

GdfidL v1: Syntax and Semantics

Warner Bruns

7.5<10" | ‘ AP
]l » [k B
o - s
| 2
J N P
0.0<10°y Y ; -
Pt}
h N . 4 ‘4 <@
J 4 5 . b4
7 7 % & &
] 7
| 77 Q&ﬁ \! 1 .
| 777 @§<Q
= TN
| 7% . W
— 1. 7¢% <M A TS
75519 7l 25 b Nq .
QWQQNQQ‘ = QQQ LN VYA e
J///770-0"10O Vqle, g e 7 = ~7.510
7.5¢10 Y 0.0
X

October 20, 1999

1GdfidL is the abbreviation for ”Gitter driiber, fertig ist die Laube”

Contents

2

0.1 Introduction L 1
gd1l 3
1.1 Typical usageof gd1 L. 3
1.2 Input forgdl 3
1.3 Behind the scenes: When the mesh is generated 4
1.4 General sections 5
1.4.1 Entry Section 5
1.4.2 -general : Annotations, filenames 6
1.4.3 -mesh : outer boundary conditions, spacings 8
1.4.4 -material : electric / magnetic properties 11
1.5 Geometric primitiveso 13
1.5.1 -brick: a rectangular brick 13
1.5.2 -gceylinder: A circular cylinder in general direction 16
1.5.3 -ggcylinder: A general cylinder in general direction 19
1.5.4 -gbor: A general body of revolution in general direction . . . 24
1.5.5 -stlfile: CAD import via STL-file 35
1.6 -volumeplot: shows the generated mesh 38
1.7 Solver sections: Eigenvalues and driven time domain problems . . . 40
171 -eigenvalueso 40
1.7.2 -fdtd: Compute time dependent fields 42
1.7.3 -fdtd/-ports 43
1.7.4 -fdtd/-pexcitation: What port-mode should be excited . .. 45
1.7.5 -fdtd/-lcharge: Properties of a relativistic line charge 47
1.7.6 -fdtd/-time: minimum / maximum time, when to store . . . 49
gdl.pp 51
2.1 -base 52
2.2 -general L 04
2.3 -3darrowplot: Plots 3D Fields together with the material boundaries. 56
2.4 -lineplot: Plots a field component along an axis. 29
2.5 -energy: compute energy in Eor H fields 61
2.6 -lintegral: computes line integrals 63
2.7 -losses: Compute wall losses from H-fields 65
2.8 -sparameter: Computes scattering parameters from time dependent
data 66

2.9 -material: Conductivities of electric materials 69

2.10 -wakes: longitudinal and transverse wakepotentials 70
GdfidLs command language 75
3.1 Variables 75

3.1.1 Defining variables from outside 75
3.2 Arithmetic expressions 76
3.3 do-loops 76
34 if-then oL 76
3.5 Macroso 7

3.6 Result-variables 78

List of Figures

1.1
1.2
1.3
14
1.5

1.6
1.7

A simple brick Lo 15
A simple geeylinder, with its axis directing towards (-0.4, 1.5, 0.4). 18
A simple ggeylinder oL Lo 23
A simple gbor. 27
The intersection of two circular cylinders, where whichcells and

taboo were specified. L. 30
A complicated gbor oL o 34
A discretization of a brain, imported as a STL-file. 37

0.1 Introduction

Features:

e The geometry is approximated by generalized diagonal fillings. This reduces
the approximation error typically by a factor of ten.

e Periodic boundary conditions for all three cartesian directions can be speci-
fied simultaneously for eigenvalue computations.

e The time domain computation uses ”Perfectly Matched Layers” for it’s ab-
sorbing boundary conditions.

e The programs can be run interactively. All commands are explained when
you issue the special command help.

e The solver and the postprocessor have a built-in macro processor.

— You can define symbols storing numerical values or character values.
— Arithmetic expression evaluator.

— You can groups of commands as macro’s. The macro’s can have an
unlimited amount of parameters.

— ’do-loop’s are implemented.
— ’if” "endif’

e Almost all commands may be abbreviated as long the abbreviation is unique
in context.

GdfidL consists of 3 separate programs that work together. These programs
are:

e gd1 & single.gdl: These programs read the description of the problem and
compute resonant fields or time dependent fields. gd1 computes in double
precision, while single.gd1 computes in single precision. single.gd1 needs
somewhat less memory and often less cpu-time.

e gdl.pp : This is the postprocessor. It displays the fields, computes integrals
over the fields to compute quality factors and the like. It also computes scat-
tering parameters and wakepotentials from data that have been computed
by gd1 or single.gd1.

e mymtv2: This program displays the plots on a X11 terminal and produces
PostScript files

mymtv2 was not written by me, but is a modified version of the program
plotmtv written by Kenny Toh. The original sources for plotmtv can be found on
the internet: plotmtv can be found at ftp.x.org: /contrib/applications/Plotmtv.1.3.2.tar.Z

Chapter 1

gd1

1.1 Typical usage of gd1

gd1 reads its information from the standard input unit. You will normally use
two or more xterm’s to operate gd1. In one of the xterm’s you edit an inputfile
that describes your geometry, in the other xterm you iteratively start gd1l and
try out how gd1 reacts on your input.

There is no standalone meshgenerator. gd1 has its meshgenerator built in.

gd1 reads the information about the geometry that you are interested in from
stdin or from a file that you specify via include(filename). gd1 generates the
mesh and computes the resonant fields or time dependent fields, depending on the
input you give him. The results are written to a database that can be read by

gdl1.pp.

1.2 Input for gdil

gd1l’s input is pure text. You give gd1 the information about your problem in
distinct sections.

The required information that you have to give gd1 is
e The name of the resultfile. (-general)
e The borders of the computational volume. (-mesh)
e The wanted mesh-spacing (-mesh).

e The boundary conditions at the borders of the computational volume. (-
mesh) (-fdtd/-ports)

e The description of the geometry. (-brick, -gccylinder, -ggeylinder, -gbor,
-stlfile)

— For an eigenvalue computation:

* The wanted number of frequencies. (-eigenvalues)

3

* An estimation of the highest frequency. (-eigenvalues)
— For a time domain computation:

* The location of ports. (-fdtd/-ports)
* The excitation. (-fdtd/-pexcitation)
* The minimal time to be simulated. (-fdtd/-time)
* The maximal time to be simulated. (-fdtd/-time)

The symbols in brackets above indicate in which section of gd1 you specify the
required parameters.

1.3 Behind the scenes: When the mesh is gen-
erated

When you define a geometric primitive, the only thing that happens immediately
is that the information about the geometric primitive is stored in an internal
database. When you say doit in the section -eigenvalues or in the section -fdtd,
the mesh is generated on the fly. When you display the mesh-filling via the section
-volumeplot, the mesh is also generated on the fly.

1.4 General sections

These are the sections where you specify parameters that are required for every
field computation. In the section -general, you specify the name of the file where
the results shall be written to. In the section -mesh, you have to specify the
borderplanes of the computational volume, and the default mesh spacing. You
also the boundary conditions at the borderplanes here. In the section -material,
you specify the electric properties of the materials.

1.4.1 Entry Section

HHBHHHHHHH R BRI H R H R R R R R R R ¢
Flags: nomenu, noprompt, nomessage,
HHHH S R R R R R R R R R ¢
gdfidl (V 1.0) (Sun Oct 17 17:54:54 GMT 1999, compiled on host: wb003)
HHHHHHHH R R R R R R R

-general -- Output file, annotatioms.
-mesh -- Bounding box, spacing, fixed meshplanes, boundary conditions.
-material —- Material properties.
kkxkk Geometric primitives ks
-brick -— Simple rectangular brick.
-gccylinder -- Circular cylinder in general direction.
-ggcylinder -- General cylinder in general direction.
-gbor -- Body of revolution in general direction.
-stlfile -- CAD import via STL-file.
*xxkkx Solver Sections *k*x
-eigenvalues -- Resonant fields
-fdtd -- Time dependent fields
#orokokkokokok #
-volumeplot -- displays mesh filling.
*kxxxkx Miscalleneous *¥kxxx*
-debug -- Specify debug levels
#

Hit it S S
7, end, help
HA A S

This is the section you are in when you start gdl. The menu shows all sections
currently accessible. The section -fdtd has some subsections. You enter a section
by specifying its name.

Example
To enter the section -general, you say:

-general

1.4.2 -general : Annotations, filenames

A
Flags: nomenu, noprompt, nomessage,
HEHHHHAHHBH BB HAHHEHBHHBHREHEH B R AR B R EHBHRRH B R AR H AR SRS RS R R R 1R
section: -general
HEHHHHAHHEH B R HRHHEHBEHAFHEHEH B H AR B HEH R R R R R R
outfile = /tmp/--username--/--SomeDirectory--/Results
scratchbase= /tmp/bruwl931/garbage/gdfidl-scratch-pid=10923-
text(1)= 7

text(2)=

text(3)=

text(4)=

text(5)= ’

text(6)= ’

text(7)= 7

text(8)=

text(9)=

text(10)= *

text(11)= >

text(12)= *

text(13)= *

text(14)= * °

text(15)= ’

text(16)= ’

text(17)=

text(18)= ’

text(19)= ’

text(20)= ’

HEHHHHAHHBH BB HAHHEHBHHBHREHEH B R AR B R EHBHRRH B R AR H AR SRS RS R R R 1R
7, return, help
HEHHHHAHHEH B R HRHHEHBEHAFHEHEH B H AR B HEH R R R R R R

H O OH OH OH OH OH O OH OH O OH OH OH OHEH OHH H HE R R
HOHE H O H H OH O H H H HE H HE HE HEHEHHEHHHEHH

e outfile The name of the file! where the solutions shall be stored in. This file
may exist. If it exists, then it will be overwritten.

e scratchbase The base name of scratchfiles that gd1 needs for its operation.

If you have an environment variable TMPDIR set, SOLVER will as default
value set scratchbase to the string

$TMPDIR/gdfidl-scratch-pid=XXXXX-

1 This will actually be a directory. The reason is: For current (1999) workstations, it is quite
easy to generate data in excess of 2GBytes. But many current filesystems cannot handle files
larger than 2GBytes. So we choose to implement the computed data as a hierarchy of files. A
Directory is just a hierarchy of files, so we just used that.

Here $TMPDIR is the value of the environment variable TMPDIR, and XXXXX is
the number of the process-id of gd1.

text(*)= This annotation text is plotted together with the field plots. This
is especially useful for documenting the geometry parameters of a calcula-
tion.
syntax:

text ()= ANY STRING, NOT NECESSARILY QUOTED
or

text (NUMBER)= ANY STRING, NOT NECESSARILY QUOTED

— ANY STRING, NOT NECESSARILY QUOTED:
The string to be included in the plots,

— NUMBER:
Optionally, the line number, where the text should be plotted.

In the first case, without NUMBER, the string following text ()= is placed in
the next free line. In the case with NUMBER, it is guaranteed, that the string
is placed in the NUMBER.st line. You can specify up to 20 annotation strings,
the maximum length of each annotation string is is 80 characters.

Example

The following specifies that the results of the current computation shall be stored in
the database with name ’/tmp/bruw1931/garbage/resultdirectory’. The names of
scratchfiles that gd1 generates shall start with ’/tmp/bruw1931/garbage/delete-
me-’. Together with the plots that gd1.pp will produce, the string ’strange what
one can do with this beast’ shall appear.

-general

outfile= /tmp/bruwl931/garbage/resultdirectory
scratchbase= /tmp/bruwl931/garbage/delete-me-

text(1)= strange what one can do with this beast

1.4.3 -mesh : outer boundary conditions, spacings
gd1 needs to know

e what the boundaries of the computational volume shall be,
e what thee default spacing between mesh-planes shall be,

e what the boundary conditions at the outer planes of the compuational volume
shall be.

You specify these values in this section.

