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Analysis of an asymmetric resonant cavity as a beam monitor
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We analyze the excitation of an arbitrary, externally coupled resonant structure by a charged particle
beam, providing a rigorous formulation of the effect of spurious modes and intrinsic mode
nonlinearity on inferred beam coordinates. Results are illustrated for a two-cavity system employed
for beam-position monitoring with an idealized front-end signal processor. ©1999 American
Institute of Physics.@S0034-6748~99!01403-3#
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I. INTRODUCTION

Charged particle beams are powerful tools with which
dissect the fundamental laws of nature and today high en
physicists sift through the rubble of beam collisions sear
ing for deviations in the predictions of the Standard Mode
the level of 1 part per million. High precision studies of th
kind require exquisite control of the beams, and this impl
a requirement tomonitor the relevant attributes of the pa
ticle distribution. One such beam monitor consists of a re
nant cavity. Historically, these have been employed to mo
tor beam phase and position, and their precision has not b
particularly stressed—the original resonant cavity beam
sition monitors employed at Stanford circa 1965, were
quired to function with a resolution at the level of61 mm.1

However, modern applications require resolution at the le
of 61 mm or smaller.2

In this work, we analyze a resonant cavity as a pickup
discern the essential systematic effects that appear in
devices when high precision is required. One of the spec
problems that motivated this work is a resonant bea
position monitor~BPM! cavity to be used for a fixed-targe
experiment~‘‘E158’’ ! at Stanford.3 This experiment requires
precise beam-position monitoring to permit accurate inf
ence of beam-angle on-target.A priori one is inclined to
design and build special-purpose cavities for this purpo
However, for reasons of cost, it is of interest to make use
existing cavities—rectangular cavities with a single coax
output. For such cavities, and at the 1mm level in beam-
position monitoring, the effect of nonlinear field componen
on the inferred beam position must be quantified. Moreov
one would like to know if it would be useful to retrofit suc
cavities, and how one might do this, to improve the pre
sion.

Beyond the application to this specific BPM system, e
perimental studies in other resonant structures sugges
need for a thorough analysis of the problem. For exam
conventional accelerating structures possess dipole m
and these have been instrumented to detect beam positi4,5

In addition, in recent years, interest has developed in mi

a!Electronic mail: whittum@slac.stanford.edu
2300034-6748/99/70(5)/2300/14/$15.00
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ture planar accelerating structures.6,7 Unlike the conven-
tional axially symmetric accelerating structures, the pla
structures produce a fundamental accelerating mode con
ing a quadrupolar component. This focusing or defocus
component is a serious issue for beam dynamics. Anal
presented here provides the framework for characteriza
of such structures as pickups or kickers.

In Sec. II, we set down the theory of a resonant cav
pickup, providing a simple formulation categorizing the mu
tipole coefficients required to describe field nonlinearities
an asymmetric electromagnetic resonator, including differ
tial external coupling. We compute mode excitation by
tri-Gaussian bunch, and, using superposition, we determ
the excitation by a train of such bunches. In Sec. III w
illustrate these considerations for the case of the beam p
tion monitor system proposed for E158. This includes ana
sis of the mode characteristics of the two cavity geomet
proposed, supplemented with bench measurements. In
IV, adopting an idealized model for the front-end signal pr
cessor, we go on to illustrate and quantify the effect of pa
sitic modes, and nonlinearities. This discussion and
bench measurements provide a rigorous starting point for
E158 BPM error analysis. In Sec. IV, we offer some conc
sions.

II. THEORY OF A RESONANT CAVITY PICKUP

In this section, we analyze Maxwell’s equations for
cavity with waveguide coupling, wall losses, and beam ex
tation, reducing it to a simple circuit equivalent. We th
quantify excitation of this circuit by a single tri-Gaussia
bunch, and a train of such bunches.

A. Equivalent circuit

We consider first an idealized, lossless cavity with
external coupling. In the approximation of isolated, nond
generate resonances, and considering frequencies below
off in the beam port, we express the solution for the cav
electric field as a superposition of modes,

E~r ,t !5(
l

El~r !el~ t !,
0 © 1999 American Institute of Physics
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with mode indexl, and the convention that modal field
El(r ) are normalized to unit volume integral. The excitati
of mode amplitudeel by current densityJ may be expressed
in terms of the overlap integral, evaluated in the frequen
domain

J̃l5E d3r J̃–El ,

where Fourier components are denoted by an overtilde.
response of a cavity mode is then given by

~v22vl
2!ẽl5 j v

1

e0
J̃l ,

with e0 the electrical permittivity of free space, 1/e05cZ0 ,
with Z0'376.7V, and c the speed of light. The angula
frequency isv, andvl is the mode resonance. To incorp
rate external coupling in our model, it is convenient
amend our choice of unperturbed modal basis to refer to
solution of the Helmholtz equation, withopen-circuitbound-
ary conditions on a reference plane located in the connec
guide. Since the waveguide modes form a complete se
may expand the electric field on this reference plane,
quantify the coupling in terms of the overlap integralV1l on
the plane, of the modal electric field, and the fundamen
mode of the connecting guide.8 In this way we arrive at the
externalQ,

1

Qel
5

V1l
2

e0vlZc1
,

whereZc1 is the characteristic impedance of the wavegu
mode. Explicitly,Zc15Z0(v/cb) for a TE mode, andZc1

5Z0 for a TEM mode. In terms of externalQ, our mode
equation is revised to read

~v22vl
2!ẽl5 j v

1

e0
J̃l2

j vvl

Qel

~Ṽ1
12Ṽ1

2!

V1l
,

and continuity of tangential electric field at the port-pla
requiresṼ1

11Ṽ1
25ẽlṼ1l . The quantitiesṼ1

1 , Ṽ1
2 are the

incoming and outgoing voltage phasors at the plane, refe
to the impedanceZc1 . Thus incident and outgoing power i
steady state areP65uṼ1

6u2/2Zc1 , and the net power flowing
into the cavity isP12P2. For a cavity excited only by
beam, with output looking into a matched load,P150.

Incorporating wall losses, and redefining the mode re
nance frequency to incoporate the shift due to the reac
part of the wall impedance, we augment this result to rea

~v22vl
2!ẽl5 j v

1

e
J̃l2

j vvl

Qel

~Ṽ1
12Ṽ1

2!

V1l
1 j

vvl

Qw
ẽl ,

with Qw the wall Q.
To make this more explicit, we consider a ballistic pen

beam, with current density

J5 ẑd2~r'2r'b!I bS t2
z

VD , ~1!

whereI b is the beam current waveform,t is the time coordi-
nate,z is the coordinate displacement down the beamliner'

is the coordinate in the transverse plane, andd is the delta
y

he

e

ng
e
d

l

e

ed

-
e

l

function. The beam is assumed to be ballistic, traveling
speedV in the z-direction, centered on the transverse co
dinater'b . The Fourier transform is

J̃~r ,v!5 ẑd2~r'!E
2`

` dv

A2p
e2 j vtI bS t2

z

VD
5 ẑd2~r'2r'b! Ĩ b~v!e2 j vz/V,

and we assume no variation of beam centroid along
beam. The overlap integralJ̃l5 Ĩ b(v)w̃l* (r'b), where

w̃l~r'b!5E
2`

1`

dzEzl~r'5r'b ,z!ej vz/V; ~2!

we will see that this quantity is central to the analysis of t
coupling of the beam to the cavity. We observe that

¹'
2 w̃l5E

2`

1`

dzej vz/V¹'
2 Ezl~r' ,z!

5E
2`

1`

dzej vz/VS 2
]2

]z22
v0

2

c2 DEzl~r' ,z!

5S v0
2

V22
v0

2

c2 D E
2`

1`

dzej vz/VEzl~r' ,z!

5S v0
2

V22
v0

2

c2 D w̃l ,

and conclude that for a highly relativistic beamw̃l is a har-
monic function,

¹'
2 w̃l50, ~3!

and therefore may be expanded in multipoles,

w̃5 (
m50

`

r m@bm cos~mf!2am sin~mf!#, ~4!

where we introduce cylindrical coordinates (x,y)
5r (cosf,sinf), and complex multipole coefficientsbm ,
am . The possible leading-order behaviors near the beam-
are seen in Table I.

