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Analysis of an asymmetric resonant cavity as a beam monitor
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We analyze the excitation of an arbitrary, externally coupled resonant structure by a charged particle
beam, providing a rigorous formulation of the effect of spurious modes and intrinsic mode
nonlinearity on inferred beam coordinates. Results are illustrated for a two-cavity system employed
for beam-position monitoring with an idealized front-end signal processor19@9 American
Institute of Physicg.S0034-674809)01403-3

I. INTRODUCTION ture planar accelerating structurés. Unlike the conven-

Charged particle beams are powerful tools with which tc)t|onal axially symmetric accelerating structures, the planar

dissect the fundamental laws of nature and today high energ2ructures produce a fundamental accelerating mode contain-

physicists sift through the rubble of beam collisions search!'d @ quadrupolar component. This focusing or defocusing

ing for deviations in the predictions of the Standard Model afomponent is a serious issue for beam dynamics. Analysis

the level of 1 part per million. High precision studies of this presented here provides the framework for characterization

kind require exquisite control of the beams, and this impliesOf stjchsstrut:ltures ast %'CkquhortE'Ckers'f ; i
a requirement tamonitor the relevant attributes of the par- n >ec. 1i, we set down the theory of a resonant cavity

ticle distribution. One such beam monitor consists of a resopiCkUp’ providing a simple formulation categorizing the mul-

nant cavity. Historically, these have been employed to moni:upole coefficients required to describe field nonlinearities in

tor beam phase and position, and their precision has not bedt asymmetric electromagnetic resonator, including differen-

particularly stressed—the original resonant cavity beam pot—Ial external coupling. We compute mode excitation by a

sition monitors employed at Stanford circa 1965, were re—tr"G"’“‘SS""m bunch, and, using superposition, we determine

quired to function with a resolution at the level afl mm? the excitation by a train of such bunches. In Sec. Ill we

However, modern applications require resolution at the |eve||llustrate these considerations for the case of the beam posi-

of +1 um or smaller tion monitor system proposed for E158. This includes analy-
_In this work. we énalyze a resonant cavity as a pickup tosis of the mode characteristics of the two cavity geometries

discern the essential systematic effects that appear in suii{/()posed' supplemented with bench measurements. In Sec.

devices when high precision is required. One of the specific "’ adopting an idealized model for the front-end signal pro-

problems that motivated this work is a resonant beamesSsor, we go on to illustrate and quantify the effect of para-

position monitor(BPM) cavity to be used for a fixed-target zmc rr]nodes, and ntonllnegdnues._ This dlfc1i§3|on .atn;j t&e
experiment{“E158" ) at Stanford® This experiment requires ench measurements provide a rigorous starting point for the

precise beam-position monitoring to permit accurate infer- 158 BPM error analysis. In Sec. 1V, we offer some conclu-

ence of beam-angle on-targe. priori one is inclined to SIons.

design and build special-purpose cavities for this purpose.

However, for reasons of cost, it is of interest to make use of. THEORY OF A RESONANT CAVITY PICKUP
existing cavities—rectangular cavities with a single coaxial

output. For such cavities, and at theumn level in beam- In this section, we analyze Maxwell's equations for a
position monitoring, the effect of nonlinear field componentsCaVvity with waveguide coupling, wall losses, and beam exci-

on the inferred beam position must be quantified. Moreover@tion, reducing it to a simple circuit equivalent. We then

one would like to know if it would be useful to retrofit such duantify excitation of this circuit by a single tri-Gaussian
cavities, and how one might do this, to improve the preci-2unch, and a train of such bunches.
sion. A. Equivalent circuit

Beyond the application to this specific BPM system, ex-

perimental studies in other resonant structures suggest the we con5|d_er first an |deal|zgd, I_ossles; cavity with no
external coupling. In the approximation of isolated, nonde-

need for a thorough analysis of the problem. For example, S .
nerate resonances, and considering frequencies below cut-

conventional accelerating structures possess dipole modes, . . .
and these have been instrumented to detect beam po‘kf‘tion.of in the beam port, we express the solution for the cavity
electric field as a superposition of modes,

In addition, in recent years, interest has developed in minia~

E(r,t>=§ Ex(ney(t),
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with mode index\, and the convention that modal fields TABLE I. First few multipoles, column2) takes the coefficienb,, and
E, (r) are normalized to unit volume integral. The excitation ¢°Umn(3). a,.
of mode amplitudes, by current density) may be expressed

. X . Term n Normal Skew
in terms of the overlap integral, evaluated in the frequency
domain Monopole 0 1
Dipole 1 X -y
~ 3= Quadrupole 2 x2—y? —2xy
= d°rJ-Ey, Sextupole 3 x3—3xy? y3—3x%y
Octupole 4 x4—6x2y%+y* 4xy(y2—x2)
where Fourier components are denoted by an overtilde. The Decapole 5  x5-10%y2+5xy*  10x%y3-y5—5xy

response of a cavity mode is then given by

~ . 1~
(wz—wf)elewe—%, function. The beam is assumed to be ballistic, traveling at
0 speedV in the z-direction, centered on the transverse coor-
with € the electrical permittivity of free space,elF cZy, dinater, ,. The Fourier transform is

with Zy~376.7(), and c the speed of light. The angular
frequency isw, andw, is the mode resonance. To incorpo- 3(r,w)=26%(r )f” ﬂe‘i“"l (t— _)

rate external coupling in our model, it is convenient to ' L —=\2m b \%

amend our choice of unperturbed modal basis to refer to the ~ _

solution of the Helmholtz equation, withpen-circuitbound- =26%(r, — 1 p)lp(w)e 17,

ary conditions on a reference plane located in the connectingnd we assume no variation of beam centroid along the
guide. Since the waveguide modes form a complete set w, ; T =~

may expand the electric field on this reference plane, an eam. The overlap integra} =1p(@)Wi (1. ), where

quantify the coupling in terms of the overlap integvgl, on ~ N e . JwzIV.
the plane, of the modal electric field, and the fundamental  "WA(T:p)= | dzE)(r =r1p,2)€7Y 2
mode of the connecting guiddn this way we arrive at the ] ] o )
externalQ, we will see that this quantity is central to the analysis of the
coupling of the beam to the cavity. We observe that
1 Vi »

Qern  €0\Zc1' ViW, = fﬁw dze“”VVIE,(r, ,2)
whereZ.; is the characteristic impedance of the waveguide )
mode. Explicitly,Z.;=Zy(w/cB) for a TE mode, and; B Wd dozv 7wy E
=Z, for a TEM mode. In terms of extern&, our mode = g T 972 2 alrL.2)

equation is revised to read .
. VA _|wo wo| [t

(02— w?)e =jwi3 oy (Vi —Vy1) —(W_ ?> fﬁx dze“? Ex(r, ,2)

MM €0 » Qex Via ' 5 5

and continuity of tangential electric field at the port-plane _ (ﬁ_ ﬁ)\Tv

requiresV; +V] =8,V,,. The quantitiesV/; , Vi are the VA A

incoming and outgoing voltage phasors at the plane, referreghg conclude that for a highly relativistic beam is a har-

to the impedanc&.;. Thus incident and outgoing power in  monicfunction,

steady state arB~=|V;|%2Z.,, and the net power flowing ”m

into the cavity isP™—P~. For a cavity excited only by Viw,=0, 3

beam, with output looking into a matched lodel; =0. and therefore may be expanded in multipoles,

Incorporating wall losses, and redefining the mode reso-
nance frequency to incoporate the shift due to the reactive -~

= m — i
part of the wall impedance, we augment this result to read W mE:o b cosma) = amsinme) ], @

©

e . 1le ooy, (Vi —V]) owo,_ where we introduce cylindrical coordinates x,Y)
—o)e=jo_d\ - Qur 2N +] Q. e, =r(cos¢,sing), and complex multipole coefficientd,,,
¢ a,,. The possible leading-order behaviors near the beam-axis
are seen in Table I.