HERH R R R R R R

Flags: nomenu, noprompt, nomessage,
FHER R R R R
section -mesh
HHAH R
Bounding box:
pxlow = undefined , pylow = undefined , pzlow = undefined
pxhigh= undefined , pyhigh= undefined , pzhigh= undefined
volume= (undefined, undefined, undefined, undefined, undefined, undefined)#
Boundary conditions:

cxlow = electric, cylow = electric, czlow = electric
cxhigh= electric, cyhigh= electric, czhigh= electric
periodic bc’s for eigenvalues:

xperiodic= no , xphase= undefined

yperiodic= no , yphase= undefined

zperiodic= no , zphase= undefined
#HHHH

spacing = undefined, minspacing= undefined
graded = no

qfgraded= 1.20, dmaxgraded= undefined

Commands: # # # # # # # # #
xfixed(N, X0, X1)
yfixed(N, YO, Y1)
zfixed(N, Z0, Z1)
G 38 S 2
return, help
G2 58 22

HOoH OH H OH H OH OH OH H H H R H

e pxlow, pxhigh, pylow, pyhigh, pzlow, pzhigh, volume
(Plane at XLOW ...) These values are the coordinates of the planes that
bound the computational volume.
THESE PARAMETERS ARE MANDATORY.
Alternatively to specifying via pxlow.., you can specify the volume of your
computational volume as volume= (XL, XH, YL, YH, ZL, ZH).
gd1 ignores all parts of items that are specified outside of the box with these
boundary planes.

cxlow, cxhigh, cylow, cyhigh, czlow, czhigh
(Condition at XLOW ...) These are the boundary conditions at the boundary
planes of the computational volume. Possible values are electric, magnetic.

xperiodic, yperiodic, zperiodic
Possible values are yes, no. Toggles the application of periodic bound-
ary conditions between the lower and upper boundary planes in x-, y- or
z-direction. You can compute with more than one ?periodic= yes. This is
only implemented for eigenvalue computations. For time-domain computa-
tion, these parameters are ignored.

xphase, yphase, zphase
Specification of the phase (in degrees) to enforce between the lower and upper
boundary planes, when ?periodic= yes.

spacing

The average spacing, that gd1 should use for discretizing the computational
volume.

THIS PARAMETER IS MANDATORY.

Of course, specifying a small spacing will lead to a good discretization. Be
aware however, that the memory requirement is proportional to 1/(spacing)?
and the CPU-time approximately to 1/(spacing)®®.

minspacing

The smallest mesh-spacing allowed.

gd1 tries to place meshplanes approximately homogeneously over the vol-
ume. It is guaranteed, that there are meshplanes at the boundary planes of
bricks, and where you enforce them via xfixed, yfixed, zfixed, If the
distance between such fixed meshplanes is more than minspacing. Other-
wise, one of these fixed meshplanes is deleted, it is the meshplane with the
higher coordinate value.

If this parameter minspacing is not given, gd1 uses the value of spacing/10
instead.

graded

Possible values are yes, no.

If graded= yes, the space between fixed meshplanes will be filled with a
graded mesh. The ratio of adjacent mesh-spacing will be approx. qfgraded,
The largest mesh-spacing will be less or equal dmaxgraded.

afgraded, dmaxgraded
These are the parameters that are mentioned above in the discussion of
graded.

xfixed, yfixed, zfixed
gd1’s mesh generator fills the computational volume in principle homoge-
neous (if graded= no). It is only guaranteed, that the borders of brick’s

9

lie on meshlines. Therefore, if you have a geometry, where geometric items
other than bricks are in, you can improve the mesh by enforcing meshlines
with these commands.

Syntax:

xfixed (NUMBER, LOW, HIGH)

yfixed (NUMBER, LOW, HIGH)

zfixed (NUMBER, LOW, HIGH)

— NUMBER:
The number of meshlines to place in between LOW, HIGH. The total
number of meshlines enforced by such a command is exactly NUMBER. In
the case of xfixed, the meshlines are positioned at positions x;:

HIGH — LOW

no= LOWA (=) NUMBER = 1)

i=1,(1), NUMBER

— LOW, HIGH:
The first and last coordinates of the meshlines to be enforced.

Note:

It is possible to specify NUMBER < 0, in this case nothing happens.

It is possible to specify NUMBER=1, in this case a single meshplane at LOW is
enforced.

It is not necessary, that LOW is really lower than HIGH.

Example

-mesh
pxlow= le-2, pxhigh= 0
pylow= 2e-2, pyhigh=
pzlow= 3e-2, pzhigh= 0

o

cxlow= ele, cxhigh= mag
cylow= ele, cyhigh= mag

zperiodic= yes, zphase= 120

spacing= l1le-3

10

1.4.4

-material : electric / magnetic properties

A 3 0 A
Flags: nomenu, noprompt, nomessage,
A A 3 R R R R

section —-material

#

#

HHHHHHHH R R R R R R R

material= 3 # epsr = undefined # kappa = undefined
type= undefined # xepsr= undefined # xkappa = undefined
yepsr= undefined # ykappa = undefined
zepsr= undefined # zkappa = undefined
muer = undefined # mkappa = undefined
xmuer= undefined # xmkappa= undefined
ymuer= undefined # ymkappa= undefined
zmuer= undefined # zmkappa= undefined
FHBH A R
return, help

HHf R R R

e material
The material index of the material whose parameters are to be changed. This
number must be between 0 and 50 inclusive.

e type
The type of the material. Possible values are ”electric”, "magnetic”, ”nor-
mal”. An "electric” material is treated as perfect electric conducting for
the field computation, a "magnetic” material is treated as perfect magnetic
conducting in the field computation.

— For eigenvalue computations, only the "epsr” and ”muer” of a "normal”
material are used for the field computation, ie. no losses are modeled
for eigenvalue computations.

7N

— For time domain computations, "epsr”, "muer”, "kappa” and " mkappa”
of a ”type= normal” material are used for the field computation.

— Both for time domain and for eigenvalue computations, materials with
"type= electric” are considered perfectly conducting, and materials
with ”type= magnetic” are considered perfectly magnetic conducting.
Any specified electric conductivities for materials with ”type= electric”
are used in the postprocessor, gd1.pp, to compute wall losses via a
perturbation formula.

e epsr
The relative permittivity of the material. If you specify eg.
three epsr values xepsr, yepsr and zepsr are set to the value 3.

epsr= 3, all

® Xepsr, yepsr, zepsr
The x-, y-, z-value of an anisotropic material. Only diagonal epsr matrices
can be specified.

11

e muer
The relative permeability of the material. If you specify eg. muer= 4, all
three muer values xmuer, ymuer and zmuer are set to the value 4.

e Xmuer, ymuer, Zzmuer
The x-, y-, z-value of an anisotropic material. Only diagonal muer matrices
can be specified.

e kappa
The electric conductivity of the material in MHO/m (1/Ohm/m). If you
specify eg. kappa= 5, all three kappa values xkappa, ykappa and zkappa
are set to the value 5.

» xkappa, ykappa, zkappa
The x-, y-, z-value of an anisotropic material. Only diagonal kappa matrices
can be specified.

e mkappa
The magnetic conductivity of the material in Ohm/m. If you specify eg.
mkappa= 6, all three kappa values xmkappa, ymkappa and zmkappa are set
to the value 6.

e xmkappa, ymkappa, zmkappa
The x-, y-, z-value of an anisotropic material. Only diagonal mkappa matri-
ces can be specified.

Note:
Three materials are predefined:

e Material ’0’ is a dielectric whose default values of epsr and muer are 1. This
is vacuum. You can change the parameters epsr, muer, kappa and mkappa
of the material ’0’, but you cannot change its type= normal.

e Material '1’ is treated as a perfect electric material for the field computa-
tions. You can change its kappa values, but this only effects the wall-loss
computations of gd1l.pp. You cannot change its type= electric.

e Material '2’ is treated as a perfect magnetic conducting material. You cannot
change its type= magnetic.

Example
The following specifies that the material with number 3 shall be treated as a perfect
magnetic conducting material, the material with number 4 is a lossy dielectric.

material= 3
type= magnetic
material= 4
type= normal, epsr= 3, kappa= 1, muer= 1

12

1.5 Geometric primitives

1.5.1 -brick: a rectangular brick

A brick is a rectangular box, with its edges parallel to the cartesian coordinate
axes.

HuRHH R R R R R R R R R R R R

Flags: nomenu, noprompt, nomessage,
HHAR R
section -brick
HHAR R R
material= 1, sloppy= no
whichcells= all, taboo= none
xlow = undefined , ylow = undefined , zlow = undefined
xhigh= undefined , yhigh= undefined , zhigh= undefined
#HHEHRH #
volume= (undefined, undefined, undefined, undefined, undefined, undefined)

HA A
doit, return, help
Hit A S S S

e material
The material index that shall be assigned to the volume that makes up the
brick.

¢ sloppy
Possible values are yes, no. If no, meshplanes are enforced at the border-

planes of the brick.

e whichcells
Possible values are all, or a material-index. If whichcells= all, all vol-
ume inside the brick is assigned the material-index, provided the former
material is not taboo. If whichcells is a material-index, only the parts
of the brick that are currently filled with the given index are assigned the
new material-index.

e taboo
Possible values are none, or a material-index. If taboo= all, all volume
inside the brick is assigned the material-index. If taboo is a material-index,
only the parts of the brick that are currently filled with another index than
the given index are assigned the new material-index.

e xlow, xhigh, ylow, yhigh, zlow, zhigh, volume
The coordinates of the bounding planes of the brick. Alternatively to speci-
fying via xlow.., you can specify the volume of the brick as
volume= (XL, XH, YL, YH, ZL, ZH).

13

e doit
Discretizes a brick from the current data.

Example

—-general
outfile= /tmp/bruwl931/garbage/example
scratch= /tmp/bruwl931/garbage/scratch

-mesh
pxlow= 0, pxhigh= le-2
pylow= 0, pyhigh= 2e-2
pzlow= 0, pzhigh= le-2

cxlow= ele, cxhigh= mag
cylow= ele, cyhigh= mag
czlow= ele, czhigh= mag

spacing= le-3

-brick
material= 1, sloppy= no

xlow= 0.3e-2, xhigh= 0.8e-2
ylow= 0.2e-2, yhigh= 1.3e-2
zlow= 0.2e-2, zhigh= 0.6e-2
doit
-volumeplot
scale= 2.5
doit

14

Wed Oct 20 05:11:59 1999 v1.0 Sun Oct 17 1999 tetibm4

GdfidL

Material boundaries

0.0x10°

Figure 1.1: A simple brick

15

1.5.2 -gccylinder: A circular cylinder in general direction

A gccylinder is a circular cylinder, with its axis in an arbitrary direction.

HERHH BRI R R R R R R

Flags: nomenu, noprompt, nomessage,
Hit
section -gccylinder
HA
material = 1
whichcells= all, taboo= none
radius = undefined
length = undefined
origin = (undefined, undefined, undefined)
direction = (undefined, undefined, undefined)

ittt i
doit, return, help
ittt i

¢ material
The material index that shall be assigned to the volume that makes up the
gccylinder.

e radius
The radius of the circular cylinder.

e length
The length of the cylinder.

e origin
The coordinates of the center of the foot-circle of the circular cylinder.

e direction
The direction of the cylinder axis.

e doit
Discretizes a circular cylinder from the current data.

Note: You can revert the direction of the cylinder by negating the direction,
or (easier) by negating the length.

Note: if you want eg. a quarter of a circular cylinder, you have to use -gbor,
see pages 24 ff.

16

Example

-general
outfile= /tmp/bruwl931/garbage/example
scratch= /tmp/bruw1931/garbage/scratch-

-mesh
pxlow= 0, pxhigh= le-2
pylow= 0, pyhigh= 2e-2
pzlow= 0, pzhigh= 1.5e-2

cxlow= ele, cxhigh= mag
cylow= ele, cyhigh= mag
czlow= ele, czhigh= mag

spacing= 0.2e-3

-gccylinder
material= 1, radius= 3e-3, length= 7e-3
origin= (0.5e-2, 0.3e-2, 0.6e-2)
direction= (-0.4, 1.5, 0.4)
doit

-volumeplot

scale= 2.5
doit

17

Wed Oct 20 05:12:39 1999 v1.0 Sun Oct 17 1999 tetibm4

GdfidL

X oundaries

1.5x10~

1.0x1072
=
N

8:8&89> ~

z W/ph0x107
// 0.0x1¢°
2.0x1072 2
X 1.0x10° «/m
Y

Figure 1.2: A simple gceylinder, with its axis directing towards (-0.4, 1.5, 0.4).