Thus far, we have reduced Maxwell’s equations to
single relation,

~v22vl
2!ẽl5 j v

1

e0
Ĩ b~v!w̃l* ~r'b!2

j vvl

Qel

~Ṽ1
12Ṽ1

2!

V1l

1 j
vvl

Qw
ẽl ; ~5!

TABLE I. First few multipoles, column~2! takes the coefficientbn , and
column ~3!, an .

Term n Normal Skew

Monopole 0 1 ¯

Dipole 1 x 2y
Quadrupole 2 x22y2 22xy
Sextupole 3 x323xy2 y323x2y
Octupole 4 x426x2y21y4 4xy(y22x2)
Decapole 5 x5210x3y215xy4 10x2y32y525x4y
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however, with the mode classification, we may cast this i
more transparent form, making clear the essential circuit
rameters. To do this we must make a choice of refere
impedance, and there exists a convention for this, at lea
the case of a pure monopole mode, the convention bein
refer to cavity excitation in terms of the voltagewitnessed by
the beam. The voltage drop experienced by a test parti
traveling at speedV in thez direction at offsetr' , and pass-
ing z50 at timet5t0 is

Vc~r' ,t0!5E
2`

1`

dzEzS r' ,z,t01
z

VD . ~6!

We may express this in terms of the modal decompositio

EzS r' ,z,t01
z

VD5(
l

Ezl~r' ,z!elS t01
z

VD ,

corresponding to which we have

Vc~r' ,t0!5(
l

Vcl~r' ,t0!,

where, in the frequency domain,

Ṽcl~r' ,v!5E
2`

` dv

A2p
e2 j vt0Ṽcl~r' ,t0!5ẽlw̃l~r'! ~7!

and our mode equation may be re-expressed in terms o
more meaningful normalizations,Ṽc , Ĩ b , according to

S v22 j
vvl

Qwl
2vl

2D Ṽcl~r' ,v!

52
j vvl

Qel
n~Ṽ1

12Ṽ1
2!12 j vKl,r' ,r'b

Ĩ b , ~8!

with

Kl,r' ,r'b
5

1

2e0
w̃l* ~r'b!w̃l~r'!, ~9!

nl5
w̃l~r'!

V1l
. ~10!

The continuity condition is most naturally expressed in ter
of the transformed forward voltage in the connecting gu
VFl5nlṼ1

1 , and reverse voltageVRl5nlṼ1
2 , as Vcl

5VFl1VRl . It will be convenient to refer to

F R

QG
l,r'

5
4Kl~r'!

vl
5

4Kl,r',r'

vl
, ~11!

in terms of which the turns ratio is given by

unlu25
2QelKl~r'!

Zc1
5

Qel@R/Q#l,r'

2Zc1
, ~12!

the stored energy

Ul5
1

2
e0uẽlu25

uṼclu2

4Kl~r'!
5

uṼclu2

vl@R/Q#l,r'

, ~13!

and the net power flowing into the cavity
a
a-
e
in
to

e

,

he

s
e

Pw5
uṼFlu22uṼRlu2

2nl
2Zc1

5
uṼFlu22uṼRlu2

4QelKl~r'!
5

uṼFlu22uṼRlu2

Qel@R/Q#l,r'

. ~14!

In the time domain, our result may be expressed m
simply as

S d2

dt2
1

vl

QLl

d

dt
1vl

2DVcl52
vl

Qel

dVFl

dt
22Kl~r'b!

dIb

dt
,

~15!

and we have introduced the port-loadedQ,

1

QLl
5

1

Qwl
1

1

Qel
. ~16!

This formulation comes with the picture of Fig. 1. It is co
venient in that it reduces the problem to an uncomplica
RLC circuit, with an ideal current generator, and an exter
coupling through a transformer with turns rationl . How-
ever, it contains within it a choice of reference axis,r' ,
affecting the definition of the cavity voltage, the turns rat
and the loss factor. This might seem awkward; in fact, it
essential to understanding the operation of the circuit a
monitor of beam coordinates. With the work of this sectio
we have reduced our system to that of a simple circuit
described by Eq.~15!, and depicted in Fig. 1.

B. Characterization of modes

The generalized loss factor,Kl , is a useful figure of
merit to gauge the magnitude of the coupling of the beam
the cavity mode. For example, for a point bunch of cha
Qb , one can show that prior to evanescence the indu
voltage isVcl(t)522KlQb cos(vlt)H(t), with H the step
function. Work done by the charge at offsetr' on the cavity
mode is thenUl52* dtVcl(r' ,t)I b(t)5KlQb

2. In addition
to the longitudinal kick provided by the cavity voltage in
mode l, Vcl(t), the cavity may also provide atransverse
kick, determined from

FIG. 1. Sketch of the dynamic variables for a single cavity mode couple
a waveguide fundamental mode, and a beam. Also shown is an equiv
circuit for the cavity-beam-waveguide system with output waveguide ter
nated in a matched load. No ‘‘beam-loading’’ admittance appears in par
with the beam current, insofar as we have made the approximation
highly relativistic beam.
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P'~r' ,t !5E
2`

1`

dzH 1

V
E'1 ẑ3B'J

~r' ,z,t1z/V!

.

One can show that

]P'

]t
52“'V, ~17!

as first noted by Panofsky and Wenzel.9 In the frequency
domain, we may express the kick as

P̃'5
j

v (
l

ẽl“'w̃l . ~18!

Thus w̃l determines the form of both the longitudinal an
transverse kicks.

Evidently, we may examine and categorize modes o
cavity, based on the harmonic properties ofw̃l . In practice,
this is assessed by examination of@R/Q#l,r'

, as computed
with an electromagnetic field solver. In general, a mode m
contain any or all harmonic components; however, symm
tries will delimit the actual terms present. For example, fo
cavity respecting cylindrical symmetry, the multipole sum
Eq. ~4! reduces to a single azimuthal harmonic,m. The sym-
metric mode, withm50, must then havew̃l independent of
the transverse coordinate. Thus the waveform output by s
a mode will be independent of beam position. This res
contrasts with the Bessel function dependence of the clo
cavity mode; cancellations occur due to fringe fields near
cavity entrance and exit.

For other than circular cavities, the constraints one m
place on the mode character are limited by the numbe
symmetries present. For example, in a cavity with a refl
tion symmetry, we may delineate modes based on whe
w̃l is even or odd with respect to reflection. For a cavity w
mid-planesymmetry~symmetric upony→2y!, we may ex-
pect to find modes odd~‘‘skew’’ ! in y, and modes even
~‘‘normal’’ ! in y. Thus a predominantly monopole mode f
such a cavity is described byw̃5b01b1x1b2(x22y2)
1¯ . The coupling parameterb0 may be quantified more
colloquially by the@R/Q# evaluated on-axis,

lim
r'→0

F R

QG52
uw̃l~r'50!u2

e0vl
5

2Z0c

vl
ub0u2. ~19!

In light of our analysis, we understand that this conventio
parameterization in terms of@R/Q# is incomplete. Additional
phenomena lurk in the higher components. In terms ofBn

5bn /b0 , we may write the accelerating voltage as

Vc~x,y,t0!5RV0ej c0$11B1x1B2~x22y2!1¯%,

where V0ej c0[Ṽ(r'50,t0)ej vt0, i.e., V0 is the maximum
accelerating voltage, andc0 the phase, witnessed on-axi
Evidently, an off-axis trajectory corresponds to a differe
amplitude and phase. Keeping only the dipole correcti
and expressingB15uB1uec1, one can see that

Vc~x,y,t0!'RV0ej c0ej dc~112uB1ux cosc11uB1u2x2!1/2,

where
a

y
-

a
f

ch
lt
d-
e

y
of
-
er

l

t
,

tandc5
uB1ux sinc1

11uB1ux cosc1
.