Thus far, we have reduced Maxwell's equations to a
single relation,

2

(w

with Q,, the wall Q.
To make this more explicit, we consider a ballistic pencil
beam, with current density

jwo, (V§-V7)
Qe)\ Vl}\

z
J=28%(r, —r pl (t——), 1 ~ 1~
(Lmrwl| =y S L L
wherel, is the beam current waveforris the time coordi-
nate,z is the coordinate displacement down the beamiine, “""Mé)\ . (5)

L
is the coordinate in the transverse plane, @id the delta : Quw
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A \‘ VF
\

L

however, with the mode classification, we may cast this in a
more transparent form, making clear the essential circuit pa-
rameters. To do this we must make a choice of reference
impedance, and there exists a convention for this, at least in
the case of a pure monopole mode, the convention being to
refer to cavity excitation in terms of the voltagétnessed by

c

the beam The voltage drop experienced by a test particle l
traveling at spee¥ in thez direction at offset, , and pass- {3 L®D °V
ing z=0 at timet=t, is T5° T c

z

+o0 .
VC(rL 1t0): f dZEZ< rL 1Zyt0+ v . (6) 1n

FIG. 1. Sketch of the dynamic variables for a single cavity mode coupled to
a waveguide fundamental mode, and a beam. Also shown is an equivalent
We may express this in terms of the modal decomposition,circuit for the cavity-beam-waveguide system with output waveguide termi-

nated in a matched load. No “beam-loading” admittance appears in parallel
4 with the beam current, insofar as we have made the approximation of a
v ) highly relativistic beam.

z
r,z,tp+ v) :E Exn(ry,z)e,
h

E, to+

corresponding to which we have =
Va2 Vgl

2
V(r, ,to>=§ Vor(ry to), Yo2n{Zy

VP Va2 [V Va2

4QeKy(rL) Qal[R/Qlyr,

In the time domain, our result may be expressed most
simply as

where, in the frequency domain, (14)

~ > do .~ ~ ~
Voo 0= | e, =B ()

and our mode equation may be re-expressed in terms of th a2 d dv. dl
more meaningful normalization¥ , 1 according to —+ O —+w?|V =2& —P ok (r )—b
cr by dt? T Qp, dt M T Q. dt LT
ww - (15
(wz_j_)\_a&)\/c)\(rL’w) .
Qua and we have introduced the port-load@d
joo, ~ o~ . ~ 1 1 1
== oo NVI-VD+2jeKy b, ® Sl S (16)
er Q. Qwmn  Qer
with This formulation comes with the picture of Fig. 1. It is con-
1 _ 5 venient in that it reduces the problem to an uncomplicated
Kar, = Z—EOW’{(Hb)Wx(M). (9)  RLC circuit, with an ideal current generator, and an external

coupling through a transformer with turns ratig. How-
ever, it contains within it a choice of reference axis,,
(10 affecting the definition of the cavity voltage, the turns ratio,
and the loss factor. This might seem awkward; in fact, it is
The continuity condition is most naturally expressed in termsssential to understanding the operation of the circuit as a
of the transformed forward voltage in the connecting guidemonitor of beam coordinates. With the work of this section,

n _\7\/)\(&)
M Vl)\

Vey=n,V;, and reverse voltage/g,=n,V;, as Vg,
=VE, + Vg, . It will be convenient to refer to

R 4K, (r) AKyr
o _ )\( L) _ L L, (11)
Q ar W) W)
"l
in terms of which the turns ratio is given by
nJ2 2Qq Ky (r,) QalR/Qly 12
n = = ,
> ch chl
the stored energy
1 . Verl? Varl?
Uy=5eol€\]%= = : 13
V=2 ol =K, (1) T RO, 3

and the net power flowing into the cavity

we have reduced our system to that of a simple circuit as
described by Eq(15), and depicted in Fig. 1.

B. Characterization of modes

The generalized loss factoK, , is a useful figure of
merit to gauge the magnitude of the coupling of the beam to
the cavity mode. For example, for a point bunch of charge
Qp, one can show that prior to evanescence the induced
voltage isV, (t) = — 2K, Qp cos,t)H(t), with H the step
function. Work done by the charge at offseton the cavity
mode is therd, = — [ dtV, (r, ,t)1,(t)=K,QZ. In addition
to the longitudinal kick provided by the cavity voltage in
mode \, V,(t), the cavity may also provide @ansverse
kick, determined from
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P.(r, ,b) f+mdz{ le +ixB tan sy [Bafx sinyy
L e |V + (r, a2 1+|B4|x cosy,
Thus the absence of a reflection symmetry permits a phase
One can show that and an amplitudasymmetryn the accelerating voltage. This
P, is generally undesirable in an accelerating cavity, as dis-
—=-V .V, (17)  cussed at some length in Ref. 1. Conversely, such a cavity

at . . "
would not be an ideal phase monitor. An additional conse-

as first noted by Panofsky and Wen2dh the frequency quence is the presence of transverse deflections associated
domain, we may express the kick as with this mode,

- ]
PL=JZE BV, W, . (18) Pe= V., RVoe! /0= [ 14 Byx+By(x*—y?) +---],

Thusw, determines the form of both the longitudinal and or, at lowest order

transverse Kicks. 1 .
Evidently, we may examine and categorize modes of a P~ ZVO|Bl|S'n( Yot ).

cavity, based on the harmonic propertiesagf. In practice, ) ) )
this is assessed by examination[ﬁ/Q]Mi, as computed Thus particles phased on crest (¢4 0) experience a trans-

with an electromagnetic field solver. In general, a mode ma)\ére]:seedaesﬂerﬁtr'ﬁgtfe;efrm;nf:ljo?é tf_lrehlun;agngta;)l/”p?irzﬁf Thesuch
contain any or all harmonic components; however, symme(;in as mn)'/]etric )éometr rovides ac,celeramlraan a?] yle
tries will delimit the actual terms present. For example, for a ven yb ~_|g Ic /y Ff)or small asvmmetr andg ar-
cavity respecting cylindrical symmetry, the multipole sum Ofgcles pgacsve d on %:relétl @ Y Y P
Eq. (4) reduces to a single azimuthal harmomit,The sym- . ) . . S
metric mode, withm=0, must then hav@/, independent of For the remainder of this work, we will be considering a

the transverse coordinate. Thus the waveform output b suc(f'laVity reflgcting a higher degree of symmetry, reflectipn
put by symmetry in bothx andy. We label modes according to their

a mode will be independent of beam position. This resul west order behavior. and or d to characterize their
contrasts with the Bessel function dependence of the closed- est order behavior, and proceed 1o characterize the
igher-order features. For monopole modes, we have at low-

cavity mode; cancellations occur due to fringe fields near th 2 <t order residual normal auadrunole and octubole com
cavity entrance and exit. . € 0 q po octupole po