18

1.5.3 -ggcylinder: A general cylinder in general direction

A ggcylinder is a cylinder with a footprint described as a general polygon.
This footprint is swept along an axis in a general direction, additionally, this
footprint can shrink or expand along this axis, additionally, this footprint can be
rotated along the axis, additionally, only parts of the ggcylinder that fulfill some
additional condition will be filled.

H#R R R R R R R R R

Flags: nomenu, noprompt, nomessage,
HAEHHHHBHHEHBHHAEHHEHBEH AR BEHEH RS HEHBHHEH AR RS HEF RS H AR B REH R RS RS RS
section -ggcylinder
HERHHBRHHBRFH BB H R R R R R R R R
material = 1
whichcells= all, taboo= none
originprime = (0.0, 0.0, 0.0)
xprimedirection= (1.0, 0.0, 0.0)
yprimedirection= (0.0, 1.0, 0.0)
range = (undefined, undefined)
pitch = 0.0
expgrowth = 0.0
xlingrowth= 1.0
ylingrowth= 1.0
show = off (off | all | later | now)
fixpoints = no (yes|Ino)
inside = yes (yesIno)
HAEHHHHBHHEHBHHBEHHEHBEH AR BEHEH RS HEHBHHEH ARG HEH RS H AR REHRH R R R RS R AR RS H AR RS RH
syntax:
point= (Xi, Yi)
arc, radius= RADIUS, type= [clockwise | counterclockwisel
size= [small | large]
deltaphi= 5
ellipse, center= (X0, YO), size= [small | large]
deltaphi= 5
HEHHHHBHHEH B HAFHEHBEH AR BEHEH RS HEHBHHEH ARG HEF RS H AR RS RS R RS
doit, return, help, list, reset, clear

#Hf R R R R R R

e material= MAT:
The material index that will be assigned to cells inside the volume.

e whichcells
Possible values are all, or a material-index.
If whichcells= all, all volume inside the ggcylinder is assigned the
material-index, provided the former material is not taboo. If whichcells
is a material-index, only the parts of the ggcylinder that are currently filled
with the given index are assigned the new material-index.

19

taboo

Possible values are none, or a material-index.

If taboo= all, all volume inside the ggcylinder is assigned the material-
index. If taboo is a material-index, only the parts of the ggcylinder that
are currently filled with another index than the given index are assigned the
new material-index.

originprime:
The coordinates of the origin of the ggcylinder .

xprimedirection:
The direction of the x’-axis of the polygon that describes the footprint.

yprimedirection:
The direction of the y’-axis of the polygon that describes the footprint. The
y’-direction will internally be enforced to be perpendicular to the x’-direction.

range:
Start and end values of the z’-coordinate of the cylinder in the coordinate
system of xprimedirection,yprimedirection, (xprime X yprime), rela-
tive to originprime.

pitch:
Phase in degrees/m. The footprint will be rotated along the axis.

expgrowth
Alpha of the exponential growth of the footprint along the axis in 1/m.

xlingrowth:
Factor of the linear growth of the x-coordinates of the footprint along the
axis in 1/m.

ylingrowth:
Factor of the linear growth of the y-coordinates of the footprint along the
axis in 1/m.

inside:
Flag, specifying whether cells inside of the ggcylinder should be assigned
material index MAT , or whether the cells outside of it should be changed.

show:

Flag, specifying whether an outline of the specified ggcylinder should be

displayed.

If show= off , no outline will be displayed.

If show= later , the outline will be shown later together with other spec-

ified ggcylinder’s and gbor’s .

If show= all is present, the outlines of all specified ggcylinder’s and
gbor’s so far will be displayed.

20

e point= (XI,YI):
XI, YI are the coordinates of the i.th point in the polygon that describes
the footprint of the ggcylinder . There have to be minimum 3 points, or
2 points and an arc or 2 points and an ellipse.

® arc:
(optional):
Indication, that there should be a circular arc from the point that was spec-
ified before to the point that will be specified as next point.
In order to determine the arc between two points, three parameters are
necessary: The radius of the arc, whether the connection is clockwise or
counterclockwise, and whether the connection should take the large path or
the small path.

— radius= RADIUS:
The points are to be connected by an arc with radius= RADIUS

— size= [small | large] (optional):
Indication, whether the the connection between the two points should
be on the smaller or the larger side of the arc.

— type= [clockwise | counterclockwise]:
Indication, whether the connection between the two points should pro-
ceed clockwise or counterclockwise along the arc.

e clear:
Clears the current polygon path.

e doit:
Discretizes a ggcylinder from the current data.

Example
The following decribes a cavity with rounded corners.

—-general
outfile= /tmp/bruwl931/garbage/example
scratchbase= /tmp/bruwl931/garbage/scratch
text ()= Radius = 500.0e-03 mm

-mesh
spacing= 100.0e-06
graded= yes, dmaxgraded= 263.3e-06
pxlow= -5e-03, pxhigh= 5e-03
pylow= -4.34e-03, pyhigh= 0
pzlow= -1.6665e-03, pzhigh=1.6665e-03

21

cxlow= ele, cxhigh= mag
cylow= ele, cyhigh= mag
czlow= el, czhigh= el

-ggcylinder

material= 1

originprime= (0,0,0)
xprimedirection= (1,0,0)
yprimedirection= (0,0,1)
range= (-4.2e-03, 4.2e-03)

clear # clear the polygon-list, if any
point= (-3.3405e-03, -816.5e-06)

arc, radius= 500.0e-06, type= counterclockwise, size= small
point= (-2.8405e-03, -1.3165e-03)
point= (2.8405e-03, -1.3165e-03)

arc, radius= 500.0e-06, type= counterclockwise, size= small
point= (3.3405e-03, -816.5e-06)
point= (3.3405e-03, 816.5e-06)

arc, radius= 500.0e-06, type= counterclockwise, size= small
point= (2.8405e-03, 1.3165e-03)
point= (-2.8405e-03, 1.3165e-03)

arc, radius= 500.0e-06, type= counterclockwise, size= small
point= (-3.3405e-03, 816.5e-06)

fixpoints= yes # enshure mesh-planes at the points of the polygon
doit

-volumeplot
scale= 3
doit

22

Wed Oct 20 05:13:13 1999 v1.0 Sun Oct 17 1999 tetibm4

GdfidL

Radius = 500.0e-03 mm Material boundaries

0.001667

0.001

—0.005001

Figure 1.3: A simple ggcylinder

23

1.5.4 -gbor: A general body of revolution in general direc-
tion

A gbor is a body of revolution with a cross section described as a general poly-
gon. This cross section is swept along an axis in a general direction, additionally,
only cells that fulfill some additional condition will be filled.

HER R R R R R R

Flags: nomenu, noprompt, nomessage,
HHHHH R R R R
section -gbor
HHEHHHHH SRR SRR R R S R R R R R
material = 1
whichcells = all, taboo= none
originprime = (0.0, 0.0, 0.0)
zprimedirection= (0.0, 0.0, 1.0) it
rprimedirection= (1.0, 0.0, 0.0)
range = (0.0, 360.0)
show = off (off | all | later | now)
inside = yes (yes|Ino)
HHEHH R R R
syntax:
point= (Zi, Ri)
arc, radius= RADIUS, type= [clockwise | counterclockwisel
size= [small | large]
deltaphi= 5
ellipse, center= (Z0, RO), size= [small | large]
deltaphi= 5
HHHHHHH B HHHHEHH EHH R R S EHH E R R R R R R R
doit, return, help, list, reset, clear

HERHH B R R R R R R R

e material= MAT:
The material index that will be assigned to cells inside the volume.

e whichcells
Possible values are all, or a material-index.
If whichcells= all, all volume inside the ggcylinder is assigned the
material-index, provided the former material isnot taboo. If whichcells
is a material-index, only the parts of the ggcylinder that are currently filled
with the given index are assigned the new material-index.

e taboo
Possible values are none, or a material-index.
If taboo= all, all volume inside the ggcylinder is assigned the material-
index. If taboo is a material-index, only the parts of the ggcylinder that

24

are currently filled with another index than the given index are assigned the
new material-index.

originprime:
The coordinates of the origin of the gbor.

zprimedirection:
The direction of the z’-axis of the gbor.

rprimedirection:
The direction of the r’-vector of the polygon. The r’-direction will internally
be enforced to be perpendicular to the z’-direction.

range:
Start and end values (in degrees)) of the phi-coordinate of the body of rev-
olution.

inside:
Flag, specifying whether cells inside of the gbor should be assigned material
index MAT , or whether the cells outside of it should be changed.

show:

Flag, specifying whether an outline of the specified gbor should be displayed.

If show= off , no outline will be displayed.

If show= later , the outline will be shown later together with other spec-

ified ggcylinder’s and gbor’s .

If show= all is present, the outlines of all specified ggcylinder’s and
gbor’s so far will be displayed.

point= (XI,YI):

XI, YI are the coordinates of the i.th point in the polygon that describes
the polygon of the ggcylinder . There have to be minimum 3 points, or
2 points and an arc or 2 points and an ellipse.

arc:
Indication, that there should be a circular arc from the point that was spec-
ified before to the point that will be specified as next point.

In order to determine the arc between two points, three parameters are
necessary: The radius of the arc, whether the connection is clockwise or
counterclockwise, and whether the connection should take the large path or
the small path.

— radius= RADIUS:
The points are to be connected by an arc with radius= RADIUS

— size= [small | largel (optional):
Indication, whether the the connection between the two points should
be on the smaller or the larger side of the arc.

25

— type= [clockwise | counterclockwise]:
Indication, whether the connection between the two points should pro-
ceed clockwise or counterclockwise along the arc.

e clear:
Clears the current polygon path.

e doit:
Discretizes a ggcylinder from the current data.

Example

-general
outfile= /tmp/bruwl931/garbage/example
scratchbase= /tmp/bruwl931/scratch

-mesh
pxlow= -b5e-2, pxhigh= 12e-2
pylow= -18e-2, pyhigh= 3e-2
pzlow= -6e-2, pzhigh= 6e-2

spacing= 0.2e-2

define (PlungerInnerRadius, eval(100e-3/2))
define (PlungerCurvature, 16e-3)
define(PlungerAngle, eval(-67.5%@pi/180))

-gbor

material= 1

originprime= (0,0,0)

zprimedirection= (eval(-cos(PlungerAngle)),\
eval (-sin(PlungerAngle)),\
0)

rprimedirection= (0,0,1)

range= (0,360)

Cclear
point= (z,r)
point= (0,0)

point= (0, eval(PlungerInnerRadius-PlungerCurvature))
arc, radius= PlungerCurvature, size= small, type= counterclockwise
point= (eval(-PlungerCurvature), PlungerInnerRadius)
point= (-170e-3, PlungerInnerRadius)
point= (-170e-3, 0)

26

m

Wed Oct 20 05:15:00 1999

GdfidL

poundaries
0.06002
Y,
i,
07 0N,
X ':/V/’/AVZ"'/‘"'/JA"/;A:?"ZMI LI
NN NN, 7\
03,
“"’/,/1"’, 'ﬁv{;g:;/"!'lzﬂf/ﬁv{},‘z’?;’lzAVszﬁ,‘,r;g”ﬁA'Zﬂ’/Av4 Z"Z"’JAVZA 7
s A N RN SR NN AN N
A AL AN IR NV AN e - NV Y
/“),,'(‘l,’) Y AR AN N N R AN R AT WY
Sy S S Ny, A RNV
AN NAR SN
P,
3
A
Y5/,
’%‘Y“.\v
N 2
0 57

_0-96%’

-0.1

J///h

0
X 0.03002

012 01 x/m

Figure 1.4: A simple gbor.

doit
-volumeplot

scale= 3
doit

Example:

define (INF,10000) # some big number
define (MAXCELLS,1.e+5)

define (XLOW,0) define(XHIGH,5.0e-2)
define(YLOW,0) define(YHIGH,6.0e-2)