Thus the absence of a reflection symmetry permits a ph
and an amplitudeasymmetryin the accelerating voltage. Thi
is generally undesirable in an accelerating cavity, as d
cussed at some length in Ref. 1. Conversely, such a ca
would not be an ideal phase monitor. An additional con
quence is the presence of transverse deflections assoc
with this mode,

Pc5“'RV0ej c0
j

v
@11B1x1B2~x22y2!1¯#,

or, at lowest order

Px'2
1

v
V0uB1usin~c01c1!.

Thus particles phased on crest (sinc050) experience a trans
verse deflection determined by the imaginary part ofB1 , the
phase asymmetry of the mode. Thus, not surprisingly, s
an asymmetric geometry provides accelerationat an angle,
given by a'2uB1ucc1 /v for small asymmetry, and par
ticles phased on crest.

For the remainder of this work, we will be considering
cavity reflecting a higher degree of symmetry, reflecti
symmetry in bothx andy. We label modes according to the
lowest order behavior, and proceed to characterize t
higher-order features. For monopole modes, we have at l
est order residual normal quadrupole and octupole com
nents,

w̃even-even5b0@11B2~x22y2!1B4~x426x2y21y4!

1O~r'
6 !¯#. ~20!

For vertical dipole modes, we have residual skew sextup
and skew decapole components,

w̃even-odd52a1y@11A3~3x22y2!1A5~y415x4210x2y2!

1O~r'
6 !¯#, ~21!

where An5an /a1 , and the coupling parametera1 may be
quantified in terms of

FR'

Q G5 lim
r'→0

1

y2 F R

QG5
2Z0c

vl
ua1u2 ~y dipole!. ~22!

Similarly, horizontal dipole modes may contain a residu
normal sextupole and normal decapole component

w̃odd-even5b1x@11B3~x223y2!1B5~x4210x2y215y4!

1O~r'
6 !¯#. ~23!

We have at lowest order,

FR'

Q G5 lim
r'20

1

x2 F R

QG5
2Z0c

vl
ub1u2 ~x dipole!. ~24!

One can go a step farther with this, and ask, of
modes allowed by symmetry, which are present? Does a
ity have a normal quad mode? When the cavity beam p
respect the symmetry of the cavity proper, one may infer
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form of the kick function from the symmetry of the corre
sponding mode of the unperturbed~closed! cavity. In this
way, one may map TM modes of the closed cavity to
‘‘TM-like’’ modes of the cavity with beam ports. To enu
merate all modes, however, one must consider as well the
modes of the closed cavity, for with the addition of bea
ports, these modes will develop longitudinal fringe elect
fields that can couple to the beam. Consequently, a real
ity driven by a beam will exhibit a richer mode spectru
than one would expect from a closed-pillbox analysis. Fo
qualitative illustration, consider a cavity of rough dimensio
a3d3b. We suppose thex-dimensiona is larger than the
y-dimensiond. To construct the modes, we match actu
electric field lines to the integrated field pattern as depic
in Fig. 2. Characteristic wave numbers are of orderbx

'p/a, by'p/d, and bz'p/b. One expects a monopol
mode derived from the lowest TM mode of the cavity, wi
frequency f 'cb0/2p, where b0

2'bx
21by

2. Next one ex-
pects to find two dipole modes, anx dipole with b0

2

'(2bx)
21by

2, and ay dipole atb0
2'bx

21(2by)
2. The next

modes would be TE-derived dipole modes~or hybrid
modes!, corresponding tob0

2'bx
21bz

2 ~y dipole, hybrid! and
b0

2'by
21bz

2 ~x dipole, hybrid!. Clearly, where the mode
actually fall in frequency depends onb. For largeb, the
hybrid dipole modes come first, for very shortb, they are
preceded by still other modes. A specific illustration of the
considerations for an existing cavity follows in Sec. III.

Finally, let us make the cavity formulation explicit fo
the case of monopole and dipole modes. To isolate cle
the dependence on beam position, it will be convenien
employ Eq.~15! in the form

S d2

dt2
1

vl

QLl

d

dt
1vl

2DVcl

'2
vl

Qel

dVFl

dt
22kl

d

dt
Xl~r'b! I b~ t !, ~25!

whereXl5wl* (r'b)/wl* (r'0), kl5Kl,r'0 ,r'0
, and we will

take the limitr'0→0 for the reference integration path, an
augment our convention for mode normalization such t
wl(r'0) is real. For a predominantly monopole mode,

FIG. 2. Integrated longitudinal electric field~synchronous integral! configu-
ration for various modes of a generic cavity respectingx and y inversion
symmetries, viewed end-on, from the beam direction.
e
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Xl~x,y!511B2l* ~x22y2!1B4l* ~x426x2y21y4!

1O~^r'
6 &!¯ ~26!

and

unlu5S QelF R

QG
l

2Zc

D 1/2

5S Rl

2Zcbl
D 1/2

, ~27!

wherebl5Qwl /Qel and the unloaded shunt impedance
Rl5Qwl@R/Q#l ~another convention employs half th
value!. Power flowing out of the cavity is2Pw , where

Pw5
uVFlu22uVRlu2

2Zcunlu2 5bl

uVFlu22uVRlu2

Rl
. ~28!

For a predominantly dipole mode, anx-dipole mode for
definiteness, we select an integration path atx5x0 , and take
the limit x0→0, so that our description of the cavity is re
solved in terms of the on-axis voltage gradient,

Vcl8 5 lim
x0→0

Vcl

x0
[

]Vcl

]x

and we obtain

H d2

dt2
1

vl

QLl

d

dt
1vl

2J Vcl8

52
vl

Qel

dVFl8

dt
22k'l

d

dt
Xbl~r'b! I b , ~29!

where k'l5vl@R' /Q#l/4, and Xbl(r'b)5 limx0→0x0

3Xl(r'b), or

Xbl~x,y!5x1B3l* ~x323xy2!1B5l* ~x5210x3y215xy4!

1O~^r'
7 &!¯ . ~30!

The continuity condition takes the formVcl8 5VFl8 1VRl8 ,
and the conversion to waveguide impedance isVFl8
5nl8V1

1 , VRl8 5nl8V1
2 . Stored energy is

Ucl5
uVcl8 u2

vl@R' /Q#l
, ~31!

and energy conservation determines that

unl8 u5S QelFR'

Q G
l

2Zc

D 1/2

5S R'l

2Zcbl
D 1/2

, ~32!

where the unloaded transverse shunt impedance isR'l

5Qwl@R' /Q#l . Net power flowing out of the cavity and u
the waveguide is2Pw , where

Pw5
uVFl8 u22uVRl8 u2

2Zcnl8
2 5bl

uVFl8 u22uVRl8 u2

R'l
. ~33!

Where one cavity is coupling several modes, it is help
to be able to transform to a common impedance. So for
ample, where one cavity is functioning with both a dipo
and a monopole mode, one would appreciate a prescrip
for adding induced voltages on the connecting wavegu
This is straightforward given the relation of the quantitiesVR

andVR8 to the waveguide voltage coefficientV1
2 normalized
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with respect to the waveguide mode characteristic impeda
Zc . Thus we expect the contribution due to a monop
mode to take the formV1

25VR /n and that due to a dipole
modeV1

25VR8 /n8. In general, it need not be the case that
reference plane for both of these modes is the same, and
there may be a relative phase between the two mode co
butions. If we refer both voltages to the normalization e
ployed for dipole mode quantities, the monopole cavity vo
age must be multiplied by a phase factor, andn95n8/n, or

un9u5S Qed@R' /Q#d

Qem@R/Q#m
D 1/2

. ~34!

With the analysis of this section in-hand, we are in
position to determine the cavity emitted signal,V1

2 due to
interaction of any particular mode with a beam, and to
perimpose the voltage from the ‘‘design’’ or ‘‘desired
mode with other, parasitic modes, to quantify the effect
resolution. We turn next to apply this model to a realis
beam model.

C. Excitation by a tri-Gaussian beam

Let us apply these results to the case of a non-pe
beam, employing a tri-Gaussian as a simple stand-in
more realistic beam profiles. The beam current density ta
the form

Jb~x,y,t !5
I b~ t !