For other than circular cavities, the constraints one may
place on the mode character are limited by the number of  Wq en.evers Dol 1+ Bo(X2—y?) + Ba(x*— 6x%y% +y*)
symmetries present. For example, in a cavity with a reflec- 6
tion symmetry, we may delineate modes based on whether +O(r)) . (20

w), is even or odd with respect to reflection. For a cavity with For vertical dipole modes, we have residual skew sextupole

mid-planesymmetry(symmetric upory— —y), we may eX-  and skew decapole components,
pect to find modes odd“‘skew”) in y, and modes even

(“normal” ) in y. Thus a predominantly monopole mode for Weven-odd™ —agy[1+Ag(3x°—y?) + As(y*+5x* — 10x%y?)

such a cavity is described byW=bg+bx+by(x*—y?) 6. ..
: Nt +O(ry) -1, (21
+---. The coupling parametds, may be quantified more
colloquially by the[ R/Q] evaluated on-axis, where A,=a,/a;, and the coupling parameter; may be
_ quantified in terms of
_[R]__[W(r,=0)2 2z,
lim ) =2—— =— |bg|2. (19 R, i 1 R} ZZOC| 2 (y dipole 22
GIOMN A —|=Ilim = |<|= a ipole).
o Q oo 2 Q Wy, 1 y p

In light of our analysis, we understand that this conventional . . _ . : :
parameterization in terms pR/Q] is incomplete Additional Similarly, horizontal dipole modes may contain a residual
phenomena lurk in the higher components. In term®8gf normal sextupole and normal decapole component
=b,/by, we may write the accelerating voltage as Wodd-ever= D1X[ 1+ B3(x2— 3y?) + Bg(x*— 10x%y?+ 5y#)

Vo(X,Y,to) =RVoel "o{1+Bx+ By(x2—y?) +- -}, +0(r) 1. (23

where Vel Yo=V(r, =0to)el“', i.e., V, is the maximum We have at lowest order,

accelerating voltage, ang, the phase, witnessed on-axis. 1 [R] 2Z-c

Evidently, an off-axis trajectory corresponds to a different {—L =lim — |=<|= 0 |b,|?2  (x dipole). (29

amplitude and phase. Keeping only the dipole correction, r_o X Q @\

and expressin@,; =|B,e”, one can see that One can go a step farther with this, and ask, of the

V (X,y to)wRVOei Yogl U1+ 2|By|x cos¢1+|Bl|2x2)l’2 modes allowed by symmetry, which are present? Does a cav-
C 1) [l

ity have a normal quad mode? When the cavity beam ports
where respect the symmetry of the cavity proper, one may infer the
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)’} Xn(X,y) =1+ B3, (x2—y?) + B}, (x*— 6x2y2 + y*)
X ; X® +O((r9)) - (26)
and
. . R 1/2
monopole y-dipole x-dipole QeAH R iz
_ \ _ A

° =\ —z) ~lz) 27

X.X é).( where B, =Q,» / Qe and the unloaded shunt impedance is

R,=Qu[R/Q], (another convention employs half this
valug. Power flowing out of the cavity is-P,,, where

Ve Vel Vel Ve
22c|n>\|2 » Ry '

For a predominantly dipole mode, ardipole mode for

definiteness, we select an integration patk=ak,, and take
form of the kick function from the symmetry of the corre- the limit xo—0, so that our description of the cavity is re-
sponding mode of the unperturbédosed cavity. In this  solved in terms of the on-axis voltage gradient,
way, one may map TM modes of the closed cavity to the
“TM-like” modes of the cavity with beam ports. To enu- V. = lim e
merate all modes, however, one must consider as well the TE xg—0 X0 X
modes of the closed cavity, for with the addition of beam-
ports, these modes will develop longitudinal fringe electric
fields that can couple to the beam. Consequently, a real cay-d> w, d
ity driven by a beam will exhibit a richer mode spectrum @‘L Q_an
than one would expect from a closed-pillbox analysis. For a
qualitative illustration, consider a cavity of rough dimensions @, VE\
axdxb. We suppose the-dimensiona is larger than the ““Qa F_kaaxbx(hb) Iy,
y-dimensiond. To construct the modes, we match actual
electric field lines to the integrated field pattern as depictedv
in Fig. 2. Characteristic wave numbers are of orggr  <Xi(rLb), or
~mla, By~ml/d, and B,~m/b. One expects a monopole - * (3 ayy2 * (5 1032
mode derived from the lowest TM made of the cavity, with Xpx (%,Y) =x+ B3, (x*— 3xy?) + BE, (x°— 10x%y?+ 5xy*)
frequency f~cpBq/2m, where i~ i+ B;. Next one ex- +O((r{))---. (30
pects to find two dipole modes, ar dipole with ,83
~(2B,)*+ BZ, and ay dipole atpj~ B+ (2py)%. The next
modes would be TE-derived dipole modéder hybrid
modes, corresponding t@2~ 32+ 42 (y dipole, hybrig and

normal quad skew quad

FIG. 2. Integrated longitudinal electric fie[dynchronous integratonfigu- p
ration for various modes of a generic cavity respectingndy inversion w
symmetries, viewed end-on, from the beam direction.

(28)

and we obtain

2 '
+ oy Ve

(29

here k, ,=w,[R,/Q],/4, and Xb)\(rib)zlimxo_@xo

The continuity condition takes the forid,, =Vg, + Vg,
and the conversion to waveguide impedance Mg,
=nV;, Vi =n,V; . Stored energy is

B~ Be+ B> (x dipole, hybrid. Clearly, where the modes NG
actually fall in frequency depends dm For largeb, the Uck:m’ (31
hybrid dipole modes come first, for very shdot they are , )
preceded by still other modes. A specific illustration of these?nd €nergy conservation determines that
considerations for an existing cavity follows in Sec. Ill. Qer &
Finally, let us make the cavity formulation explicit for , Ql, R, |2
the case of monopole and dipole modes. To isolate clearly Ini[= T o7 :(ZZ ,Bx) ' (32
the dependence on beam position, it will be convenient to ¢ ¢ ] .
employ Eq.(15) in the form where the unloaded transverse shunt |mpeda_1nc§g|§
=Qu\[ R, /Q], . Net power flowing out of the cavity and up
@ o d the waveguide is- P,,, where
a2t o gt ek Ve _IVEP-IVRP L VR IV 3
M 2zeng? YORLy
wy dVgy T . .
~2 0. dt —2k)\a Xy (rp) Ip(1), (25 Where one cavity is coupling several modes, it is helpful

to be able to transform to a common impedance. So for ex-
ample, where one cavity is functioning with both a dipole
where X, =wy (1 p)/Wy (r.0), kx=Ky ,r , and we wil and a monopole mode, one would appreciate a prescription
take the limitr, ,—0 for the reference integration path, and for adding induced voltages on the connecting waveguide.
augment our convention for mode normalization such thaf his is straightforward given the relation of the quantitigs
w, (r o) is real. For a predominantly monopole mode, and Vg, to the waveguide voltage coefficiewf normalized
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with respect to the waveguide mode characteristic impedancgy), = — 4a,y, x,[ (xX3—y2) +3(o2— o )]+ bl (X — 6x2y2
Z.. Thus we expect the contribution due to a monopole

mode to take the fornv; =Vg/n and that due to a dipole +yp) + 60—y (05— o) +3(ai—a0)?], (40)
modeV; =Vg/n’. In general, it need not be the case that the
reference plane for both of these modes is the same, and thus 4 2 25
there may be a relative phase between the two mode conth>5_ asypl (Yo~ L0KGY5+5%p) + 15(o5— 0y)

and decapole terms are

utons o lr bl g 0 h NTZaon 114555331 o107
age must be multiplied by a phase factor, afé=n’/n, or +5yp) +15(0%— 03)?+ 10(x5— 3yp) (02— 02) 1.
= ( QedR. /Q]d> vz 34 (41)
Qenl R/Qlm