27

v1.0 Sun Oct 17 1999 tetibm4

-0.05002

define(ZLOW,-1.1e-2) define(ZHIGH,O0)
define (STPSZE,eval(((XHIGH-XLOW)* (YHIGH-YLOW)* (ZHIGH-ZLOW) /MAXCELLS)**x(1/3)))

-mesh
volume= (XLOW, XHIGH, \
YLOW, YHIGH, \
ZLOW, ZHIGH)

spacing= STPSZE

-general
outfile= /tmp/bruwl931/garbage/example
scratchbase= /tmp/bruw1931/garbage/scratch
define(R,1.0e-2)
text ()= Intersection of two circular cylinders with radius R
text ()= generated as general cylinders
text ()= where "taboo" is specified
text ()= stpsze= STPSZE, maxcells= MAXCELLS

#

Fill everything with metal

#

-brick

material= 1
volume= (-INF,INF, -INF,INF, -INF,INF)
doit

#

First step,
£ill cells above the diagonal with material 3
these cells will not be filled by the first circular cylinder,
since i will specify "taboo= 3"
#
#
-ggcylinder
material= 3,
origin= (0,0,0), xprime= (1,0,0), yprime= (0,1,0),
range= (ZLOW,ZHIGH),

clear

point= (XLOW,YLOW), point= (XLOW,YHIGH),
point= (eval (XLOW+(YHIGH-YLOW)),YLOW)

28

doit

#

Second step:

fill a circular cylinder in x-direction,

but NOT cells with material index 3 (taboo=3)

it
-ggcylinder
material= 0, taboo= 3,
xprime= (0,1,0), yprime= (0,0,1), # so the axis will be in +x
origin= (0,4.e-2,0), # shift of origin
range= (XLOW,XHIGH),
clear
point= (-R,0),
arc, radius= R, type= counterclockwise,
point= (0,-R),
arc, radius= R,
point= (R,0),
doit
#

Third step:
fill a circular cylinder in (approx) y-direction,
but ONLY cells with material index 3 (whichcells=3),
#
-ggcylinder
material= 0, whichcells= 3, taboo= none
xprime= (1,0,0), yprime= (0,0,-1), # so the axis will be in +y
origin= (2.e-2,0,0), # shift of origin
range= (YLOW,YHIGH),

clear
point= (-R,0),
arc, radius= R, type= clockwise,

point= (O,R),
arc, radius= R,
point= (R,0),
doit
-volumeplot
eyeposition= (1, 2, 1)
scale= 3
doit

29

Wed Oct 20 05:16:02 1999

Intersection of two circular cylinders with radius 1.0e-2
generated as general cylinders

where "taboo" is specified

stpsze= 691.04232300112e-06, maxcells= 1.e+5

GdfidL

Material boundaries

v1.0 Sun Oct 17 1999 tetibm4

Figure 1.5: The intersection of two circular cylinders, where whichcells and

taboo were specified.

30

Example

define (MaxCells, 0.5e+6)

#

define the geometry parameters

#

define (RBeamTube, 4.7625e-2)

define (RCurve, 1.0e-2)

define(ZGapNose, 10.9e-2)

define(RLarge, 25.0e-2) define(RSmall, 15.0e-2) define(RCenter, 10.0e-2)

define (INF,10000) define(EL,1) define(MAG,2)

define (XLOW,-0.250) define(XHIGH,O0)
define(YLOW,-0.250) define(YHIGH,O)
define(ZLOW,-0.200) define(ZHIGH,0.200)

define (STPSZE,eval(((XHIGH-XLOW)*(YHIGH-YLOW)* (ZHIGH-ZLOW)/MaxCells)**(1/3)))

#

gdfidl can evaluate sin(), cos(), atan() and X**Y

definition of functions degsin() and degcos()

#

define(degsin, [eval(sin((@argl) *@pi/180))])

define(degcos, [eval(cos((@argl) *@pi/180))])

define(degtan, [eval(sin((@argl) *@pi/180)/cos ((@argl)*@pi/180))1)

-general
outfile= /tmp/bruwl931/garbage/example
scratch= /tmp/bruwl931/garbage/scratch-

text(3)= A quarter of a reentrant cavity
text()= The cavity is described as a body of revolution,
text()=
text ()= maxcells= MaxCells, stpsze= STPSZE
return

-mesh
pxlow= XLOW, pxhigh= eval(1*XHIGH)
pylow= eval (1*YLOW)
pyhigh= eval (0*YHIGH)
pzlow= eval (1*(ZLOW))
pzhigh= eval (1*ZHIGH)

31

cxlow= mag, cxhigh= mag
cylow= mag, cyhigh= mag
czlow= el, czhigh= el

spacing= eval (1*STPSZE)
minspacing= eval (STPSZE/10)

-brick
#
we fill the universe with metal
#
material= EL
volume= (-INF,INF, -INF,INF, -INF,INF)

doit
#
carve out the cavity itself
#
-gbor
material= 0, range= (0, 360)
origin= (0,0,0)
show= later, # don’t show now, but show later
i

clear # clear a possible previous polygon list

point= (0, 0),
point= (eval (ZHIGH+2*STPSZE), 0),
point= (eval (ZHIGH+2*STPSZE), RBeamTube),
point= (eval(ZGapNose+RCurve), RBeamTube),
arc, radius= RCurve, size= small, type= clockwise,
deltaphi= 10
define(rdum, eval(RBeamTube+(1+degcos(30))*RCurve))
define(zdum, eval(ZGapNose +(1-degsin(30))*RCurve))
point= (zdum, rdum)
define(deltaz, eval(RSmall-zdum))
define(deltar, eval(deltaz*degtan(30)))
define(ffac, 0.85) ## adjust this for a smooth transition
define(zdum2, eval(zdum+ffac*deltaz))
define(rdum2, eval(rdum+ffac*deltar))
point= (zdum2, rdum2)
arc, radius= RCurve, size= small, type= counterclockwise,
deltaphi 10
point= (RSmall, eval(RCenter-0.8*RCurve)),
point= (RSmall, RCenter),

32

arc, radius= RSmall, size= small, type= counterclockwise,
delta= 3
point= (-RSmall, RCenter),
point= (-RSmall, eval(RCenter-0.8+*RCurve)),
arc, radius= RCurve, size= small, type= counterclockwise,
deltaphi= 10
point= (eval(-zdum2), rdum?2)
point= (eval(-zdum), rdum)
arc, radius= RCurve, size= small, type= clockwise, delta 10
point= (eval(-(ZGapNose+RCurve)), RBeamTube),

point= (eval (ZLOW-2*STPSZE), RBeamTube),
point= (eval(ZLOW-2*STPSZE), 0)
list
doit
return
#
enforce some meshplanes:
#
-mesh
zfixed(2, eval(-(ZGapNose+RCurve)), eval(-ZGapNose)) # at the noses
zfixed(2, eval((ZGapNose+RCurve)), eval(ZGapNose)) # at the noses

zfixed(2, -RSmall, RSmall) # at the z-borders of the cavity
-volumeplot

scale= 3
doit

33

0.2

Wed Oct 20 05:19:09 1999

A quarter of a reentrant cay

The cavity is described as
0.1

maxcells= 0.5e+6, stpsze=

zZ/m

ity
A body

3.6,

[T

N
Ir

GdfidL

al boundaries

(NN
RN

AN

Figure 1.6: A complicated gbhor

34

v1.0 Sun Oct 17 1999 tetibm4

1.5.5 -stlfile: CAD import via STL-file

This section is for importing a geometry description from a CAD system via a
STL-file (STereo-Lithography). A STL-file describes a closed body via a set of
triangles.

The so described body can be rotated, shrunk or expanded and shifted.

HHf R R R R R R

Flags: nomenu, noprompt, nomessage,
i
section -stlfile
R
file= /usr/local/gdl/examples/woman.stl
material = 1
whichcells= all, taboo= none
originprime = (0.0, 0.0, 0.0)
xprimedirection= (1.0, 0.0, 0.0)
yprimedirection= (0.0, 1.0, 0.0)
xscale= 1.0
yscale= 1.0
zscale= 1.0
show = no (yes | no)
i g B i g 2
doit, return, help i

HHf R R R R R

e file= NAME_OF_STLFILE:
The name of the STL-File (in ASCII) that shall be imported.

e material= MAT:
The material index that will be assigned to cells inside the volume.

e whichcells
Possible values are all, or a material-index.
If whichcells= all, all volume inside the stl-body is assigned the material-
1, provided the former material isnot taboo. If whichcells is a material-
index, only the parts of the stl-body that are currently filled with the given
-1 are assigned the new material-index.

e taboo
Possible values are none, or a material-index.
If taboo= all, all volume inside the stl-body is assigned the material-1. If
taboo is a material-index, only the parts of the stl-body that are currently
filled with another -1 than the given index are assigned the new material-
index.

e originprime= (X0, YO, Z0):

35

e xprimedirection= (XXN, XYN, XZN):
e yprimedirection= (YXN, YYN, YZN):

e xscale= XS, yscale= YS, zscale= ZS:

The coordinates of the STL-Data are transformed as follows: A 3x3 matrix
(A) is built, such that A11, A21, A31 are the components of the normal-
ized ”xprimedirection”. The direction ”yprimedirection” is enforced to be
perpendicular to "xprimedirection”. The result is normalized and taken as
the second column of (A). The third column of (A) is the normalized cross
product of ”xprimedirection” and ”yprimedirection”. (The matrix (A) is a
rotation matrix.)

The coordinates of a point P of the STL-set are now transformed via

P<=(A) P

P_x <= P_x * xscale + X0
P_y <= P_y * yscale + Y0
P_z <= P_z * zscale + Z0

e show= {yes|no} :
Flag, specifying whether a plot of the transformed triangles shall be shown.

Example

-mesh
pxlow= -0.3, pxhigh= 0.3
pylow= -0.4, pyhigh= 0.3
pzlow= -0.4, pzhigh= 0.35

spacing= eval(0.5/70)

-stlfile
material= 1
file= /nfs/wilson/ub5/bruns/gdl/examples/brain.stl
define (SCALE, 0.1)
xscale= SCALE, yscale= SCALE, zscale= SCALE
origin= (0,0,-2.2)
xprimedirection= (1,0,0), yprimedirection= (0,0,1)

doit
-volumeplot

scale= 3

doit

36

U.50UL

Wed 92|

D 05:24:38 1999

GdfidL

Material bounda

7
",

Y

(A 7 e
% ,;M,//Z/é/A'L«VIiA\VA\m\VA%yA\ w4

A/
7 iy, Y N\ Y

/// \‘ =R\
S/ 2 Ny, VA B
2l My 4V, . VAVLVAL
»W A %@liwiafv/‘:%v‘v"""”‘) AN
T s G T v W
B IS S ATV AN
A ’Z«V/:Zy,a r/‘(w}:“v,/;;“/, ANAZAmuE vqu WS
B i et A\ \
z’?’///,w,,’“'/’/ﬂ%ml\ A\
2y,

NN L
> AN

A
N/ AN S A
AT VWA WA VA,
SR NN
WA

W

) AN NN ANR Y]
2 ,z,/ P JAVAVZAV!AM‘\\{"“'A
iitas AT

Figure 1.7: A discretization of a brain, imported as a STL-file.
m

37

v1.0Sun Oct 17 1999 tetibm4

1.6 -volumeplot: shows the generated mesh

This section enables the regeneration of the grid and shows the dicretized material
boundaries as generated from the geometric primitives specified so far.