2psxsy
expS 2

~x2xb!2

2sx
2 2

~y2yb!2

2sy
2 D ,

~35!

with current waveform

I b~ t !5
Qb

~2p!1/2s t
expS 2

~ t2tb!2

2s t
2 D , ~36!

and beam arrival time att50 is tb . This beam we view as a
superposition of ‘‘pencil beams’’, and the induced cav
voltage is accordingly a superposition of the induced volta
from each. Thus in Eq.~25! Xl is replaced witĥ Xl&, where
^...& denotes a charge-weighted average over the beam c
section; to compute this average, we require the vari
beam moments, involving integrals of the form

^xm&5
1

~2p!1/2sx
E

2`

1`

dx xm expS 2
~x2xb!2

2sx
2 D , ~37!

and using the binomial theorem, and Gaussian integrals
find ^x&5xb , ^x2&5xb

21sx
2, ^x3&5xb

313sx
2xb , ^x4&5xb

4

16sx
2xb

213sx
4, and^x5&5xb

5115xbsx
4110xb

3sx
2, with simi-

lar expressions fory. In this way, we obtain̂ w̃&5^w̃&0,1,2

1^w̃&31^w̃&41^w̃&51¯, where terms through second o
der are

^w̃&0,1,25b02a1yb1b1xb22a2xbyb

1b2~xb
21sx

22yb
22sy

2!, ~38!

sextupole terms are

^w̃&352a3yb@~3xb
22yb

2!13~sx
22sy

2!#1b3xb@~xb
223yb

2!

13~sx
22sy

2!#, ~39!

octupole terms are
ce
e

e
us
ri-
-
-

-

n

il
r

es

e

ss-
s

e

^w̃&4524a4ybxb@~xb
22yb

2!13~sx
22sy

2!#1b4@~xb
426xb

2yb
2

1yb
4!16~xb

22yb
2!~sx

22sy
2!13~sx

22sy
2!2#, ~40!

and decapole terms are

^w̃&552a5yb@~yb
4210xb

2yb
215xb

4!115~sx
22sy

2!2

210~yb
223xb

2!~sx
22sy

2!#1b5xb@~xb
4210xb

2yb
2

15yb
4!115~sx

22sy
2!2110~xb

223yb
2!~sx

22sy
2!#.

~41!

These results permit us to evaluate explicitly the beam co
dinate function̂ X&.

For a predominantly monopole mode,^X& amounts to
position-dependent correction to the inferred beam cha
and phase,

^X&'11B2* ~xb
22yb

21sx
22sy

2!, ~42!

at first order. For a predominantlyx-dipole mode,

Xb'xb1xbB3* ~xb
223yb

213sx
223sy

2!, ~43!

at first order.
Next let us solve Eq.~25! explicitly to determine the

waveform emitted into the connecting waveguide, to be
served ‘‘upstairs’’. We integrate Eq.~25! for a Gaussian cur-
rent profile, with VF50 corresponding to no drive, and
perfectly matched or isolated output load. One may che
by differentiation, that

Vcl~ t !522kllE
2`

t

dt8g~ t2t8!@ I b^X&# t8

522kllRS 11 j
Vl

2Vl
De2GltE

2`

t

dt8eGlt8@ I b^Xl&# t8

is the solution of Eq. ~25!, where we abbreviatenl

5vl /QLl , Vl
25vl

22 1
4nl

2, Gl5 1
2nl2 j Vl , and the

Green’s function is

gl~ t !5H cosVlt2
nl

2Vl
sinVltJ e2nlt/2

5RF S 11 j
nl

2Vl
De2GltG .

Our interest here is not the variation of the cavity volta
during the bunch transit, rather the amplitude and phas
which a cavity mode is ringing, after the bunch has pass
Assuming that the beam transverse coordinates are con
throughout the bunch, and that bunch length is short co
pared to the mode period, we find
Vcl~ t !522kllQb^Xl&exp~2 1

2vl
2s t

2!Rhle2Gl~ t2tb!, ~44!

where

hl5S 11 j
nl

2Vl
Dexp~2 1

2 j nlVls t
2!,

andhl'1 to an excellent approximation forQLl@1. Thus
one sees that after bunch passage, the cavity rings a
resonance frequencyVl ~with damping correction!. It is
helpful to write Eq.~44! as

Vcl~ t !5Rej Vl~ t2tb!Ṽcl~ t !, ~45!
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where the phasorṼcl(t) has a step-rise and exponential d
cay,

Ṽcl~ t !52V̂clH~ t2tb!exp2
1
2nl~ t2tb!, ~46!

with amplitude

V̂cl52klQb^Xl&hl exp~2 1
2vl

2s t
2!. ~47!

This is just the cavity phasor in the ‘‘rotating frame’
stripped of the high-frequency modulation, and evanesce
and referred to beam phase. It conveys the beam charge
form factor Ft5exp(2 1

2vl
2st

2), and the position dependenc
in ^X&. These dependences on beam moments may be
marized in terms of a generalized form factor. Specifica
for a monopole mode,V̂cl52kllQbFlhl , where Fl

5FlFt and

Fl'11B2* ~xb
22yb

21sx
22sy

2!. ~48!

For an x-dipole mode, V̂cl52k'lQbFlhlxb , where Fl

5F'Ft and

F''11B3* ~xb
223yb

213sx
223sy

2!. ~49!

To relate these results to observable quantities, note tha
ergy deposited in the cavity by a single bunch is

Ul5
uV̂clu2

vl@R/Q#l
5klQb

2u^Xl&u2 exp~2vl
2s t

2!, ~50!

and the power waveform radiating from the cavity rises a
step function, and decays exponentially withe-folding time
Tf /251/nl5QL /vl . Cavity heating is determined by pea
power dissipated in the cavity walls,Pd5vlU/Qwl . The
peak power radiated out of the cavity is

2Pw5
uVcu2

Qcl@R/Q#l
5

vl

Qel
U5

2b

11b

U

Tf
. ~51!

Thus for a monopole mode, we have

2Pw5
2b

11b

1

Tf
kllQb

2uFu2 ~52!

and for a dipole mode,

2Pw5
2b

11b

1

Tf
k'lQb

2xb
2uFu2. ~53!

D. Excitation by a bunch train

To determine the transient signal produced by a bu
train, we superimpose the transient voltages induced by
individual bunches. We number bunchesn50,1,..., N21,
and refer to timetbn the arrival time of thenth bunch~just
like the variabletb used previously!, so thattb0 is the arrival
time of the lead bunch. Let us express the timing of thenth
bunch with respect to bunch #0 astn5tbn2tb0 . For typical
accelerator operation, the bunch spacing is approxima
constant,tn2tn21'2p/V0 , whereV0 corresponds to the
angular frequency for the accelerator, or a subharmonic o
For definiteness, we will suppose the former. In generalV0

may differ from the mode resonance frequencyVl , in the
case of a cavity temperature excursion, or for a paras
nonresonant mode.

The voltage waveform induced by thenth bunch is
-

e,
the

m-
,

n-

a

h
he

ly

it.

c,

Vcln~ t !5Re2Gl~ t2tbn!H~ t2tbn!V̂cln , ~54!

where

V̂cln52klQbn^Xln&exp~2 1
2vl

2s tn
2 !. ~55!

We may then express the total voltage at any time as

Vcl~ t !5 (
n50

N21

Vcln~ t !5R(
n50

tbn,t

e2Gl~ t2tbn!V̂cln

5Re2Gl~ t2tb0! (
n50

tbn,t

eGltnV̂cln . ~56!

The latter sum is taken over those bunches that have alre
passed as of timet. This sum may be employed to stud
analytically and numerically the effects of systematics due
tn , Fn , and Qbn variations withn. For numerical studies
computation of the sum in Eq.~56! is amenable to a recur
sive form; we evaluate our sum just after the passage of
mth bunch, rearranging it to find

Ṽcl~ tbm1!5V̂clm1e2Gl~tmtm21!Ṽcl~ tbm211!. ~57!