These results permit us to evaluate explicitly the beam coor-
With the analysis of this section in-hand, we are in adinate function(X).

position to determine the cavity emitted signsl, due to For a predominantly monopole modg€X) amounts to

interaction of any particular mode with a beam, and to sujosition-dependent correction to the inferred beam charge

perimpose the voltage from the “design” or “desired” and phase,

mode \_/vrth other, parasitic modes, to quantify the effeot on (Xy~1+ B’z‘(xﬁ—y§+o§—o§), (42)

resolution. We turn next to apply this model to a realistic

beam model. at first order. For a predominantksdipole mode,
Xp=~Xp+XpB5 (Xg—3yp+305—307), (43)

at first order.
Next let us solve Eq(25) explicitly to determine the
Let us apply these results to the case of a non-pencivaveform emitted into the connecting waveguide, to be ob-
beam, employing a tri-Gaussian as a simple stand-in foserved “upstairs”. We integrate EQ5) for a Gaussian cur-
more realistic beam profiles. The beam current density takeent profile, withVe=0 corresponding to no drive, and a

C. Excitation by a tri-Gaussian beam

the form perfectly matched or isolated output load. One may check,
I(1) (X—%Xp)? (Y—VYp)? by differentiation, that
‘]b(xlyrt): 2 eX[{ - 2 2 2 2 ’ t
TIxTy Ix Ty (35 ch(t):_Zkle wdt’g(t_t')[|b<x>]t'

with current waveform
:—2k|)\R<1+J Aff dt’ e [1p(X) Te
2&)x

(t— tb ) @6

Ip(t)= 2—)112— P(
is the solution of Eq (25, where we abbreviatey,
and beam arrival time dt=0 ist,. This beam we view as a =, /1Q,, Qz 4,/%, r,=1n-jQ,, and the
superposition of “pencil beams”, and the induced cavity green’s funct|on |s
voltage is accordingly a superposition of the induced voltage vy
from each. Thus in Eq25) X, is replaced with X, ), where g\(t)= [ cosQ,t— Hsinﬂxt] e "2
(... denotes a charge-weighted average over the beam cross- A
section; to compute this average, we require the various
beam moments, involving integrals of the form =
1 +o0 (X—Xp)? _ _ - .
(xM)= TJ dxxmexp{ - —2) (370 Our interest here is not the variation of the cavity voltage
(2m) oy ) 20 during the bunch transit, rather the amplitude and phase at
and using the binomial theorem, and Gaussian integrals, wehich a cavity mode is ringing, after the bunch has passed.
find <X>:va (x%)= Xb+0'x' 3y =x2+302 Xb, (x*y=xg  Assuming that the beam transverse coordinates are constant
+602x2+30%, and(x®) = xg+ 15x,04 + 10302, with simi- throughout the bunch, and that bunch length is short com-
lar expressions foy. In this way, we obtaifw)=(W)y,, Pared to the mode period, we find
+(W)g+ (W)s+ (Ws+- -, where terms through second or- Vex(t) == 2k, Qu{X,)exp — 3wiof) R e™ (7, (44)
der are

- where
(W)o,1,2=Po—a1yp+ biXp—28,XpYp v,
_ ; _ 1 2
+b2(X§+U§—y§—U)2,), (39) m=|1+] ZQ)\)qu A hop),
sextupole terms are and ,~1 to an excellent approximation f@, ,>1. Thus
(W) 3= —azyp[ (3%5—Yp) +3(05— 7)1+ baxy[ (X5 — 3y5) one sees that after bunch passage, the cavity rings at the
. resonance frequenc{), (with damping correction It is
+3(ox—0y)], (39 helpful to write Eq.(44) as

octupole terms are Vg, (1) = ReIDE Y (1), (45)
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where the phasov, (t) has a step-rise and exponential de- ch(t):Refwt*tbn)H(t—tbn)\A/Cm, (549
cay,
5 A Lt where
Var(t) ==V H(t—tp)exp 27t 46 y
(V) enH( b) €XP (46 chn:2k)\an<X)\n>qu_%wiatzn' (55)

W|thAampI|tude Lo o We may then express the total voltage at any time as
Ver= 2K\ Qp{ X)) 7, eXpl — z0507). (47) N-1 tpn<t

This is just the cavity phasor in the “rotating frame”, Ve(1)= ngo chn(t)=73n§0 e (v, o

stripped of the high-frequency modulation, and evanescence,

and referred to beam phase. It conveys the beam charge, the ton<t -

form factor F=exp(—3w’0?), and the position dependence =Re 7t ZO eV, (56)

in {(X). These dependences on beam moments may be sum- "

marized in terms of a generalized form factor. Specifically,The latter sum is taken over those bunches that have already
for a monopole mode,V,, =2k,Q,F\7,, where F, passed as of tim& This sum may be employed to study
=F,F, and analytically and numerically the effects of systematics due to
(48) Tn, Fn, and Qy, variations withn. For numerical studies,

R computation of the sum in Eq56) is amenable to a recur-
For an x-dipole mode, V., =2k, ,QuF,7X,, Where F,  sive form; we evaluate our sum just after the passage of the
=F,F; and mth bunch, rearranging it to find

F.~1+B3(x¢—3yp+305—303). (49 Vor(toms)=Vormt+e Nmm- 0V, (ty1.).  (57)

To relate these results to observable quantities, note that efhis series starts after the Oth bunch, Wﬁh:)\(tbo +)

Fi~1+B} (Xp—yp+oi—0o5).

ergy deposited in the cavity by a single bunch is =Vero.
|\‘/ |2 An explicit analytic result is instructive and is easily
UAZR;;:kKQﬁKXMZexq— wla?), (500  obtained in the case of an idealized “top-hat” current pro-
o\[RIQ], file, a uniformly bunched beam, steady or small beam size

and the power waveform radiating from the cavity rises as @long the bunch train, and steady or small centroid offset
step function, and decays exponentially witliolding time ~ along the train. We permit a frequency deviation between the
T¢/2=1/v,=Q, /w, . Cavity heating is determined by peak beam and cavity resonance. Summing a geometric series, we
power dissipated in the cavity wall®y4=w,U/Q,, . The find

peak power radiated out of the cavity is ~  expl,m)—1
V|2 ~ 28 U ch(t)—Rexﬁr(t_tbo)]vcxow, (58)
TPTQIRQL Qe AT o
2 A e f where n indexes the last bunch that passed, itg,<t
Thus for a monopole mode, we have <tpns 1. At early times this gives a voltage waveform rising
28 1 linearly in time and output power rising quadratically. As
_PWZW T—ka§|F|2 (52)  time goes on, the system reaches a steady state between
f power deposited by the beam, and power absorbed by the
and for a dipole mode, walls, and radiated down the waveguide. After the bunch
28 1 P train has gone by, the v_oltage decays exponentially. _
- PW:W T—kMbeb| F|°. (53 In the case of a cavity perfectly tuned to resonance with
f the perfectly bunched beam, we habgr= v, 7/2=m/Q,
<1, and