CE S S S S S s s s s s s s s s s s s s s s
Flags: nomenu, noprompt, nomessage,
B S 2 1 0 A S R
section: -volumeplot
B S 2 1 0 A S R
text = yes

scale =1.80

plotopts = -geometry 1100x900+180+10 -landscape

eyeposition = (1.0, 2.0, 500.0e-03)

lightposition= (1.0, 1.0, 1.0)

ncolors = 20

icoloroffset= 0

bbxlow = -1.0000e+30, bbylow = -1.0000e+30, bbzlow = -1.0000e+30
bbxhigh= 1.0000e+30, bbyhigh= 1.0000e+30, bbzhigh= 1.0000e+30

HOH H H H OH OH H OH R
H OH H H H H H H H H

HA
doit, 7, return, help
HA

e text= [yes|nol:
Flags, whether the annotation-text that has been specified via text()= bla bla
in the section -general should be plotted together with the material bound-
aries.

e scale= SCALE:
The initial zoom factor of the resulting plot.

e plotopts= ANY STRING CONTAING OPTIONS FOR mymtv2:
gd1 does not display the data itself, but writes a datafile for mymtv2 and
starts mymtv2 to display these data.
Useful options are:
— -landscape : Produce the PostScript plot in landscape mode
— -colorps : Produce colour PostScript
— -printcmd command : Use as printcommand command
— -Pprinter: Print to printer printer

— -pbg background_color : Use as X11-background colour the colour background_color
(grey | white | ..)

— -nopixmap : Good for very dumb terminals. If only the first one or two
plots appear, try this.

38

— -geometry X11-GEOMETRY Initial geometry for the X11 window of
mymtv2.

eyeposition= (XEYE, YEYE, ZEYE):

This specifies the initial eyeposition for the 3D plot that will be produced.
As soon as the plot appears, you can interactively change the eyposition
with the buttons of mymtv2, but for a complex geometry, this takes a lot
of time.

lightposition= (XL, YL, ZL:
Specifies the illumination of the plot.

ncolors= N:
Specifies the maximum number of colours in the plot.

icoloroffset= N:
Shifts the colour palette. When icoloroffset is greater than 100, the materi-
alplot appears without the lines that indicate the borders of the grid cells.

bbxlow=,bbxhigh=,bbylow=bbyhigh=,bbzlow=,bbzhigh=:

Specifies the coordinates of a bounding box. Only the materialboundaries
that lie within the box are plotted. Use this if you want to see the mate-
rialdistribution in a plane.

doit:
If you say ”doit”, the relevant settings in ”-mesh” are checked, the mesh is
re-generated, and the material boundaries are plotted.

39

1.7 Solver sections: Eigenvalues and driven time
domain problems

1.7.1 -eigenvalues

HHHBH R H R R R R R R

Flags: nomenu, noprompt, nomessage,
R
section -eigenvalues
R
solutions = 15
estimation = undefined
storeallmodes= no
passes = 2
pfac2 = 1.0e-03
#
#
#
#

ittt i R A i
return, doit, help, 7
A S A i

e solutions= NSOL:
The number of basis vectors to use for solving the eigenvalue problem. This
number should better not be smaller than, say, 10. The more basis vec-
tors you allow, the more accurate will the solutions be. But: the memory
requirement is proportional to this number.

e estimation= FUP:
Estimation of the resonant frequency of the highest mode, i. e. the NSOL.st
mode.
This parameter is MANDATORY.
A common error, that even we commit, is, to specify this estimation badly
wrong.

e storeallmodes= [yes | no]:
Selects whether even the static modes shall be saved.
gd1 computes normally 20 to 30 % static modes (when passes=1, but does
not store them. If you do not believe that these static modes are really
static, you can enforce the storing to file with this option. When the static
solutions are in the file, you can view these ’solutions’ with gd1.pp.

e passes= NPASS:
gd1 uses an algorithm of Tueckmantel to solve the eigenproblem. This al-
gorithm establishes a set of NSOL basisvectors that are mutually orthogonal

40

and (hopefully) span only the subspace also spanned by the eigenvectors cor-
responding to the NSOL lowest eigenvalues.

But since gd1 solves the eigenproblem resulting from the discretized version
of [e] 'V x[u] 'VxE = w?E, gd1 normally finds 20 to 30 % eigenvalues
very near to zero. These eigenvalues belong to static fields, w = 0.

If you specify passes>1, gd1 throws away the static components in its al-
ready established basis vectors and can find more resonant modes with the
same specified NSOL. Also, the accuracy of the fields becomes better.

e pfac2= PFAC2:

gd1 uses an algorithm of Tiuckmantel to solve the algebraic eigenproblem
resulting from the discretized MAXWELLian equations. This algorithm has
an internal accuracy factor, called pfac2, that controls the relative cleaning
of the basisvectors from eigenvectors outside the range 0 to FUP, in which
the NSOL resonant fields are expected.

A smaller pfac2 leads to increased cpu-time, but better accuracy for the
lower modes. A good value is pfac2=1e-3.

e doit:
If you say ”doit”, the settings in ”-general, -mesh” are checked, the mesh is
re-generated, and the iteration for the resonant fields is performed.
After the field computation, the fields are written to file and the program
stops.

Example:

The following specifies that we want to compute with 15 basisvectors, we want to
perform two passes to search for the eigenvalues, and we estimate that the highest
resonant frequncy of the 15 to be found will be about 1.3 GHz. The final doit
starts the eigenvalue computation.

solutions= 15

passes= 2
estimation= 1.3e9
doit

41

1.7.2 -fdtd: Compute time dependent fields

This section enables the branching to subsections that only make sense for time
domain computations. The ”doit” in this section also starts the time domain
computation.

HERSH B R R R R R R R

Flags: nomenu, noprompt, nomessage,
A A 3 i R R R
section: -fdtd
A
—ports
-pexcitation
-lcharge
-time
HAFE A A S 3 R R R
doit, 7, return, help

HERHH B R R R R R R R

® —ports:
Branches to the sub-section -fdtd/-ports where you specify the location of
"ports” and some properties of these ports.

e —pexcitation:
Branches to the sub-section -fdtd/-pexcitation, where you specify the
center frequency, the bandwidth and the amplitude of a selected mode of a
selected port.

e —lcharge:
Branches to the sub-section -fdtd/-1charge, where you specify the proper-
ties of a relativistic line charge.

e —time:
Branches to the sub-section -fdtd/-time, where you specify the minimum
and maximum allowed simulation time.
You can also specify the times where the electric and magnetic fields are
written.

e doit:

If you say ”doit”, the settings in ”-general, -mesh” are checked, the mesh is
re-generated, and the iteration for the time dependent fields is performed.
While the field computation is running, the amplitudes of selected port
modes are written, and selected electric and magnetic fields are written.
If a wake computation is performed, the data required for the computation
of wakepotentials is also written. These amplitudes and fields (and wake-
data) can be processed further by gd1.pp. After the field computation, the
program stops.

42

1.7.3 -fdtd/-ports

A 7port” is part of the border of the computational volume, that shall be treated
as an infinitely long waveguide. In this section you specify the location of ports.

You also specify the number of modes whose time amplitudes shall be written to
file.

HIHHHH R

Flags: nomenu, noprompt, nomessage,
T A R R
section: -ports

HHf R R R

name = noname-001
plane = xlow
modes =1
#(pxlow = -1.0e+30 , pxhigh = 1.0e+30) Ignored.. #
pylow = -1.0e+30 , pyhigh = 1.0e+30
pzlow = -1.0e+30 , pzhigh = 1.0e+30
epsmaximum= 2.0
muemaximum= 1.0
npml = 15 (no of PML-planes)
dampn = 50.0e-03 (damping factor in last plane)
HHEH R R R R R R
doit, list, ?, return, help

H#RHH R R R R R R R R R R R R

e name = ANY-STRING-WHICH-COULD-SERVE-AS-FILENAME:
Specifies the name of the port.
This name is used eg. to identify the port later on. If you enter the name of
an already defined port, you can edit the parameters for this already defined
port.
The length of the name has to be less or equal 64 characters.

e plane= [xlow|xhigh|ylow|yhigh|zlow|zhigh]:
Specifies at which of the six bounding planes of the computational volume
the port is located on.

e modes= NMODES:
Number of orthogonal modes whose amplitudes shall be monitored. This
number can be zero. The absorbing boundary conditions work independently
of the orthogonal modes, so there is no need to specify a large number here.

e pxlow, pxhigh, pylow, pyhigh, pzlow, pzhigh:
Specifies the rectangle where the port is in. These parameters are needed if
there is more than one port at one of the possible planes [x|y|z] [1ow|high].
If the port is at xlow or at xhigh, the values for pxlow and pxhigh are ignored.
If the port is at ylow or at yhigh, the values for pylow and pyhigh are ignored.
If the port is at zlow or at zhigh, the values for pzlow and pzhigh are ignored.

43

e epsmaximum, muemaximum:
Values of the ”densiest” materials at the port. These values are needed to
compute the patterns of the port-modes.

e npml:
The number of ”Perfectly Matched Layers” to use as absorbing boundary
conditions.
15 is a good value.
If a relativistic charge enters or exits the computational volume, you should
choose a value of 40 or more.

e dampn:
The damping factor of the outermost ” Perfectly Matched Layer”.

e doit:
Stores the current data and enables the editing of the parameters of a port
that is not yet defined (a new port).

e list:
Lists the names of the already defined ports.

Example:

The following specifies that we want to have attached four ports: Two are at
the lower x-boundary, the names are xlowl, xlow2. Two ports are at the upper
x-boundary of the computational volume, the names are xhighl, xhigh2. The
ports at the same boundary are distinguished by their pzlow, pzhigh parameters.

-fdtd
-ports
name= xlowl, plane= xlow , pzlow= O, modes= 10, doit
name= xhighl, plane= xhigh, pzlow= 0, modes= 2, doit
name= xlow2, plane= xlow , pzhigh= 0, modes= 2, doit
name= xhigh2, plane= xhigh, pzhigh= 0, modes= 2, doit

44

1.7.4 -fdtd/-pexcitation: What port-mode should be ex-
cited

Here you specify what port-excitation should be used.

HHHHH R

Flags: nomenu, noprompt, nomessage,
HAHE S 24 2 A A S
section: -pexcitation
HAFH A A S 3 A R R R R R
port = undefined
mode =1
amplitude = 1.0
frequency = wundefined
bandwidth = wundefined
risetime = 0.0
HAEHHE A 4 44 1A A A 44 A
list, 7, return, help

R R R R R R

e port= NAME-OF-AN-ALREADY-DEFINED-PORT:
The name of the port where the mode should be launched. This is a name
that you have used in the section ”-fdtd/-ports”.

e mode:
The number of the mode to launch. The first mode is the one with the lowest
cut-off-frequency.

e amplitude:
The amplitude of the mode to launch. If the amplitude is zero, no mode is
launched.

e bandwidth:
The frequency bandwidth of the time signal to use as excitation.

e risetime:
If specified as nonzero, a monochromatic excitation is used.

e list:
Lists the names and planes of the ports as specified in section ”-fdtd/-ports”.

45

Example:

The following specifies that the fundamental mode of the port with name InputPort
shall be excited. Its amplitude shall be ’1’, the centerfrequency of the excited pulse
shall be 1.2 GHz, and the bandwidth of the excited pulse shall be 0.7 GHz.

-fdtd,
-pexcitation
port= InputPort
mode= 1

amplitude= 1
frequency= 1.2e+9
bandwidth= 0.7e+9

46

1.7.5 -fdtd/-lcharge: Properties of a relativistic line charge

HHHHHHHH R R R R R R

Flags: nomenu, noprompt, nomessage,
HERHH B H RS H B R R R R R R R
section: -lcharge
HAEHHHHBHHEHBHHBEHHEHBEH AR BEHEH RS HEHBHHEH ARG HEH RS H AR REHRH R R R RS R AR RS H AR RS RH
charge = 0.0 [As]
sigma = undefined [m]
xposition = 0.0 [m]
yposition = 0.0 [m]
ds = auto [m]
shigh = auto [m]
showdata = no # (yes | no)
HEHHHHAHHAEHHGHAHHEHBEH AR B HEH RS HEH B R HEH ARG H ARG SHEHEHRH RHHEHEHH RHRH
7, return, help

H#RHH R R R R R R R R

e charge:
The total charge of the gaussian line charge.
If the position of the charge is specified such that the charge travels along a
magnetic plane, the charge taken for the computational volume is halfed.
If the charge travels along two symmetry planes simultaneously, the charge
in the volume is a quarter of the specified charge.
This way, the excited wakefields in a half or a quarter of the structure are
the same as if the charge has traveled in a full structure.

e sigma:
The width of the gaussian line charge.

e xposition, yposition:
The position of the line charge in the x-y-plane.

e ds:
The s-resolution of the wakepotentials.
Possible values are ”"auto” or a positive real. If "ds= auto”, a value of
"spacing/2” is used. ("spacing” is defined in -mesh)

e shigh:
The s-coordinate of the last wakepotential wanted. Possible values are
7auto” or a positive real. If "shigh= auto”, a value of ”20 * sigma” is
taken.

e showdata= [yes|nol:

If ”yes”, some diagnostic plots concerning the wake-potential are shown when
the time domain computation starts.