This series starts after the 0th bunch, withṼcl(tb01)
5V̂cl0 .

An explicit analytic result is instructive and is easi
obtained in the case of an idealized ‘‘top-hat’’ current pr
file, a uniformly bunched beam, steady or small beam s
along the bunch train, and steady or small centroid off
along the train. We permit a frequency deviation between
beam and cavity resonance. Summing a geometric series
find

Vcl~ t !5R exp@G~ t2tb0!#V̂cl0

exp~Gltn!21

exp~Glt!21
, ~58!

where n indexes the last bunch that passed, i.e.,tbn,t
,tbn11 . At early times this gives a voltage waveform risin
linearly in time and output power rising quadratically. A
time goes on, the system reaches a steady state bet
power deposited by the beam, and power absorbed by
walls, and radiated down the waveguide. After the bun
train has gone by, the voltage decays exponentially.

In the case of a cavity perfectly tuned to resonance w
the perfectly bunched beam, we haveGlt5nlt/25p/QLl

!1, and

Vcl~ t !'R expj Vl~ t2tb0!
V̂cl0

Glt
5R expj Vl~ t2tb0!V̂eff,l , ~59!

where

V̂eff,l5
QLl

p
V̂cl0522klQbeff,l^Xl&exp~2 1

2vl
2s t

2!

~60!

and Qbeff,l5QLlQb /p is the amount of charge passin
through the cavity in one fill time. This may also be e
pressed asV̂eff,l5IbRLl^Xl&exp(21

2vl
2st

2), where I b5V0

Qb/2p is the intrapulse current, and the loaded shunt imp
anceRLl5QLl@R/Q#l evidently characterizes such stead
state resonant excitation.

Appreciating that the resonant enhancement can
large, let us consider the effect of detuning from resonan
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We parameterize the detuning of the cavity resonance
quencyVl from the bunch train frequencyV0 by the tuning
angle

tancl5QLlS Vl

V0
2

V0

Vl
D'2QLlS Vl2V0

V0
D , ~61!

in terms of which,

Vc~ t !'R exp@ j V~ t2tb0!#
QL

p
V̂c0 coscej c. ~62!

Evidently tuning error introduces both a phase and an am
tude error. The amplitude error is second order in the tun
angle, and the phase error is just the tuning angle. In gen
the amplitude of the resonant denominator in Eq.~61! is

L215ueGt21u52 expS p

2QL
D Fsinh2S p

2QL
D1sin2S pV

V0
D G1/2

,

~63!

so that, in the case of large detuning from resonance
enhancement factor ofQL /p is replaced with a factor o
order unity.

Before leaving the matter of bunch train excitation, let
note an alternative method of computing the transient ca
voltage. We approximate our expression for beam curr
using the first-harmonic component,I b0'RĨ b0ej vt, and
similarly represent the cavity voltage asVc'RṼce

j vt. We
make the slowly varying envelope approximation, such t
udĨb0 /dtu!vu Ĩ b0u, and find

dṼc

dt
1

1

Tf
~12 j tanc!Ṽc'2kl Ĩ b0 .

AbbreviatingD5(12 j tanc)/Tf , one finds that for an ini-
tially unexcited cavity, and a beam current waveform arr
ing at t50,

Ṽc~ t !'2kle
2DtE

0

t

dt8 Ĩ b0~ t8!eDt8.

Using Ĩ b52I bFt one confirms the result obtained from s
perposition of single bunches.

This completes our analysis of the interaction of t
beam with the waveguide-coupled cavity modes. In the n
section, we illustrate these considerations for an exam
beam-position monitor system.

III. TWO-CAVITY BPM SYSTEM

We consider the beam-position monitor system illu
trated in Fig. 3, as discussed in Ref. 1. The system makes
of three cavities, including a vertical position monitor cavit
however, without loss of generality, we are free to conc
trate on analysis of beam-position monitoring in the horizo
tal.

A. Phase cavity

The geometry of the phase cavity is seen in Fig. 4
originally designed by Altenmueller and Brunet.10 One can
appreciate the parameters for the phase cavity with refere
to the scalings for a closed, cylindrical pillbox—the cavi
prior to perturbation by the beam port, nose cones, and
ternal coupling. In this idealized model, optimum shunt i
e-

li-
g
al,

e

s
ty
nt

t

-

xt
le

-
se

-
-

s

ce

x-
-

pedance occurs foru5158.1° and isRs'3.77 MV, with
Qw'1.733104, and @R/Q#'220V. A more precise result
is obtained with an electromagnetic field solver and we e
ploy the finite difference codeGd f idL.11 We obtain f
'2836 MHz, Qw'1.513104, @R/Q#'236V, and kl

'1.11 V/pC. Given the accessibility of the cavities f
bench measurement, the analytic scalings and the ele
magnetic computations are primarily of use for mode iden
fication, and accurate calculation of the mode coupling co
ficientsan ,bn .

Characteristics of the phase cavity have been meas
on the bench as part of a three-cavity assembly, as see
Fig. 3, employing an HP8510 vector network analyzer, w
N-type calibration and 801 points over a span of 20 MH
Cavity temperature was held steady to 0.5 °C by means
temperature-stabilized water flow. We findf '2855.8 MHz
at T545.0 °C, with temperature coefficient ofd f /dT'26
3104 Hz/°C. InferredQw'7.93104, while QL was found to
be sensitive to the state of the connector.

Comparing these figures to those of Altenmueller a
Brunet, their valueQL'1200 is consistent. Their estimat
@R/Q#'248V is about 5% higher. For a loaded shunt im
pedance ofRs'0.28 MV, and loaded fill timeTf52QL /v
'133 ns, the single-bunch scalings areU'1.1mJ Qb

2(nC),
and Pw'15 W Qb

2(nC). The steady-state, multibunch sca
ing is obtained with the substitutionQb→Qbeff5QLQb /p,
and corresponds toPw'0.26 W I b

2(mA).
For this phase cavity, we have cylindrical symmetry

an excellent approximation, so that the quadrupole termb2

'0. In fact, even a slight quadrupole component would
significantly effect the systematics of this signal, since it
not employed near a signal null, unlike the position cavi
One might be concerned about the bunch-length depend
of the cavity emitted signal, insofar as pulse-to-pulse fluct
tion in ~unmonitored! bunch length could then function as
source of ‘‘noise’’. Two features mitigate against this pote
tial systematic however. First, the bunch length typica
must be quite small, insofar as a long bunch will exhi
energy spread unacceptable for experimental applicatio
the beam. The root-mean-square~rms! phase width of the

FIG. 3. This 12 in.-long assembly consists of three 2856 MHz cavities
monitoring of beam phase, and horizontal and vertical position. We
analyze the combination of thex cavity and the phase cavity.
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FIG. 4. Interior dimensions for the beam-phase monitor cavity and the geometry as employed in the field solver.
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beamsc(°rf)'6.8AdE(%) with dE the rms energy spread
Thus even if the accelerator is configured to produce a la
rms energy spread of say 1%, the bunch length will be sh
less than 2.0 mm. In this case, exp(21

2vl
2st

2)'0.993, and the
form factor correction must necessarily be small. Fluctuat
in the form factor correction is then an even smaller effe
negligible for applications we can envision. The second f
tor mitigating against bunch-length induced jitter arises wh
the signal-processing scheme employs the beam-indu
phase-signal to normalize the beam-induced position sig
In this case, the form-factor correction for bunch length
vides out, leaving a result independent of bunch length. T
is seen in the analysis of Sec. IV.