D. Excitation by a bunch train ~

. V ) ~
To determine the transient signal produced by a bunch/cx(t)wRexpi“x(“‘bo)%f=Rexd“h<t‘tb0)veﬁy>\, (59

train, we superimpose the transient voltages induced by the A

individual bunches. We number bunches-0,1,...,N—-1,  where

and refer to timety, the arrival time of thenth bunch(just R Quy ~

like the variablet,, used previously so thatty is the arrival Veﬁ’)\:7vc)\o: — 2Ky Quefr A ( Xy yeXP — 303 0°9)

time of the lead bunch. Let us express the timing of ritte (60)

bunch with respect to bunch #0 as=t,,—t,o. For typical

accelerator operation, the bunch spacing is approximatelgnd Qpey=Q\Qp/7 is the amount of charge passing

constant,r,— 7,1~ 2m/Q,, where(, corresponds to the through the cavity in one fill time. This may also be ex-

angular frequency for the accelerator, or a subharmonic of ipressed asVeg,=1,R \(X\)exp(— %wfof), where 1,=,

For definiteness, we will suppose the former. In gen&gl Q,/27 is the intrapulse current, and the loaded shunt imped-

may differ from the mode resonance frequerey, in the anceR,,=Q,,[R/Q], evidently characterizes such steady-

case of a cavity temperature excursion, or for a parasiticstate resonant excitation.

nonresonant mode. Appreciating that the resonant enhancement can be
The voltage waveform induced by timth bunch is large, let us consider the effect of detuning from resonance.
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We parameterize the detuning of the cavity resonance fre-
quencyQ, from the bunch train frequendy, by the tuning
angle

B O\ Qg ) 0 —Qq 61
tany, =Qy, [N QL 0, /! (61
in terms of which,

V() ~Rexf jQ(t—ty)] %\A/C0 cosyel?. (62)

Evidently tuning error introduces both a phase and an ampli-
tude error. The amplitude error is second order in the tuning %
angle, and the phase error is just the tuning angle. In general, I_
the amplitude of the resonant denominator in E&{) is

. w Q)
smr?( Q_o)

z

T 1/2

A l=lel"—1]=2 ex;{—
| | 20,

™

20, +sir?

FIG. 3. This 12 in.-long assembly consists of three 2856 MHz cavities for
(63) monitoring of beam phase, and horizontal and vertical position. We will

. . analyze the combination of thecavity and the phase cavity.
so that, in the case of large detuning from resonance the

enhancement factor o, /= is replaced with a factor of ) )
order unity. pedance occurs fop=158.1° and isSRs~3.77 M), with

Before leaving the matter of bunch train excitation, let usQw=1.73¥ 10flv and[R/Q]~220Q2. A more precise result
note an alternative method of computing the transient cavity® oPtained with an eIectromagnetlc.fleldllsolver and we em-
voltage. We approximate our expression for beam currenloy the finite difference codeésdfidL.™ We obtain f
using the first-harmonic component,,~Riel®, and ~2836MHz, Q,~1.51X 10, [RIQ]~236Q, and k
similarly represent the cavity voltage a@%vaejwt' We ~1.11V/pC. Given the accessibility of the cavities for

make the slowly varying envelope approximation, such thaPenCh r_neasureme_nt, the a”f_*'y“c_ scalings and the _elect_ro-
~ ~ ; magnetic computations are primarily of use for mode identi-
|[dly/dt|<w|lye|, and find

- fication, and accurate calculation of the mode coupling coef-
dVv;

1 ] ~ ~ ficientsa,,b,.
T T_f(l_J tany)Ve~—Kilpo- Characteristics of the phase cavity have been measured

Abbreviating A= (1—  tany)/T;, one finds that for an ini- on the bench as part of a three-cavity assembly, as seen in

. ; . . Fig. 3, employing an HP8510 vector network analyzer, with
tially unexcited cavity, and a beam current waveform arriv- Lo .
ing att=0 N-type calibration and 801 points over a span of 20 MHz.

t Cavity temperature was held steady to 0.5°C by means of
Y (1)~ — e a— At T (41 eAt’ temperature-stabilized water flow. We firfie=2855.8 MHz
Ve(=—ke Jodt 'oolth)e™ at Tp=45.0°C, with temperature coefficient dff/dT~ —6
Using I.b.=2|th'one confirms the result obtained from su- selg;a:;i/ti\z tlgffhr;e;(g‘{ve 07](?;( el(?‘;’n\;]vggteOSL was found to
perpos_mon of single bunches. . . . Comparing these figures to those of Altenmueller and

Th|s_ completes our analysis of the interaction of theBrunet, their valueQ, ~1200 is consistent. Their estimate
beam with th_e wavegmde-couplec! caV|t_y mades. In the neXER/Q]~248() is about 5% higher. For a loaded shunt im-
section, we |Ilustra_te these considerations for an exampl edance oR,~0.28 M), and loaded fill timeT,=2Q, /
beam-position monitor system. ~133ns, the single-bunch scalings &fe=1.1uJ Q3(nC),
and P,~15W Qﬁ(nC). The steady-state, multibunch scal-
lll. TWO-CAVITY BPM SYSTEM ing is obtained with the substitutio@,— Qpes=QLQp/,

We consider the beam-position monitor system illus-and corresponds tB8,,~0.26 W12(mA).
trated in Fig. 3, as discussed in Ref. 1. The system makes use For this phase cavity, we have cylindrical symmetry to
of three cavities, including a vertical position monitor cavity; an excellent approximation, so that the quadrupole teym
however, without loss of generality, we are free to concen=0. In fact, even a slight quadrupole component would not
trate on analysis of beam-position monitoring in the horizon-significantly effect the systematics of this signal, since it is
tal. not employed near a signal null, unlike the position cavity.
One might be concerned about the bunch-length dependence
of the cavity emitted signal, insofar as pulse-to-pulse fluctua-

The geometry of the phase cavity is seen in Fig. 4 agion in (unmonitored bunch length could then function as a
originally designed by Altenmueller and BrurttOne can  source of “noise”. Two features mitigate against this poten-
appreciate the parameters for the phase cavity with referend@l systematic however. First, the bunch length typically
to the scalings for a closed, cylindrical pillbox—the cavity must be quite small, insofar as a long bunch will exhibit
prior to perturbation by the beam port, nose cones, and exnergy spread unacceptable for experimental application of
ternal coupling. In this idealized model, optimum shunt im-the beam. The root-mean-squdrens) phase width of the

A. Phase cavity
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FIG. 4. Interior dimensions for the beam-phase monitor cavity and the geometry as employed in the field solver.

beamo ,(°rf) ~6.8 6g(%) with 6g the rms energy spread. L Bx= )