47

Example:

The following specifies that we want to model a line charge traveling with the speed
of light along the axis (x,y)=(0,0). The total charge of the line-charge shall be 1
pC, and its gaussian width sigma shall be 1 mm. We want to have a s-resolution
of the wakepotentials of 1/10 mm, and we are interested in s-values up to 100 mm.

-lcharge
xpos= 0
ypos= 0

charge= le-12
sigma= 1le-3

ds= 0.1e-3
shigh= 100e-3

48

1.7.6 -fdtd/-time: minimum / maximum time, when to
store

HHHHHHHHH R R R R R R ¢

Flags: nomenu, noprompt, nomessage,
R
section —time
it
firstsaved = undefined
lastsaved = undefined
distancesaved = undefined
tminimum = undefined
tmaximum = undefined
decaytime = 1.0e+30
i
amptresh = 3.0e-03
dtsafety = 950.0e-03
ndt = auto
it
return, help, 7

HHHHR R

e firstsaved:
The first time where the electric and magnetic fields shall be stored on files.

e lastsaved:
The last time where the fields shall be stored on files.

e distancesaved:
The time-distance between fields to be saved.

e tminimum= TMIN, tmaximum= TMAX:
The minimum and maximum time to simulate. gd1 will simulate minimum
a simulation time of TMIN and maximum one of TMAX. If after TMIN no power
is flowing through any port, the simulation is stopped. No matter what the
status of the fields in the computational volume is after a simulation time of
TMAX, the simulation will be stopped.

e amptresh= TRESH:
The treshold value for exiting the FDTD-Loop. when all port-amplitudes
have decayed down to TRESH times the maximum of all monitored modes
somewhere in the time, the computation stops.

e dtsafety:
The safety factor for the time step.
gd1 computes the largest stable timestep as
dtmaz = \/ 4

”highest eigenvalue of the closed volume”’

49

This is normally reliable and gives the minimum number of timesteps re-
quired for a wanted simulation time. The used timestep is
dt = dtsafety * dtmax

e ndt:
This enforces the used time step ”dt” to be such that ”dt” is smaller than
the normally used timestep and that an integer multiple of ”dt” gives the
value of "ndt”.

Example:

The following specifies that we want to simulate minimum a time span of 100
periods of a frequency of 1 GHz. We are absolutely shure that after a timespan
of 1000 periods the fields have decayed sufficiently, and we want to store the fields
between 10 periods and 20 periods, in a distance of 1/2 period.

define (FREQ, 1e9)

tmin= eval(100/FREQR)
tmax= eval(1000/FREQ)
firstsaved= eval(10/FREQ)
lastsaved= eval(20/FREQR)
distance= eval(1/2/FREQ)

20

Chapter 2

gdl.pp

gd1l.pp is the postprocessor. gd1.pp loads the data that were computed by gd1
and displays them. gd1.pp also computes integrals over the fields, like wall losses
and voltages. Together with the macro facility, this allows easy computation of
figures of merit like Q-values and shunt-impedances.
A special section (-sparameter) computes scattering parameters from the ampli-
tudes of port-modes that were computed and stored by gd1.
Wakepotentials and impedances are computed in the section -wakes.

Before you can do anything useful, you have to specify from what database
gd1.pp shall take the fields from. Therefore the first thing you do is: enter the
section -general.

51

2.1 -base

HHH AR

Flags: nomenu, noprompt, nomessage,
AR
section: -base
HHAH R R R R R
-general -- define database
-3darrowplot
-lineplot
—energy -- compute stored energy
-lintegral -- compute voltages
-losses -- compute wall losses
—sparameter
-material —-- specify conductivities for loss computations
-wakes -- wakepotentials, impedances
*xkkk Miscalleneous *kkkkx
-debug : specify debug levels
#

HA
7, help, end, 1s
A

e -general:
Branches to the -general section, where you load the database where gd1
has written its data to.

e —3darrowplot:
Branches to the section -3darrowplot, where you can plot 3D-fields together
with the material-boundaries.
You can also plot the computed portmodes that were used in a time-domain
computation.

e lineplot:
Branches to the section lineplot, where you can plot selected components of
3D-Fields along selected lines.

e —energy:
Branches to the section -energy, where you can compute the stored energy
in resonant or time dependent fields.

e -losses:
Branches to the section -losses, where you can compute wall losses from
magnetic fields via the perturbation formula.

e -sparameter:
Branches to the section -sparameter, where you can compute and plot the
scattering parameters from the time data that were computed by gd1.

92

e material:
Branches to the section -material, where you specify the conductivities of
electric materials. These conductivities are used for the perturbation formula
that is applied in the section -losses.

e -wakes:
Branches to the section -wakes, where you can compute longitudinal and
transverse wakepotentials from data that were recorded by gd1l during a
time domain computation with a relativistic charge.

93

2.2 -general

HERH R R R R R R

Flags: nomenu, noprompt, nomessage,
HERHH B HBRH R H R A H R AR ERHEREE H HRHH HRHRRHE
section: -gemneral
HERHH B HBRFH R H R AR AR R R R R R
infile = ./results
scratchbase= /tmp/bruwl931/garbage/gdfidl-scratch-pid=10958-
text(1)=" 7
HEHHHH A HEH B H R H AR RS HRSHEH AR H R R R R R R R R
plotopts = -landscape -geometry 640x530
showtext = yes # (yes | no)
onlyplotfile= no # (yes | no)
HESHH AR R R R R R R R R
7, return, end, help

R BRI R R R

e infile:
The name of the resultfile from gd1. ”infile= @last” is special: the name of
the last computed run is taken (this value is read from the file (HOME /name.of.last.gdfidl file)

e scratchbase:
The base name of scratchfiles that gd1.pp needs for its operation. These
will be mainly plotfiles. If you have an environment variable TMPDIR set,
SOLVER will as default value set scratchbase to the string

$TMPDIR/gdfidl-scratch-pid=XXXXX-

Here $TMPDIR is the value of the environment variable TMPDIR, and XXXXX is
the number of the process-id of gd1.

e text(*)= This annotation text is plotted together with the field plots. syn-
tax:
text ()= ANY STRING, NOT NECESSARILY QUOTED
or
text (NUMBER)= ANY STRING, NOT NECESSARILY QUOTED

— ANY STRING, NOT NECESSARILY QUOTED:
The string to be included in the plots,

— NUMBER:
Optionally, the line number, where the text should be plotted.

54

In the first case, without NUMBER, the string following text ()= is placed in
the next free line. In the case with NUMBER, it is guaranteed, that the string
is placed in the NUMBER.st line. You can specify up to 20 annotation strings,
the maximum length of each annotation string is is 80 characters.

When a new database is specified, the values of text are overwritten by the
values that are found in the database.

e plotopts= ANY STRING CONTAING OPTIONS FOR mymtv2:
gd1.pp does not display the data itself, but writes a datafile for mymtv2
and starts mymtv2 to display these data.
Useful options are:

— -landscape : Produce the PostScript plot in landscape mode

— -colorps : Produce colour PostScript

— -printcmd command : Use as printcommand command

— -Pprinter: Print to printer printer

— -pbg background_color : Use as X11-background colour the colour background_color
(grey | white | ..)

— -nopixmap : Good for very dumb terminals. If only the first one or two
plots appear, try this.

— -geometry X11-GEOMETRY Initial geometry for the X11 window of
mymtv2.

e showtext= [yes|nol:
This flags, whether the annotation text shall appear in the plots.

e onlyplotfile= [yes|nol:
This flags, whether plotfiles shall be written AND mymtv2 shall be started
to display them on an X11 display, or whether only the plotfiles shall be
produced.

Example:

The following specifies that we want to work with the data that were generated
by the last run of gd1. We want to have the scratchfiles written into the directory
’/tmp/garbage/’ and there the files shall be called ’delete-me-*". We want to have
mymtv2 started with an X11-geometry of 1024x768, and mymtv2 shall produce
colour-PostScript.

infile= Qlast
scratchbase= /tmp/garbage/delete-me-
plotopts= -geometry 1024x768 -colorps

95

2.3 -3darrowplot: Plots 3D Fields together with
the material boundaries.

HERHH BRI R R R R R R

Flags: nomenu, noprompt, nomessage,
R
section: -3darrowplot
R
symbol =e_1
quantity =e
solution =1
phase = 45.0
arrows = 1000
lenarrows = 2.0
maxlenarrows= 2.0
fcolour = 5
materials = yes # (yes | no)
scale =1.80
fscale = auto
eyeposition = (1.0, 2.0, 500.0e-03)
lightposition= (1.0, 1.0, 1.0)
ncolors = 20
icoloroffset= O
bbxlow = -1.0000e+30, bbylow = -1.0000e+30, bbzlow = -1.0000e+30
bbxhigh= 1.0000e+30, bbyhigh= 1.0000e+30, bbzhigh= 1.0000e+30
HEHHHHAHHBHBRHRHHBHBHHBHREHBHBEH AR B R EHBHRBH B R HAH SRR SRS H SRR R R R 1R
plotopts = -landscape -geometry 640x530
showtext = yes # (yes | no)
onlyplotfile= no # (yes | no)
HEHHHHAHHEH B HRFH AR RS H SRS HREF RS HEH R R R SRR R R R R
doit, 7, return, end, help

HHHBHHHHH R R R R R

e symbol= QUAN_ISOL:
This is the full name of the symbol to be processed.

e quantity= QUAN:
This is the first part of the ”symbol”.

e solution= ISOL:
This is the last part of the ”symbol”, the index of the ”symbol”.

e phase:

This parameter is used only when you want to plot the fields of portmodes.
This specifies the phase of the phasor to be shown.

26

arrows:
The arrows that make up the plot are distributed equidistant over the whole
computational volume. The number of points where an arrow is possible is
given here.

lenarrows:

The relative length of the arrows that make up the plot. If lenarrows= 1,
the arrows are scaled such, that for an homogeneous field the end of one
arrow is past the end of the next arrow.

maxlenarrows:

No arrow shall be larger than this value.

This is useful for fields where a strong field concentration happens, e.g. wake-
fields.

fscale:

If a value # auto is specified, the vectorfield is scaled by this value. No
further scaling takes place. This is useful for generating movies, where every
frame of the movie should be scaled by the same factor.

bbxlow=,bbxhigh=,bbylow=bbyhigh=,bbzlow=,bbzhigh=:
Specifies the coordinates of a bounding box. Only the material-boundaries
and the field-arrows that lie within the box are plotted.

eyeposition= (XEYE, YEYE, ZEYE):

This specifies the initial eyeposition for the 3D plot that will be produced.
As soon as the plot appears, you can interactively change the eyposition
with the buttons of mymtv2, but for a complex geometry, this takes a lot
of time.

plotopts= ANY STRING CONTAING OPTIONS FOR mymtv2:
gd1.pp does not display the data itself, but writes a datafile for mymtv2
and starts mymtv2 to display these data.
Useful options are:
— -landscape : Produce the PostScript plot in landscape mode
— -colorps : Produce colour PostScript
— -printcmd command : Use as printcommand command
— -Pprinter: Print to printer printer

— -pbg background _color : Use as X11-background colour the colour background_color
(grey | white | ..)

— -nopixmap : Good for very dumb terminals. If only the first one or two
plots appear, try this.

— -geometry X11-GEOMETRY Initial geometry for the X11 window of
mymtv2.

o7

e showtext= [yes|no]:
This flags, whether the annotation text shall appear in the plots.

e onlyplotfile= [yes|no]:
This flags, whether plotfiles shall be written AND mymtv2 shall be started
to display them on an X11 display, or whether only the plotfiles shall be
produced.