B. Position cavity

The resonant beam-position monitor cavity is depicted
Fig. 5, as originally designed by Brunetet al.12 We consider
analysis of horizontal position for definiteness, as a sim
analysis applies to the vertical. We could add that the ac
degree of freedom one is looking at depends on the al
ment during installation. To appreciate the fields and c
pling of the position cavity, one may consult in the fir
approximation, the closed-pillbox geometry. For beam a
cavity axis perfectly parallel, the beam couples only to T
modes of the pillbox~those with an axial electric field!. The
lowest frequency modes are the TMmn0 modes~no longitu-
dinal variation in axial electric field!, with field components

Ez5Ẽ0 sin~bxx!sin~byy!,

Z0Hx5 j
by

b0
Ẽ0 sin~bxx!cos~byy!,
e
rt,

n
t,
-
n
ed
al.
-
is

n

r
al
n-
-

d

Z0Hy52 j
bx

b0
Ẽ0 cos~bxx!sin~byy!,

where other components zero. The coordinates relative to
beam axis arex15x2d/2 and y15y2a/2, where a
54.1820 in.510.6223 cm, is the cavity height, andd
54.7080 in.511.9583 cm is the cavity width. Cavity lengt
is b52.001 in.55.0825 cm. Wave numbers arebx

5mp/d, by5np/a, and b05Abx
21by

2. The resonant an-
gular frequency isv05cb0 . In this notation, the ‘‘acceler-
ating mode’’ or ‘‘monopole mode’’ is TM110, and the first
two ‘‘position sensitive’’ or ‘‘dipole modes’’ are TM210 and
TM120.

Using these modal fields one can show that for the
sign TM210 mode~x-dipole mode!,

k'5
1

x2

v0

4 F R

QG
~x,0!

'~2cZ0!T2S bx
2b

ad D ~64!

and

1

Qw
5

d

2

* dSuH̃u2

* dVuH̃u2
5

2d

b0
2 S bx

2

d
1

by
2

a
1

b0
2

2bD , ~65!

where the skin-depthd'2.1mm/Af (GHz!'1.2mm for cop-
per. The corresponding frequency is 2.8768 GHz. Theor
cal wall Q is Qw'2.263104. Transit angle is 199°, corre
sponding to transit angle factorT5sin(u/2)/(u/2)'0.568.
Then k''8.0731022 V/pC cm2, @R' /Q#'17.8V cm22,
andR''4.03105 V/cm2.

In addition to the design mode, the monopole mo
TM110 will be excited by the beam. Unlike the TM210 posi-
tion mode, the TM110 mode has nonzero reading with bea
centered, and thus acts as a common mode between diffe
position readings. This is a concern since the output coup
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FIG. 5. Interior dimensions for a horizontal position cavity, and the geometry as employed in the field solver.
b
th
ri
tio
th
te
er

a

a
y

ter-
, we
II.

n-
e

nd
f t

ne
se
is asymmetric and unable to distinguish the two modes
symmetry, as seen in Fig. 6. The natural correction to
problem, is to employ two outputs coupled through a hyb
tee, to remove modes of even symmetry, up to the isola
provided by the tee. In the meantime, the implication for
output waveform from the cavity is that it includes a fini
contribution from a monopole mode, due to the finite ext
nal Q of that mode. To estimate the excitation of the TM110

mode, we employ closed-pillbox scalings and find a reson
frequency off M51.8875 GHz andQw'1.663104. Transit
angle is 115° and the transit angle factor isT'0.84, so that

F R

QG5Z0T2S 8b

b0adD'215V, ~66!

FIG. 6. Illustration of monopole mode coupling to a single output, a
suppression of the monopole mode by means of two outputs. The sign o
integrated electric field is indicated by the solid dots and the cross; mag
field lines correspond to the circles; the beam passes into the page. U
symmetric couplers and a tee separates modes of opposite symmetry.
y
is
d
n

e

-

nt

and loss factor iskl'0.64 V/pC. We note that there is also
y-dipole mode, TM120 at 3.088 GHz; however, symmetr
hinders its coupling to the guide.

To obtain more precise results, and to accurately de
mine the higher-order dependence on transverse position
employ the field-solver. Results are summarized in Table
The monopole mode frequencyf '1893 GHz, with Qw

'1.723104, @R/Q#'196V, and kl'0.88 V/pC. The
higher multipole content of this mode is of interest in co
nection with the BPM offset. Given the symmetry of th
cavity, we expect to find

he
tic
of

TABLE II. The first few modes of the linac position cavity.

Mode f (MHz) Qw(3104) type

1 1893 1.72 monopole
2 2861 2.17 x dipole ~design!
3 3071 2.18 y dipole
4 3183 1.90 hybridy dipole
5 3247 1.98 hybridx dipole
6 3499 1.74
7 3505 1.54 monopole
8 3771 2.44
9 3867 2.37

10 4029 2.42 monopole
11 4077 2.44
12 4193 1.79
13 4251 1.97
14 4418 2.61 monopole
15 4757 2.55
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F R

QG'F R

QG
0

u11B2~x22y2!1B4~x426x2y21y4!

1O~r'
6 !...u2. ~67!

Analysis of the solver output leads to a fit for the norm
quadrupole and normal octupole components,B2'6.3
31023 cm22, B4'25.731023 cm24.

The mode near 2856 MHz is the intended operat
mode for the cavity. Evidently the cutting of the beam p
~where magnetic field is large, and electric field small! low-
ers the frequency from the closed pillbox estimate. T
mode falls into the category of an ‘‘odd inx, even iny’’
mode and so we may expect to find

F R

QG'x2FR'

Q G u11B3~x223y2!1B5~x4210x2y215y4!

1O~r'
6 !...u2. ~68!

Analysis with the field solver shows thatQw'2.173104,
@R' /Q#'23.2V cm22, k''1.0431021 V/pC cm2, B3

'24.231023 cm22, and B5'24.431023 cm24. The fit
agrees to three digits in most cases, except for offsets
proaching 1 cm, where agreement is to two digits. In pra
cal terms, for a 1 mmoffset these terms amount to a corre
tion at the level of 100 ppm in beam-induced voltage, a
will be completely negligible. Given that the beam pipe r
dius is 1 cm, the maximum correction one could produce~if
one were trying! would be at the level of 1% in voltage, a
the cost of scraping beam in the aperture.

The y-dipole mode appears at 3017 MHz, wi
@R' /Q#'22.8V cm22. Mode #4, at 3184 MHz is also
y-dipole mode, a hybrid derived from the lowest TE mode
the closed pillbox, TE101. This mode has a vertical electri
field developing a longitudinal component due to the be
ports, with a resulting odd symmetry iny, and even symme
try in x. It has a low@R' /Q#'0.3V cm22, as does the 3247
MHz x-dipole hybrid with @R' /Q#'0.4V cm22, derived
from the TE011 mode.

One additional mode, #35, is noteworthy in that it
close to a beam harmonic. It is ay-dipole mode at at 8592
MHz with @R' /Q#'0.7V cm22. If the mode of the actua
cavity ~as opposed to our numerical model! were in fact 24
MHz away from the 332856 MHz58568 MHz beam har-
monic, this would be no cause for concern. However, at
level of precision one would prefer to check the actual cav
to see where the mode lies, after perturbations due to
coupler, brazing, dimpling, vacuum, and temperature.

We performed bench measurements on the position
ity under conditions as in Sec. III A, finding for the desig
mode a temperature coefficient ofd f /dT'253104

kHz/°C, andf 52854.4 MHz atT545.0 °C. From measure
ment of S11 we infer QL'6.53102 and b'16.5, so that
Qw'1.13104. These parameters correspond to a load
transverse shunt impedance ofR'L'1.53104 V cm22 and
fill-time Tf'72 ns. For the first parasitic mode, the mon
pole mode,f '1890.1 MHz atT545.0 °C, tuning with tem-
perature asd f /dT'213105 kHz/°C. We find QL'2.9
3103 and b'3.6, corresponding toQw'1.33104, RL

'0.6 MV, and Tf'0.32ms. A survey of modes near th
l
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first three beam harmonics shows a low-Q coupler resonance
24 MHz below the 5712 MHz harmonic, a cavity mode
MHz below the 8568 MHz harmonic, and a mode 3 MH
above the 11 424 MHz harmonic. This last mode, and a
higher parasitic, near-harmonic modes will not be cut off
the beam tube, and thus accurate assessment of their
quency and width is best determined from beam-based
servations. In the meantime, it would be prudent in operat
to remove such harmonics by filtering. In the setup of Fig.
cross-talk between the phase cavity and the adjacentx cavity
may be quantified by measurement ofS12 between the two
output couplers, and is less than270 dB, and not accessibl
with our calibration. This good isolation we attribute to th
symmetry of the modal field patterns, and the high bea
tube cut-off frequency of 8.65 GHz.