Thus even if the accelerator is configured to produce a large ZoHy=—] EEO cog Byx)sin(Byy),
rms energy spread of say 1%, the bunch length will be short, ) )
less than 2.0 mm. In this case, exp202)~0.993, and the where oth_er components zero. The coordinates relative to the
form factor correction must necessarily be small. Fluctuatiorpeam axis arex;=x—df2  and y,=y—a/2, where a

in the form factor correction is then an even smaller effect,i4'1820 .in_.=10.6223 em, 'ﬁ the 'cavi'tcyi/ hheigh.t, de h
negligible for applications we can envision. The second fac¢_4'7080 |n.—1'1.9583 cm is the cavity width. Cavity lengt
b=2.001 in=5.0825 cm. Wave numbers arg,

tor mitigating against bunch-length induced jitter arises wher®
the signal-processing scheme employs the beam-induced™™/d, By=nm/a, and Bo=pBi+ By. The resonant an-
phase-signal to normalize the beam-induced position signa@ular frequency isuo=cfo. In this notation, the “acceler-
In this case, the form-factor correction for bunch length di-2ting mode™ or “monopole mode™ is Ty, and the first
vides out, leaving a result independent of bunch length. Thi§V0 “position sensitive” or “dipole modes” are Tiyho and

is seen in the analysis of Sec. IV. 120+ ]
Using these modal fields one can show that for the de-

sign TM,;, mode(x-dipole mode,

2
B. Position cavity inz% g} w(ZCZO)T2(’BX:) (64)
X a
The resonant beam-position monitor cavity is depicted in (.0
Fig. 5, as originally designed by Brunet al!? We consider ~and
analyss applcs 10 the verical. We could ada that the acl - 3 - 2( £ & 28 9
yeis akp ' Qu 2[dV[H[Z B3\d a 2b)°

degree of freedom one is looking at depends on the align-
ment during installation. To appreciate the fields and couwhere the skin-deptlh~2.1um/\f(GHz)~1.2um for cop-
pling of the position cavity, one may consult in the first per. The corresponding frequency is 2.8768 GHz. Theoreti-
approximation, the closed-pillbox geometry. For beam andal wall Q is Q,,~2.26x 10*. Transit angle is 199°, corre-
cavity axis perfectly parallel, the beam couples only to TMsponding to transit angle factdF=sin(6/2)/(6/2)~0.568.
modes of the pillboxthose with an axial electric fieldThe  Then k, ~8.07x10 2V/pCcn?, [R,/Q]~17.8Q cm 2,
lowest frequency modes are the T\ modes(no longitu-  andR, ~4.0x 10° Q/cn?.

dinal variation in axial electric fie)d with field components In addition to the design mode, the monopole mode,
EZZEO sin( B,x)sin(Byy), TMy40 Will be excited by the beam. Unlike the Ty} posi-
tion mode, the TM;o mode has nonzero reading with beam
ZoH, = | &EO sin( B,x)cos ByY), centered, and thus acts as a common mode between different
Bo position readings. This is a concern since the output coupling
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FIG. 5. Interior dimensions for a horizontal position cavity, and the geometry as employed in the field solver.

is asymmetric and unable to distinguish the two modes byand loss factor i&;~0.64 V/pC. We note that there is also a
symmetry, as seen in Fig. 6. The natural correction to thig-dipole mode, TM,, at 3.088 GHz; however, symmetry
problem, is to employ two outputs coupled through a hybridhinders its coupling to the guide.

tee, to remove modes of even symmetry, up to the isolation T4 gptain more precise results, and to accurately deter-
provided by the tee. In the meantime, the implication for the,ing the higher-order dependence on transverse position, we

outpu_t w_aveform from the cavily is that it mCIUd_eS_ a finite employ the field-solver. Results are summarized in Table II.
contribution from a monopole mode, due to the finite exter-

nal Q of that mode. To estimate the excitation of the ;M Ihle7;0{15)4poleR/mod~e1;r6eguenc§/: tsgicggiﬁ Vc":'th %’]V
mode, we employ closed-pillbox scalings and find a resonant, ’ [RIQ]~ , - and k~U.coV/pL. 1he

frequency off = 1.8875 GHz andQ,,~1.66x 10*. Transit higher multipole content of this mode is of interest in con-
angle is 115° and the transit angle factofTis'0.84, so that Nection with the BPM offset. Given the symmetry of the

cavity, we expect to find

[ R} z TZ( 8b ) 2150 (66)
Q) ™ |Boad ’
TABLE Il. The first few modes of the linac position cavity.
monopole dipole Mode f(MHz2) Qu(x10%) type
1 1893 1.72 monopole
2 2861 2.17 x dipole (design
3 3071 2.18 y dipole
4 3183 1.90 hybridy dipole
V4 5 3247 1.98 hybrick dipole
VintVa 6 3499 1.74
7 3505 1.54 monopole
8 3771 2.44
| | | 9 3867 2.37
10 4029 2.42 monopole
11 4077 2.44
FIG. 6. lllustration of monopole mode coupling to a single output, and 12 4193 1.79
suppression of the monopole mode by means of two outputs. The sign of the 13 4251 1.97
integrated electric field is indicated by the solid dots and the cross; magnetic 14 4418 2.61 monopole
field lines correspond to the circles; the beam passes into the page. Use of 15 4757 2.55

symmetric couplers and a tee separates modes of opposite symmetry.
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R R , . 2 4 first three beam harmonics shows a IQ/\p-oupIer resonance
al~la |1+ Ba(Xx*—y?) + Ba(x*—6x7y*+y*) 24 MHz below the 5712 MHz harmonic, a cavity mode 8
0 MHz below the 8568 MHz harmonic, and a mode 3 MHz
+o(ri)___|2_ (67) above the 11424 MHz harmonic. This last mode, and any

) , higher parasitic, near-harmonic modes will not be cut off in
Analysis of the solver output leads to a fit for the normali,o peam tube, and thus accurate assessment of their fre-
quad_rgpolfz and normal (_)gtUp‘_)lf componenB,;~6.3  guency and width is best determined from beam-based ob-
x10 “em 5, By~—5.7x10"cm % _servations. In the meantime, it would be prudent in operation

The mode near 2856 MHz is the intended operatingq, remove such harmonics by filtering. In the setup of Fig. 3,
mode for the cavity. Evidently the cutting of the beam port s talk between the phase cavity and the adjaceatity
(where magnetic field is large, and electric field spniziiv- may be quantified by measurementS, between the two
ers the frequency from the closed pillbox estimate. Thisy, ¢ couplers, and is less thar70 dB, and not accessible
mode falls into the category of an “odd in even iny”  \yith our calibration. This good isolation we attribute to the
mode and so we may expect to find symmetry of the modal field patterns, and the high beam-

R tube cut-off frequency of 8.65 GHz.
—ley? == 2_nay2 4 100202 4
[Q 19 |1+ Ba(x*—3y") + Bs(X" — 10x°y*+ 5y") With mode parameters in-hand, we compute that a
o single-bunch deposits enerdy~ 1.0 nJQ2(nC)x3(mm) in
+0(r7)..[% (68)  the design mode, corresponding tB,~27 MW Q2
Analysis with the field solver shows th&,,~2.17x 10%, (nC)xﬁ(mm).Z In steady state, this takes the forRy,
[R,/Q]~23.20cm 2, k,~1.04x10 'Vv/pCcn?, By ~0.14mW Iy(mA)X,(mm). For the parasitic monopole

~—42x10"3cm 2, and Bg~—4.4x10"3cm 4. The fit mode,P,~4.3W Q(nC) for a single bunch.

agrees to three d|g|t5 in most cases, except for offsets ap- NeXt, we consider the concerns ariSing in anaIySiS of the
proaching 1 cm, where agreement is to two d|g|ts In practimultimOde waveform emitted by a beam-excited CaVity. We
cal terms, fo a 1 mmoffset these terms amount to a correc- will employ the BPM cavities and characteristics described
tion at the level of 100 ppm in beam-induced voltage, andn this section for numerical examples.

will be completely negligible. Given that the beam pipe ra-
dius is 1 cm, the maximum correction one could prod(ite
one were tryinggwould be at the level of 1% in voltage, at
the cost of scraping beam in the aperture. To appreciate the effect of higher-mode and multipole

The y-dipole mode appears at 3017 MHz, with systematics in inference of position, a model for the signal
[R, /Q]~22.8Q cm 2. Mode #4, at 3184 MHz is also a processing is required. In this section, we first make some
y-dipole mode, a hybrid derived from the lowest TE mode ofsimple estimates based on signal amplitudes, and then go on
the closed pillbox, Tk;. This mode has a vertical electric to consider phase information as well. We employ an ideal-
field developing a longitudinal component due to the beanized model for signal processing, assuming linearity, infinite
ports, with a resulting odd symmetry yn and even symme- dynamic range, no digitization error, and, where down-
try in x. It has a low[R, /Q]~0.3Q2 cm™2, as does the 3247 mixing is invoked, a stable, tuned local oscillator, with at
MHz x-dipole hybrid with[R, /Q]~0.4Q cm 2, derived most a constant phase error.
from the TEk;; mode.