Example:
To generate a plot of the first electric field found in the database, we say:

symbol= e_1
doit

o8

2.4 -lineplot: Plots a field component along an
axis.

HuR R R R R R R R R R

Flags: nomenu, noprompt, nomessage,
g R R
section: -lineplot
R R
symbol =e_1
quantity = e
solution =1
component = z
#
direction = z
startpoint= (undefined, undefined, undefined)
used: (undefined, undefined, undefined)
R
plotopts = -landscape -geometry 640x530
showtext = yes # (yes | no)
onlyplotfile= no # (yes | no)
R
doit, 7, return, end, help

HHf R R R R R R

e symbol= QUAN_ISOL:
This is the full name of the symbol to be processed.

e quantity= QUAN:
This is the first part of the ”symbol”.

e solution= ISOL:
This is the last part of the ”symbol”, the index of the "symbol”.

e component= [x|yl|z|]:
The wanted component of the 3D-field to be plotted.

e direction= [x|ylz]:
The direction along which the component shall be plotted.

e startpoint= (X0, YO, Z0):
The startpoint from which the component shall be plotted.

e plotopts= ANY STRING CONTAING OPTIONS FOR mymtv2:
gd1l.pp does not display the data itself, but writes a datafile for mymtv2
and starts mymtv2 to display these data.
Useful options are:

— -landscape : Produce the PostScript plot in landscape mode

99

— -colorps : Produce colour PostScript
— -printcmd command : Use as printcommand command
— -Pprinter: Print to printer printer

— -pbg background _color : Use as X11-background colour the colour background_color
(grey | white | ..)

— -nopixmap : Good for very dumb terminals. If only the first one or two
plots appear, try this.

— -geometry X11-GEOMETRY Initial geometry for the X11 window of
mymtv2.

e showtext= [yes|no]:
This flags, whether the annotation text shall appear in the plots.

e onlyplotfile= [yes|no]:
This flags, whether plotfiles shall be written AND mymtv2 shall be started
to display them on an X11 display, or whether only the plotfiles shall be
produced.

Example:

To generate a plot of the x-component of the electric field of the third field in
the database, starting from the lowest z-coordinate in the grid, up to the highest
z-coordinate at the position (x,y)= (0,0), we say:

symbol= e_3
comp x

dir z

start 0 0 @zmin
doit

60

2.5 -energy: compute energy in E or H fields

HHHHH R

Flags: nomenu, noprompt, nomessage,
HHAR R
section: -energy
HHAH R R R R R R
symbol = h_1
quantity = h
solution =1
#
#
Qhenergy : undefined (symbol: undefined, m: 1)
Qeenergy : undefined (symbol: undefined, m: 1)
HHAR R
doit, 7, return, end, help

#Hf R R R R R

In this section you may compute the stored energy for an electric or magnetic field.
The result of the computation is stored in symbolic variables that may be used eg.
for computation of user defined figures of merit.

e symbol= QUAN_ISOL:
This is the full name of the symbol to be processed.

e quantity= QUAN:
This is the first part of the ”symbol”.

e solution= ISOL:
This is the last part of the ”symbol”, the index of the ”symbol”.

e doit: Performs the computation. The specified field is loaded from file and
its energy density is integrated over the computational volume.

If the integrated field was an electric field, the result of the compuation
is stored in the symbolic variable @eenergy. If the integrated field was a
magnetic field, the result of the compuation is stored in the symbolic variable
@henergy.

The energy for a magnetic fields is computed as:
1
Qhenergy = — /,uH2 av (2.1)
2m
The energy for an electric fields is computed as:
1
Qeenergy = — /5E2 av (2.2)
2m

The time-averaging factor "m” is ”2” for resonant fields, and ”1” for nonreso-
nant fields.

61

Example:
To compute the stored energy in the electric field of the first field found in the
database, we say:

symbol= e_1 doit

62

2.6 -lintegral: computes line integrals

This section computes the integral [Fexp(jw/(Bco)) ds.
HERHH B H B H B R AR R R R R R R R R R R

Flags: nomenu, noprompt, nomessage,
FHBHAHE A
section: -lintegral
A
symbol =e_1
quantity = e
solution =1
#
direction = z
component = z
startpoint= (undefined, undefined, undefined)
(used) : (@x0: undefined, @y0O: undefined, ©z0: undefined)
length = auto
(@length) : undefined
beta =1.0
HHBHA R
Qvreal= undefined @vimag= undefined Q@vabs= undefined
R
doit, 7, return, end, help

#Hf R R R R R R

e symbol= QUAN_ISOL:
This is the full name of the symbol to be processed.

e quantity= QUAN:
This is the first part of the ”symbol”.

e solution= ISOL:
This is the last part of the ”symbol”, the index of the ”symbol”.

e direction= [x|y|z]:
The cartesian direction along which the integral shall be performed.

e component= [x|y|z]:
The cartesian component that shall be integrated.

e length:
Possible values are auto, or a real number.
If length= auto, the integral is performed from the startpoint to the end of
the computational domain (in direction-direction).

e beta:
The value of 3 in the formula [Fexp(jw/(B8c)) ds. If you are interested in
computing [F' ds, then choose beta as a very large number, say le+10.

63

e doit:
The integral is performed, the results are shown in the menu. The value of
the integral is also accessible as the symbolic variables @vreal, @vimag,
@vabs. The length of the used integration path is accessible as the variable

@length. The coordinates of the used startpoint are accesible as @xO0,
Q@Qy0, @z0.

64

2.7 -losses: Compute wall losses from H-fields

HHHHR R

Flags: nomenu, noprompt, nomessage,
T A R R
section: -losses
i
symbol = h_1
quantity = h
solution =1
#
#
Ometalpower : undefined (symbol: undefined)
A R
doit, 7, return, end, help

HHHHR R

In this section you may compute the wall losses that stem from the induction of
surface currents from magnetic fields. This is a power loss perturbation computa-
tion.

The conductivities that are used in the pertubation formula may be entered in
the section -material. The result of the computation is available as the symbolic
variable @metalpower.

The wall losses are computed as:

H2
//1/(2/{5)dF (2:3)
% =\/7f ok (2.4)

The integral is performed over all metallic surfaces that would appear in a plot
as produced by the section -3darrowplot. This implies, that wall losses are NOT
computed for electric symmetry planes, since the material on the symmetry planes
are not shown in -3darrowplot.

e symbol= QUAN_ISOL:
This is the full name of the symbol to be processed. This field has to be a
3D-H-field.

e quantity= QUAN:
This is the first part of the "symbol”.

e solution= ISOL:
This is the last part of the ”symbol”, the index of the "symbol”.

e doit:
The integral is performed, the result is shown in the menu. The result is
available as the symbol @metalpower for subsequent calculations.

65

2.8 -sparameter: Computes scattering parame-
ters from time dependent data

HERHH BRI R R R R R R

Flags: nomenu, noprompt, nomessage,
HEHHHHAHHEH B R HRFH AR RS H SR HREF R H R H RS R H RS SRR R R R R R
section -sparameter
HESFH AR R R R R R R R R R
ports = all
(all | LIST)
modes =1 # (all | LIST)
timedata = no # (yes | no)
tsumpower= no # (yes | no)
tintpower= no # (yes | no)
freqdata = yes # (yes | no)
fsumpower= yes # (yes | no)
magnitude= yes # (yes | no)
fintpower= no # (yes | no)
slog = no # (yes | no)
phase = no # (yes | no)
smithplot= no # (yes | no)
upto = auto [s] # (auto | REAL)
flow = auto [1/s] # (auto | REAL)
fhigh = auto [1/s] # (auto | REAL)
ignoreexc = mno # (yes | no)
details = no # (yes | no)
HERHH B HBRH R H R R H R BRI R R R R
plotopts = -landscape -geometry 640x530
showtext = yes # (yes | no)
onlyplotfile= no # (yes | no)
HEHHHH A HEH B H AR AR RS H SRS H AR AR R R R R R R R R
return, help, end, doit

HHHBR A H R R R R R R

® ports:
Possible values are all, or a list of names of ports.
If ports= all, the time dependent data of all ports found in the data-base
are processed.
If ports is a list of names, only the time dependent data of the ports whose
names are found in the list are processed.

e modes:
Possible values are all, or a list of mode-numbers.
If modes= all, the time dependent data of all modes of the selected ports
found in the data-base are processed.

66

If modes is a list of mode-numbers, only the time dependent data of the
modes with numbers in the list are processed.

timedata:
If timedata= yes, the time dependent amplitudes of the selected modes are
plotted.

tsumpower:
If ”yes”, the sum of the power of the selected modes is computed as a function
of time.

tintpower:
If ”yes”, the sum of the power of the selected modes is computed as a function
of time and integrated over time.

freqdata:
If freqdata= no, no scattering parameters are plotted. This is: no magni-
tudes, no phase and no smithplots.

fsumpower:
If ”yes”, the sum of the power of the selected modes is computed as a function
of frequency.

magnitude:
If magnitude= yes, the absolute value of the scattering parameters are plot-
ted.

fintpower:
If ”yes”, the sum of the power of the selected modes is computed as a function
of frequency and integrated over frequency.

slog:
If slog= yes, the magnitude of the scattering parameters are initially plotted
in a logarithmic plot.

phase:
If phase= yes, the phase of the scattering parameters are plotted.

smithplot:
If smithplot= yes, the scattering parameters are plotted in a smith-plot.

upto:

Possible values are auto or a time-value.

If upto= auto, the time data upto the last found simulated time are consid-
ered for the fourier-transforms.

If upto= TMAX, only the time-data upto the time-value TMAX are considered
for the fourier-transforms. This is useful, for the case that a late time insta-
bility of the time domain computation has occured, and you want to know the

67

scattering parameters of a shorter simulation. THIS SHOULD NOT HAP-
PEN. IF YOU ENCOUNTER A LATE TIME INSTABILITY, PLEASE
SEND THE INPUTFILE WHERE THIS INSTABILITY HAS OCCURED
TO ”bruns@tetibm?2.ee. TU-Berlin.de”.

If "upto” is specified as a value larger than the time simulated by the FDTD-
solver, then the time values up to "upto” are filled up with zeroes. This has
the effect that additional frequency points are computed by FFTing the
padded data set. The scattering parameters at the additional frequency
points are interpolated from the primary frequency dependent values by a
sin(x)/x interpolation.

e flow:
If flow= auto, the lower boundary of the frequency range of the plots is
derived from the centerfrequency and the bandwidth of the excitation as
they were specified in the input for gd1. If flow= FMIN, the lower boundary
of the frequency range is FMIN.

e fhigh:
If fhigh= auto, the upper boundary of the frequency range of the plots is
derived from the centerfrequency and the bandwidth of the excitation as they
were specified in the input for gd1. If fhigh= FMAX, the lower boundary of
the frequency range is FMAX.

e ignoreexc:
If ignoreexc= yes, the spectrum of the excited mode is ignored. Instead a
flat spectrum is assumed. This is useful e.g. to compute the coupling from
an relativistic charge to the port-modes.

e doit:
The scattering parameters are computed from the time dependent ampli-
tudes of the port-modes.

Example
To compute and plot the scattering parameters of only the first two modes of the
ports wth names InPut, Output, we say:

modes= (1, 2)
ports= (InPut, OutPut)
doit

68

2.9 -material: Conductivities of electric materi-
als

This section enables the changing of the conductivities of materials with type=
electric. These conductivities are used for computing the wall losses in the section
-losses.

HuRHH R R R R R R R R R R

Flags: nomenu, noprompt, nomessage,
HHAR R R
section -material
HHAH R R
material= 1 # epsr....: infinity # kappa = 58.0e+06
type: electric # xepsr: infinity # xkappa = 58.0e+06
yepsr: infinity # ykappa = 58.0e+06
zepsr: infinity # zkappa = 58.0e+06
muer....: 0.0 # mkappa : 0.0
Xmuer: 0.0 # xmkappa: 0.0
ymuer: 0.0 # ymkappa: 0.0
ZmMuer: 0.0 # zmkappa: 0.0
HHAH R R R R R
return

H#RH R R R R R R R

¢ material
The material index of the material whose conductivity is to be changed.

e kappa
The electric conductivity of the material in MHO/m (1/Ohm/m).

e xkappa, ykappa, zkappa
The x-, y-, z-value of an anisotropic material. Only diagonal kappa matrices
can be specified.