With mode parameters in-hand, we compute tha
single-bunch deposits energyU'1.0 nJQb

2(nC)xb
2(mm) in

the design mode, corresponding toPw'27 mW Qb
2

(nC)xb
2(mm). In steady state, this takes the formPw

'0.14 mW I b
2(mA)xb

2(mm). For the parasitic monopol
mode,Pw'4.3 W Qb

2(nC) for a single bunch.
Next, we consider the concerns arising in analysis of

multimode waveform emitted by a beam-excited cavity. W
will employ the BPM cavities and characteristics describ
in this section for numerical examples.

IV. POSITION MEASUREMENT

To appreciate the effect of higher-mode and multipo
systematics in inference of position, a model for the sig
processing is required. In this section, we first make so
simple estimates based on signal amplitudes, and then g
to consider phase information as well. We employ an ide
ized model for signal processing, assuming linearity, infin
dynamic range, no digitization error, and, where dow
mixing is invoked, a stable, tuned local oscillator, with
most a constant phase error.

A. Signal levels

Let us suppose in the simplest~and worst! case, that one
performs power detection on the output of thex-cavity sig-
nal. If one attempts to estimate the resolution in single-bu
mode by comparing energy deposited in the dipole a
monopole modes one arrives at a positionxb'Aklm /k'd

'2.9 cm, lying outside the beam pipe. If one filters the o
put, the parasitic mode amplitude is reduced by a factor
order 1/QL , and becomes comparable to the dipole signa
offsets on the order ofxb'O(10mm). The situation can be
improved further by symmetric output coupling as depict
in Fig. 6, or a variant as seen in Fig. 7. With the monop
mode amplitude reduced by a factor ofe, the signals become
comparable atxb'O(10mm)e, and beam motion at the 1
mm level could be resolved easily. For a bunch train, exc
tion of the off-resonance parasitic mode results in signal
duction, below the level for a single bunch, by a factorL
'O(1), from Eq. ~63!; meanwhile, the design-mode ampl
tude is enhanced by the factorQL0 /p. For our parameters
this implies comparable signal levels atxb'O(102 mm). In
this bunch-train mode of operation, filtering helps to remo
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harmonics, but not the driven oscillation at the beam fun
mental frequency. With symmetrized output coupling, o
could obtainxb'O(5 mm); this figure can be reduced int
the submicron range, if the dipole mode coupling is adjus
as seen in Fig. 7, to raise the loadedQ.

In light of the foregoing discussion one is naturally i
clined, where precision is required, toward subtraction of
parasitic mode signal. This is best accomplished employ
phase information, and vector subtraction. This may be ill
trated most simply referring to the integral of the dow
mixed waveform corresponding to the parasitic mode,

E
2`

1`

dtṼc2CM~ t !ej DV~ t2T!'
RL2CMQb

12 jT f 2CMDV
,

with RL2CM the loaded shunt impedance of the paras
mode,Tf CM the fill time, andDVCM5VCM2V0 the detun-
ing of the parasitic mode from resonance with the bun
train. TakingVCM'2p31.89 GHz, V0'2p32.856 GHz,
and Tf CM'100 ns, one hasTf CMDV'6.13102, as one
would obtain from Eq.~63!. The feature to note about thi
result is that the phase of this signal is fixed with respec
the beam, and independent of offset. Thus if a reliable ph
reference is available at the waveguide output ‘‘upstai
~for example, derived from the phase cavity!, the parasitic-
mode component can be balanced out in a tee. Assumi
common cable run, and roughly equal cable lengths, this m
be achievable in a diurnally reliable fashion. In the case t
consistent monitoring is required over a scale only of m
utes, requirements are relaxed. With these consideration
mind, let us consider in a detail a more elaborate use
phase information.

B. Scale and offset

We consider a front-end processor as depicted in Fig
employing a free-running local oscillator~LO! and a dual

FIG. 7. Options for retrofitting of existing cavity BPMs to improve perfo
mance include coupling adjustment with an in-line tuner, and combining
two adjacent cavity outputs in a hybrid tee to subtract the monopole m
contribution.

FIG. 8. We analyze systematics as they would appear at the output
homodyne dual mixer providing in-phase and quadrature waveforms,
lowed by integration on each channel.
-
e

d,

e
g
-

c

h

o
se
’’

a
y

at
-
in

of

8,

output ~in-phase and quadrature! mixer. We can express th
voltage phasors from the position and phase cavities, as
would after down-mixing and detection,

Ṽw5cwQeffe
j f, ~69!

Ṽx5cxQeffxb1exQeff . ~70!

The termex represents the parasitic mode component. T
phasef we introduce to account for any phase error incurr
in the signal processing, e.g., differential cable expansion
differential phase drift between the LO used for thex-cavity
signal, and that for the phase-cavity signal. The coefficie
cx , cw are determined from calculations in the foregoi
sections, and cable propagation characteristics. The effec
chargeQeff , is determined from the convolution of bea
current with the cavity response. These parameters are
bued with the choice of sampling technique. We can expr
the position phasor as

Ṽx5cxQeff~x2 x̃0!, ~71!

where the offset

x̃052
ex

cx
5x0r1 jxoi ~72!

is in general complex. Dependence of voltage amplitude
position is given by

uṼxu25ucxQeffu2@~x2x0r !
21xoi

2 #, ~73!

and exhibits both a nonzero minimum and an offset from
center axis defined by the position-sensitive mode.

Analysis of the detected signal permits inference o
result for position given by

X5kR
ṼxṼw*

ṼwṼw*
5kR

~cxx1ex!

cwej f 5Sx1X0 , ~74!

with some choice of calibration constantk. Thus the re-
sponse of such a BPM is determined from the scale, and
intercept,

S5kR
cx

cw
e2 j f ~BPM scale factor!, ~75!

X05kR
ex

cw
e2 j f ~BPM intercept!. ~76!

The intercept corresponds to the reading for a centered be
and should be distinguished from the offset of the beam
zero reading,2X0 /S.

Let us analyze the systematic errors in scale and off
to characterize the intrinsic resolution of the BPM with th
front-end processor. To do so in the most specific fash
we should indicate by what means the voltage phasors
processed. For simplicity, we will assume that the full vo
age waveforms are integrated with gatewidth longer than
pulse length. This manner of detection, has the advan
that the area under the cavity phasor curve is proportiona
the pulse-averaged charge~in the case of* Ṽwdt! or the
pulse-averaged, charge-weighted position~in the case of
* Ṽxdt!.

We suppose the phase cavity provides a pure mono
cavity phasorṼc2w . The position cavity provides a cavit

f
e

a
l-



le
e

n

f

r
t t

r
is

id
s

os

t

III

the

n
ing
1%
e

uld
e of

one
no-
d

the

ara-
eam
ent
se
as

red

te

se
in

de

ted

hat
tion
ect
ic-
y
in
le

a-

for
me
nec-
in

2312 Rev. Sci. Instrum., Vol. 70, No. 5, May 1999 D. H. Whittum and Y. Kolomensky
phasorṼc2x that is a superposition of a predominantly dipo
mode ~the design mode!, and a predominantly monopol
mode~a parasitic mode!. In this case,

Ṽw[ej fE
2`

1`

dtṼc2w~ t !'ej fRL(
n

QbnFwn , ~77!

Ṽx[E
2`

1`

dtṼc2x~ t !'R'L(
n

QbnxbFxn

1n9h
RL2CM

12 jT f CMDVCM
(

n
QbnFCMn . ~78!

The loaded shunt impedances are:RL for the monopole mode
of the phase cavity,R'L for the dipole mode of the position
cavity, andRL2CM for the parasitic mode of the positio
cavity. The generalized form factors areFxn for the dipole
mode of the position cavity,Fwn for the monopole mode o
the phase cavity, andFCMn for the parasitic mode of the
position cavity. In the last expression, we include a factoh
to account for any additional measures employed agains
parasitic mode~e.g., symmetrization as in Fig. 6!. Using Eq.
~34! the magnitude of the offset of Eq.~72! may be ex-
pressed up to an overall phase factor as

ux̃0u'
1

2

uhu
uDVCM /VCMu ~11bx!