One additional mode, #35, is noteworthy in that it is
close to a beam harmonic. It isyadipole mode at at 8592 Let us suppose in the simplgsind worst case, that one
MHz with [R, /Q]~0.7Q cm 2. If the mode of the actual performs power detection on the output of theavity sig-
cavity (as opposed to our numerical mopdelere in fact 24  nal. If one attempts to estimate the resolution in single-bunch
MHz away from the %2856 MHz=8568 MHz beam har- mode by comparing energy deposited in the dipole and
monic, this would be no cause for concern. However, at thisnonopole modes one arrives at a positiogr VK /K, ¢
level of precision one would prefer to check the actual cavity=2.9 cm, lying outside the beam pipe. If one filters the out-
to see where the mode lies, after perturbations due to thput, the parasitic mode amplitude is reduced by a factor of
coupler, brazing, dimpling, vacuum, and temperature. order 1Q, , and becomes comparable to the dipole signal at

We performed bench measurements on the position cawffsets on the order of,~0O(10um). The situation can be
ity under conditions as in Sec. lll A, finding for the design improved further by symmetric output coupling as depicted
mode a temperature coefficient oflf/dT~—-5x10* in Fig. 6, or a variant as seen in Fig. 7. With the monopole
kHz/°C, andf =2854.4 MHz afT =45.0 °C. From measure- mode amplitude reduced by a factoreptthe signals become
ment of S;; we infer Q_~6.5x10% and 8~16.5, so that comparable ak,~O(10um)e, and beam motion at the 1
Q,~1.1x10*. These parameters correspond to a loadegkm level could be resolved easily. For a bunch train, excita-
transverse shunt impedance Rf ~1.5x10°Q cm 2 and tion of the off-resonance parasitic mode results in signal re-
fill-time T;=~72ns. For the first parasitic mode, the mono-duction, below the level for a single bunch, by a factor
pole modef~1890.1 MHz afT=45.0 °C, tuning with tem- ~O(1), from Eqg. (63); meanwhile, the design-mode ampli-
perature asdf/dT~—1x10°kHz/°C. We find Q_~2.9 tude is enhanced by the factQ; /. For our parameters
x10® and B~3.6, corresponding toQ,~1.3x10%, R, this implies comparable signal levelsxat~O(10? um). In
~0.6 MQ, and T;~0.32us. A survey of modes near the this bunch-train mode of operation, filtering helps to remove

IV. POSITION MEASUREMENT

A. Signal levels
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ti;% output(in-phase and quadratyreixer. We can express the
P | beam voltage phasors from the position and phase cavities, as they
[ : I_D_, would after down-mixing and detection,
[ ! V,=¢,Qene!?, (69)
s ) | ¢~ Yo
o : o V= CxQeiiXp+ €xQef - (70)
T The terme, represents the parasitic mode component. The

phaseg we introduce to account for any phase error incurred

FIG. 7. Options for retrofitting of existing cavity BPMs to improve perfor- in the signal processing, e.g., differential cable expansion or

mance include coupling adjustment with an in-line tuner, and combining ofdifferential phase drift between the LO used for theavity

two adjacent cavity outputs in a hybrid tee to subtract the monopole modgignal, and that for the phase-cavity signal. The coefficients

contribution. Cx, C, are determined from calculations in the foregoing
sections, and cable propagation characteristics. The effective

harmonics, but not the driven oscillation at the beam fundachargeQ, is determined from the convolution of beam

mental frequency. With symmetrized output coupling, onecurrent with the cavity response. These parameters are im-

could obtainx,~O(5 um); this figure can be reduced into bued with the choice of sampling technique. We can express

the submicron range, if the dipole mode coupling is adjustedthe position phasor as

as seen in Fig. 7, to raise the load@d _ _ V =¢,Qu(X—Xo), (71)

In light of the foregoing discussion one is naturally in-
clined, where precision is required, toward subtraction of thevhere the offset

rejection in pairs coupling adjustment

parasitic mode signal. This is best accomplished employing _ €x _
phase information, and vector subtraction. This may be illus- X0~ — C_x =Xor tJXoj (72
trated most simply referring to the integral of the down-
mixed waveform corresponding to the parasitic mode, is iq _gen_eral_ complex. Dependence of voltage amplitude on
fe . R, cnOs position is given by
f_w dth—CM(t)eJAQ(t R m’ |Vx|2:|CxQeﬁ|2[(X_XOr)2+Xc2)i]1 (73)

with R__cy the loaded shunt impedance of the parasiticand exhibits both a nonzero minimum and an offset from the

mode, T;cy the fill ime, andA Q ey =Qcy— Qo the detun- center axi; defined by the posi'Fion—sensitiye mode.

ing of the parasitic mode from resonance with the bunch Analysis of the detected signal permits inference of a
train. Taking Qey~27x 1.89 GHz, Q,~27x 2.856 GHz, 'esult for position given by

and T;cy~100ns, one hasl;cyAQ~6.1X10?, as one VXVZ (C X+ €,)

would obtain from Eq(63). The feature to note about this X:kRV i ca? ~ SXtXo, (74
result is that the phase of this signal is fixed with respect to ¢

the beam, and independent of offset. Thus if a reliable phaseith some choice of calibration constakt Thus the re-
reference is available at the waveguide output “upstairs’sponse of such a BPM is determined from the scale, and the
(for example, derived from the phase cayjtthe parasitic- intercept,

mode component can be balanced out in a tee. Assuming a

common cable run, and roughly equal cable lengths, this may S= kRC—e 14" (BPM scale factor, (75

be achievable in a diurnally reliable fashion. In the case that ®

consistent monitoring is required over a scale only of min- o € .

utes, requirements are relaxed. With these considerations in XO_kR:e ' (BPM intercep}. (76)
mind, let us consider in a detail a more elaborate use o,fl_
phase information.

he intercept corresponds to the reading for a centered beam,
and should be distinguished from the offset of the beam at
zero reading;— X/S.
Let us analyze the systematic errors in scale and offset,
to characterize the intrinsic resolution of the BPM with this
We consider a front-end processor as depicted in Fig. &nt-end processor. To do so in the most specific fashion,
employing a free-running local oscillat¢tO) and a dual \ye should indicate by what means the voltage phasors are
processed. For simplicity, we will assume that the full volt-

B. Scale and offset

v, N age waveforms are integrated with gatewidth longer than the
Vx pulse length. This manner of detection, has the advantage
Vio that the area under the cavity phasor curve is proportional to
vV the pulse-averaged chargi the case off V dt) or the
o ~ ot
V(p pulse-averaged, charge-weighted positigm the case of
[ Vxdt).