The entries for type, epsr, muer, mkappa cannot be changed.

Example:
To specify that wall loss computations in the section -losses shall use a conduc-
tivity of 30e6 for the material '10’, we say:

material= 10
kappa= 30e6

69

2.10 -wakes: longitudinal and transverse wake-
potentials

This section enables the computation of longitudinal and transverse wake poten-
tials from data that were computed by gd1. These data are only recorded by gd1
when you did specify a charge in the section -lcharge of gd1.

gd1l computes the integral of the E, component along the outermost paths
where a beam can travel and stores the result in the database. Since from these
data the longitudinal and transverse wakepotentials everywhere in the beam pipe
can be computed, you can specify an unlimited number of positions (x,y) where
you are interested in the wakepotentials. The (x,y) position of the exciting charge
cannot be changed afterwards, though.

HURHH B R R R R R R R

Flags: nomenu, noprompt, nomessage,
s s s
section -wakes
LS s s S S S s s s s s s s s s s s s T s
watq = yes # Process all wakes at positions of line-charges
awtatq = yes # Use the average of the two nearest transverse wakes
as the transverse wakes at the positions of charges
impedances= no # Compute impedances.
window = yes # Apply hann-window when computing impedances.
watxy = (undefined, undefined) # want wz(xi,yi,s), i= 1
wxatxy= (undefined, undefined) # want wx(xi,yi,s), i= 1
wyatxy= (undefined, undefined) # want wy(xi,yi,s), i= 1
watsi = undefined # want w(x,y,si), i=1
watxi = undefined # want w(xi,y,s), i=1
liny= 20 # number of lines in y-direction.
watyi = undefined # want w(x,yi,s), i=1
linx= 20 # number of lines in x-direction.
wxatxi= undefined # want wx(xi,y,s), i=1
wxatyi= undefined # want wx(x,yi,s), i=1
wyatxi= undefined # want wy(xi,y,s), i=1
wyatyi= undefined # want wy(x,yi,s), i=1
istrides= 3 # distance of s-points of the plots
in units of "ds".
I 0 R R R
plotopts = -landscape -geometry 640x530
showtext = yes # (yes | no)
onlyplotfile= no # (yes | no)

HERH R R R R R R

return, help, end, clear, doit

#

IR AR R

70

e watq= [yes | no |
watq stands for ” Wake at Q-position”. If watq= yes, then the longitudinal
and transverse wakepotentials at the x-y-position of the exciting charge are
computed. You do not have to specify these position by yourself.

e awtatq= [yes | no |
awtatq stands for ” Average Wakes (transverse) at Q-position”. In a finite
difference grid, the transverse wakepotentials are best defined just in between
the grid planes. But the exciting charge can only travel along a grid line (the
crossing line of two grid planes). So the transverse wakepotential just at the
position of a charge is not well defined.

If awtatq= yes, gdl.pp computes the transverse wakepotentials at the
two positions between the grid planes that are nearest to the position of the
exciting charge. The average of the two potentials are then assumed to be
the transverse wakepotential at the position of the charge.

e impedances= | yes | no |
If impedances= yes, the spectrum of wakepotentials at points (x,y) are
computed and divided by the spectrum of the exciting current.

e clear
Clear the list of positions where to plot wakepotentials in addition to the
watq’s. See the explanation for watxy, wxatxy, wyatxy, watsi, watxi,
watyi, wxatxi, wxatyi, wyatxi, wyatyi below.

e watxy= (Xi, Yi), wxatxy= (Xi, Yi), wyatxy= (Xi, Yi)
watxy, wxatxy, wyatxy stands for ”Wake at xy-Position, Wake in x at xy-
Position, Wake in y at xy-Position”. If you specify watxy= (Xi, Yi), the
longitudinal wakepotential at the gridpoint nearest to the specified position
(Xi, Yi) will be computed. Similiar, when you specify wxatxy= (Xi, Yi) or
wyatxy= (Xi, Yi), the transverse wakepotentials at the midpoints between
gridpoints nearest to the spicified position (Xi, Yi) will be computed.

You can specify an unlimited number of (x,y)-positions where you want to
know the longitudinal or transverse wakepotentials.

e watsi= Si
watsi stands for ”Wake at S-Position”. If you specify watsi= Si, the lon-
gitudinal in the whole (x,y) region of the beam pipe at the s-value Si will be
computed.

You can specify an unlimited number of s-positions where you want to know
the longitudinal or transverse wakepotentials.

e watxi= Xi, watyi= Yi watxi stands for ”Wake at x-Position”, watyi
stands for ”Wake at y-Position”, If you sepcify watxi= Xi or watyi= Yi,
the longitudinal wakepotential at the position Xi, or Yi will be plotted as a
function of (y,s) or (x,s), respectively. These function will be plotted with
liny or linx lines respectively.

71

You can specify an unlimited number of y- or y-positions where you want to
know the longitudinal wakepotentials.

linx= LX, liny= LY
Number of lines to use to plot the data requested with watxi= Xi, watyi=
Yi.

wxatxi= Xi, wxatyi= Yi, wyatxi= Xi, wyatyi= Yi
wxatxi, wxatyi, wyatxi, wyatyi stands for ”Wake in x at x-Position,
Wake in x at y-Position, Wake in y at x-Position, Wake in y at y-Position”.

If you specify wxatxi= Xi, the transverse wakepotential in x-direction will
be plotted in the y-s plane at the x-coordinate between meshplanes nearest
to Xi.

If you specify wxatyi= Yi, the transverse wakepotential in x-direction will
be plotted in the x-s plane at the y-coordinate between meshplanes nearest
to Yi.

If you specify wyatxi= Xi, the transverse wakepotential in y-direction will
be plotted in the y-s plane at the x-coordinate between meshplanes nearest
to Xi.

If you specify wyatyi= Yi, the transverse wakepotential in y-direction will
be plotted in the x-s plane at the y-coordinate between meshplanes nearest
to Yi.

You can specify an unlimited number of y- or y-positions where you want to
know the transverse wakepotentials.

istrides= IS

Specifies the distance of s-values in the plots requested via watxy, wxatxy,
wyatxy, watsi, watxi, watyi, wxatxi, wxatyi, wyatxi, wyatyi. These
plots contain a huge amount of data when large s-values are present. It may
happen that mymtv2 needs a long time to load these datasets, and also
there may be way too much s-values in the plots. With a value greater than
1 of this parameter you can reduce the information in these plots.

plotopts= ANY STRING CONTAING OPTIONS FOR mymtv2:
gd1.pp does not display the data itself, but writes a datafile for mymtv2
and starts mymtv2 to display these data.
Useful options are:
— -landscape : Produce the PostScript plot in landscape mode
— -colorps : Produce colour PostScript
— -printcmd command : Use as printcommand command
— -Pprinter: Print to printer printer

— -pbg background_color : Use as X11-background colour the colour background_color
(grey | white | ..)

72

— -nopixmap : Good for very dumb terminals. If only the first one or two
plots appear, try this.

— -geometry X11-GEOMETRY Initial geometry for the X11 window of
mymtv2.

e showtext= [yes|nol:
This flags, whether the annotation text shall appear in the plots.

e onlyplotfile= [yes|no]:
This flags, whether plotfiles shall be written AND mymtv2 shall be started
to display them on an X11 display, or whether only the plotfiles shall be
produced.

e doit
The requested wakepotentials are computed from the data in the database,
for each dataset an instance of mymtv2 is started to plot the data.

Example
In order to have plotted the longitudinal wakepotential at the planes x=1e-3 and
x=2e-3:

watxi= 1le-3
watxi= 2e-3

73

74

Chapter 3

GdfidLs command language

3.1 Variables

A variable has a name and a value. You define or redefine a variable with the
sequence define(name, value).

e The name of the variable can be up to 32 characters long. The name must
begin with an alphabetic character and may contain numbers and alphabetic
characters.

e The value of the variable may be up to 132 characters long. It may contain
any characters inside, except for ’(\)’. Leading and trailing blanks in the
value are ignored.

Whenever gd1 or gd1.pp encounter the name of an already defined variable, the
name is substituted by the value of the variable, and the line is interpreted again.

3.1.1 Defining variables from outside

Both gd1 and gd1.pp can be supplied options that define variables from outside
an inputfile. The syntax is gd1 -Dname=value. This way, you can eg. compute
dispersion relations with simple shell scripts.

Example

#!/bin/sh
Given the proper "inputfile.gdf", this shell-script computes the
dispersion relation of some periodic structure.
for PHASE in 0 20 40 60 80 100 120 140 160 180
do
gdl -DThisPhase=$PHASE < inputfile.gdf > out.Phase=$PHASE
done

75

3.2 Arithmetic expressions

Whenever gd1 or gd1.pp encounter the string eval(, the matching closing brace
is searched and the string inside the enclosing braces is interpreted as an arithmetic
expression. The value of the expression is transformed to a string and substituted
for eval (expression).

Example

echo (2%3) # this outputs "(2*3)"
echo eval(2%3) # this outputs "6"

The arithmetic expression may contain the arithmetic operators +,-,%,/, ** ¥.
In addition to that, the boolean operators ==, !=,<,>,<=,>= are handled. The
result of applying a boolean operator is an integer 0 or 1. Zero stands for false,
and 1 for true.

The functions cos (), sin(), atan() are recognised and evaluated.

3.3 do-loops

Sections of the inputfile can be interpreted repeatedly via do loops: The structure
of a do loop is the same as in Fortran.

do M1, M2, M3
Loop-Body
enddo

The loop-body may itself contain do-loops, macro calls, whatever. The iteration
variable M1 is not restricted to integer values.

do i= 1, 100, 1 # count upwards
echo I is i

enddo

do i= 100, 1, -1 # count downwards
echo I is i

enddo

do i= 1, 2, 0.1 # non integer step
echo I is i
echo 2*I is eval(2x*i)

enddo

3.4 if-then

Conditional execution of part of an inputfile is possible with if blocks.
An if block is:

76

if (ARITHMETIC-EXPRESSION) then
#
If-Block-Body
#

endif

If the ARITHMETIC-EXPRESSION evaluates to something else than '0’ then the body
of the If-Block is executed.

3.5 Macros

Anywhere in your inputfile you can define macros. A macro is enclosed between
two lines: The first line contains the keyword macro followed by the name of the
macro. All lines until a line with only the keyword endmacro are considered the
body of the macro. When gdl1 or gd1.pp find such a macro, they read it and
store the body of the macro in an internal buffer.

Example
#
This defines a macro with name ’foo’
#
macro foo

echo I am foo, my first argument is Qargl
echo The total number of arguments supplied is @nargs
endmacro

When gd1 or gdl.pp find a call of the macro, the number of the supplied ar-
guments is assigned to the variable @nargs, and the variables @argl, @arg2,

are assigned the values of the supplied parameters of the call. Similiar to the user
definable variables, the values of the arguments are strings. Of course it is possible
to have a string eg. "1le-4’ which happens to be interpreted in the right context as
a real number.

Example

#

this calls ’foo’ with the arguments ’hi’, ’there’
#

call foo(hi, there)

Macro calls may be nested. The body of a macro may call another macro.

7

3.6 Result-variables

gd1l.pp makes its results accessible as symbolic variables. The names of these
variables all start with @. The exact name can be found in the description of the
sections of gdl.pp. There are some other variables as well that have not been
described.

e Opi, @clight: These are the values of m and of the velocity of light.
The following variables are defined as soon as a database has been specified:

e @nx, @ny, @nz: These contain the number of grid planes in the three coor-
dinate directions.

e 0x(i), @y(i), @z(i): These are the positions of the i.th gridplane.

e QOxmin, @xmax, Q@ymin, @ymax: These are the extreme coordinates of the
computational volume.

gdl.pp has a special variable @path. Its value is a command string that would
enter the current section.

78

This is the end of this document

79