3bx
21/2S @R/Q#CM

@R' /Q#x
D 1/2

~QeCMQwx!
21/2,

where we consider a uniform beam and comparable fo
factors, for illustration. Thus the parasitic-mode offset
minimized for an undercoupled parasitic mode (bCM→0),
and a critically coupled dipole mode (bx51).

Comparing Eqs.~77! and~78! to Eqs.~69! and~70!, and
neglecting cable propagation factors, we may identify

cwQeff'RL(
n

QbnFwn , ~79!

cxQeffx'R'L(
n

QbnxbFxn , ~80!

exQeff'n9h
RL2CM

12 jT f CMDVCM
(

n
QbnFCMn . ~81!

Making use of the theactualcharge-weighted beam-centro
x[( Qbnxbn /( Qbn , the scale factor may be expressed a

S5
( QbnxbnFxn

( Qbn expFwn

( Qbn

( Qbnxbn
cosf, ~82!

where we suppose that the calibration factor has been ch
as k5RL /R'L to makeS51 for cosf51, and a perfectly
centered beam, uniform throughout the pulse. Intercep
given by

X0'hn9
RL2CM

R'L

( QbnFCMn

( Qbn expFwn

sinf

Tf CMDVCM
. ~83!

To illustrate, let us consider the cavity system of Sec.
and suppose a requirement to resolve 1mm out of 100mm.
he

m

en

is

,

We must then insure that the scale factor is constant at
level of 1%. For a ‘‘top-hat’’ macropulse with no chirp in
beam variables, we have

S'F' cosf'@11B3* ~xb
223yb

213sx
223sy

2!#cosf, ~84!

with no bunch length dependence. Recall thatB3'24.2
31023 cm22 is small, with the result that scale deviatio
due to nonlinearities occurs only for gross vertical misteer
of order 9 mm. For scale factor to be constant at the
level, we require thatf be stable to better than 8°. If th
requirement were 0.1%~1 mm out of 1 mm!, thenf should
be stable to better than 2.5°, and vertical misteering sho
not exceed 2.8 mm. In view of these results maintenanc
a reliable scale factor appears feasible.

We must also insure that the intercept is stable to 1mm
over the measurement period. This is the point where
needs to account for the quadrupolar content of the mo
pole mode of thex cavity. In the previous section, we foun
that this could be quantified in terms of

Fl'11B2* ~xb
22yb

21sx
22sy

2!. ~85!

The normal quad component for the parasitic mode of
linac-style x cavity was found to beB2'6.331023 cm22.
As a consequence of this quadrupolar component in the p
sitic mode, the intercept takes on a dependence on b
coordinates that could in principle disturb the measurem
of true position variation. So, for example, let us suppo
that operation with a beam motion over a range as large
xb'1 mm is envisioned, and, at the same time it is requi
that the intercept remain stable at the level of 1mm. In this
case, we requireX0B2xb

2,1 mm or X0,1.6 cm. Thus the
absolute interceptX0 cannot be too large. We can estima
its magnitude usingRL2CM'0.6 MV, R'L'15 kV cm22,
un9u'0.15 cm21, and TfDV'21.93103. We find X0

'30mm3h sinf. This implies that despite the transver
variation in the parasitic mode, and its possible effect
‘‘faking’’ beam motion, one has several orders of magnitu
to spare.

Note also that in the case of a macropulse-integra
signal, the effect of equalx-cavity andw-cavity tuning errors
cancel in their contribution to scale error. That is to say t
both phasors are multiplied by the same complex correc
factor coscejc, and these factors cancel. The residual eff
of cavity tuning error in this case is through the parasit
mode interceptX0 . The parasitic mode, being alread
greatly detuned, picks up little in the way of a correction
this case. Thus a drift in cavity tune from zero tuning ang
to dc, results in a drift in intercept, through the normaliz
tion signal,

X0'30 mm3h
sin~f1dc!

cos~dc!
.

To hold intercept drift to 1mm requires control of phase
angle at the level ofdc,1.9°. WithQL'1200 for the phase
cavity, and temperature detuning of260 kHz/°C, this im-
plies temperature regulation at the level of 0.5 °C.

To conclude this discussion, let us emphasize that,
the sake of illustration and simplicity, we have made so
assumptions regarding the signal processing that are un
essarily restrictive. The assumption of infinite gate-width
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Eqs.~77! and ~78! implies that variation within the pulse o
centroid position is not resolved. One could in principle fi
‘‘ x50’’, when in fact the head is at1100mm, and the tail is
at 2100mm. Where such intra-pulse resolution is required
is straightforward to extend our treatment to that case
well. Also, let us emphasize that Eq.~74! represents one
choice as to the method of detection, and other choices
possible. For example, the modulusuṼxṼw* u/uṼwṼw* u also
could be monitored to track drifts inf. Our analysis indi-
cates that this is not necessary. In addition, we point out
if one wishes to remove small nonlinearities in the transve
coordinate dependence, this could probably be accomplis
by employing Eq.~74! for a first estimate of position inx and
y, and then employing inferred coefficientsBn , and inferred
cavity centroids to remove the residuals. Our analysis in
cates that such a complex procedure is not necessary
mm scale resolution.

A more subtle potential contributor to systematics ari
from the effect of the cavity on the beam; let us show t
this is a small effect. For the phase cavity, bunches w
experience a retarding voltage on the order ofV'RLI b

[2klQeq . Using RL'0.3 MV, this corresponds to 30 kV
100 mA of beam current, a negligible induced energy spre
The position cavity of Sec. III also acts back on the bea
providing a transverse kick. The amplitude of the sinusoi
kick function may be expressed asDx8'eR'LI bxb

2/mcg.
Using R'L'5.43103 V/cm2, and 45 GeV for the beam en
ergy, this amounts to 1310212rad/100 mA for a 100mm
beam offset. Actual deflection experienced by a bunch
reduced by an additional factor of orderVs t'1022, arising
from the 90° phase lag between the transverse and lon
dinal kicks. This is a very small effect and can be neglect
It is not too surprising that kicks from the monitor are sma
since the accelerator itself is made up of cells with sim
characteristics.

V. DISCUSSION

In this work, we have characterized the coupling of ca
ity to a beam and an external waveguide. The multipole
parasitic mode effects are presently the primary limits to p
cision of cavities as resonant beamline pickups. They a
limit future applications of miniature, planar accelerato
These effects dwarf the 10213W thermal noise in typical
cavity bandwidths. We have set down a straightforward f
mulation of the problem, and illustrated it with an examp
of current interest for a fixed-target experiment. Two aspe
of this work could bear improvement, and they concern
isolated resonance model for the cavity.

Historically, the formal treatment of a cavity in this wa
was first set down by Slater, with subsequent work
Kurokawa.13 We have side stepped the full mathematic
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complexity of the problem by electing to consider isolate
narrowband cavity resonances. This is not the whole of
problem. First, as shown by Lin,14 a cavity connected to a
waveguide exhibits beam-induced fields with algebraic~non-
exponential! decay. Their effect on the pickup has not be
characterized here. In addition, frequencies above cutoff
also induced by the beam,15 and the corresponding broad
band impedance accounts for a significant fraction of pa
sitic energy loss by a beam in a cavity. Their coupling to t
output structure is not well characterized, and further wo
could improve on this. Including such modes, and a f
higher monopole modes still below cutoff, one may expec
parasitic mode voltage amplitude a factor of 2 or so hig
than determined from the lowest monopole mode.

In the meantime, we have seen that in an asymme
structure, the variation of@R/Q# with transverse position ha
a fair variety to it, and is amenable to classification much
beamline magnets are. As in the case of beamline magn
when precision is required, one is interested to know
only the dipole field on-axis, and the quadrupole gradie
but higher moments as well.
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