FIG. 8. We analyze systematics as they would appear at the output of a W th h it id |
homodyne dual mixer providing in-phase and quadrature waveforms, fol- e suppo~se € phase cavily provides a puré monopole

lowed by integration on each channel. cavity phasoV._,. The position cavity provides a cavity
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phasoV._, that is a superposition of a predominantly dipole We must then insure that the scale factor is constant at the
mode (the design mode and a predominantly monopole level of 1%. For a “top-hat” macropulse with no chirp in
mode (a parasitic mode In this case, beam variables, we have

S~F, cos¢~[1+B%(x;—3y;+30;—307)]cosp, (84

~ +oo
=el? ~el¢
Vee ffoc dtVe-(t)~e RL; QonFen. ) \ith no bunch length dependence. Recall tBat~ —4.2

.. x 10 3cm 2 is small, with the result that scale deviation
VXEJ dtvcfx(t)NRLLE QuiXoFun due to nonlinearities occurs only for gross vertical misteering
—o n of order 9 mm. For scale factor to be constant at the 1%

R level, we require thatp be stable to better than 8°. If the

' yp——M 3 QL Femn- (78  requirement were 0.1%1 xm out of 1 mm, then ¢ should
1=iTiemAQcm R be stable to better than 2.5°, and vertical misteering should
not exceed 2.8 mm. In view of these results maintenance of
a reliable scale factor appears feasible.

We must also insure that the intercept is stable joml
over the measurement period. This is the point where one
needs to account for the quadrupolar content of the mono-
pole mode of thes cavity. In the previous section, we found
that this could be quantified in terms of

The loaded shunt impedances drg:for the monopole mode
of the phase cavityR, | for the dipole mode of the position
cavity, andR, ¢ for the parasitic mode of the position
cavity. The generalized form factors afg, for the dipole
mode of the position cavityr,, for the monopole mode of
the phase cavity, anéf:y, for the parasitic mode of the
position cavity. In the last expression, we include a faajor P,
to account for any additional measures employed against the Fi=1+B3 (X%~ Ypt+ ox—0y). (85
parasitic modde.g., symmetrization as in Fig).8Jsing EQ.  The normal quad component for the parasitic mode of the
(34) the magnitude of the offset of Eq72) may be ex- |inac-stylex cavity was found to be,~6.3x 10" 3cm™ 2.

pressed up to an overall phase factor as As a consequence of this quadrupolar component in the para-
~ 1 | 7] sitic mode, the intercept takes on a dependence on beam
[Xol ~ 2 m(lJfﬁx) coordinates that could in principle disturb the measurement

of true position variation. So, for example, let us suppose
1ol [RIQlcm| M 1 that operation with a beam motion over a range as large as
X Bx [R, /Q]4 (QecmQux) 5 Xp~1 mm is envisioned, and, at the same time it is required
X that the intercept remain stable at the level gfrh. In this
where we consider a uniform beam and comparable forngase, we requiré,B,x3<1um or X,<1.6cm. Thus the
factors, for illustration. Thus the parasitic-mode offset isabsolute intercepX, cannot be too large. We can estimate

minimized for an undercoupled parasitic modé-f,—0), its magnitude usingR, _cy~0.6 MQ, R, ~15kQcm 2,
and a critically coupled dipole modeg{=1). In"|~0.15cm !, and T;AQ~-1.9x10°. We find X,
Comparing Eqs(77) and(78) to Egs.(69) and(70), and  ~30umX 7sin¢. This implies that despite the transverse
neglecting cable propagation factors, we may identify variation in the parasitic mode, and its possible effect in
“faking” beam motion, one has several orders of magnitude
C,Qei~ RL; QonF n (79  to spare.

Note also that in the case of a macropulse-integrated
signal, the effect of equad-cavity ande-cavity tuning errors
xQeX~R, | > QprXpFxn, (80 cancel in their contribution to scale error. That is to say that
A both phasors are multiplied by the same complex correction
, R._cm factor cosgyel”, and these factors cancel. The residual effect
€Qef~N ﬂm; QounFemn- (81) of cavity tuning error in this case is through the parasitic-
mode interceptX,. The parasitic mode, being already
Making use of the thactual charge-weighted beam-centroid greatly detuned, picks up little in the way of a correction in
X=2 QupnXpn/2 Qpn, the scale factor may be expressed as this case. Thus a drift in cavity tune from zero tuning angle
S QuXorFyn S Qpn to 8y, results in a drift in intercept, through the normaliza-

= COS¢, 82 tion signal,
2 QpneXpF on 2 QppXpn 4 (62 sin( ¢+ 64)
o Xo=~30 pmX g—— "2
where we suppose that the calibration factor has been chosen coq 6¢)

ask=R_ /R, to makeS=1 for cos¢=1, and a perfectly 14 no|d intercept drift to 1um requires control of phase
centered beam, uniform throughout the pulse. Intercept iSngle at the level ofy<1.9°. With Q_~ 1200 for the phase

given by cavity, and temperature detuning ef60 kHz/°C, this im-
- Ri_cm = QpnFemn sing - plies temperature r.egul'ation at the level of 0.5 °Q.
oM TR T SO eXPF on TromAQoy’ To conclude this discussion, let us emphasize that, for

the sake of illustration and simplicity, we have made some
To illustrate, let us consider the cavity system of Sec. Ill,assumptions regarding the signal processing that are unnec-
and suppose a requirement to resolvart out of 100um.  essarily restrictive. The assumption of infinite gate-width in
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Egs.(77) and(78) implies that variation within the pulse of complexity of the problem by electing to consider isolated,
centroid position is not resolved. One could in principle findnarrowband cavity resonances. This is not the whole of the
“x=0", when in fact the head is at 100 um, and the tail is problem. First, as shown by Lil{,a cavity connected to a
at —100 um. Where such intra-pulse resolution is required itwaveguide exhibits beam-induced fields with algebfaan-
is straightforward to extend our treatment to that case asxponentidl decay. Their effect on the pickup has not been
well. Also, let us emphasize that E¢r4) represents one characterized here. In addition, frequencies above cutoff are
choice as to the method of detection, and other choices am@so induced by the beaf,and the corresponding broad-
possible. For example, the modulys,V;|/|V,V;| also  band impedance accounts for a significant fraction of para-
could be monitored to track drifts igh. Our analysis indi- sitic energy loss by a beam in a cavity. Their coupling to the
cates that this is not necessary. In addition, we point out tha@utput structure is not well characterized, and further work
if one wishes to remove small nonlinearities in the transverseould improve on this. Including such modes, and a few
coordinate dependence, this could probably be accomplishétigher monopole modes still below cutoff, one may expect a
by employing Eq(74) for a first estimate of position irand  parasitic mode voltage amplitude a factor of 2 or so higher
y, and then employing inferred coefficierg, and inferred than determined from the lowest monopole mode.
cavity centroids to remove the residuals. Our analysis indi- In the meantime, we have seen that in an asymmetric
cates that such a complex procedure is not necessary forstructure, the variation ¢fR/Q] with transverse position has
pm scale resolution. a fair variety to it, and is amenable to classification much as
A more subtle potential contributor to systematics arisedbeamline magnets are. As in the case of beamline magnets,
from the effect of the cavity on the beam; let us show thatwhen precision is required, one is interested to know not
this is a small effect. For the phase cavity, bunches willonly the dipole field on-axis, and the quadrupole gradient,
experience a retarding voltage on the order\6£R I,  but higher moments as well.
=2k Q¢q- UsingR_ ~0.3MQ, this corresponds to 30 kV/
100 mA of beam current, a negligible induced energy spread?CKNOWLEDGMENTS
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