent sigmoid
their next valuesy;,. ;). Usingy, as an input, the form of a and linear transfer functions are used in various combina-
three layered feed-forward network, also known astions. The network structure varies frai®-4-1) to (20-20-1)
multilayer perceptron, that was used for the predictions igihd even four-layered networka-b-2-1) are examined. The

given by notation @-b;-b,--c) stands fora units in the input layer,
M . b, in the first hiddenp, in the second hidden, ..., adinits
out _ (b) (@), in the output layer. The input vector size is varied from 3-15
Yera le Wi g( i:tE_T Wii y,) ' “) elements and the time lagwas chosen for up to 50 samples.

h is th vation f . iahts in the | The results are not very sensitive to the network type or to
W erdetg); 'SMt. N ﬁctwauotl: unfcuomv arehwer;g dés |n|t € ayers, these parameters. The best performance is achieved by the
aandb, M s the number of units In the hidden layer, and ey forward network(4-5-1) trained using the Powell—-

s the input vector size. In the training process, the W?'ght%eale algorithm, sigmoid transfer functions in the first layer,
are adapted so that the actual value matches the predicted @s._ - .o nsfer functions in the second layer, and time de-

well as possible. Mathematically this is expressed by min"layed vectors of = (Y1,Y»,Ys,Y4) corresponding to the lat-

mizing the error function est four samples. The correction by this method reduges
1 N to 0.245 urad and o, to 0.463 urad (Figs. 3, 4, and
E=g 2 (2-y0% (5  Table ).
=t We have shown that the angular deviation of this pulsed
whereN is the data set size. In practice, the data is split intdaser system can be reduced by more than 50% using either a
a training and a validation set to ensure a goodLPF or NN. A comparison between the two methods shows a
generalizatiorf? slightly improved but similar controling by NNs. This is not
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