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A relativistic electron beam propagating through an annula r

plasma sheath is subject to a transverse plasma-electron coupled

electrostatic instability. From the linearized fluid equations, t h e

beam-sheath interaction is resolved into three coupled equations.

The corresponding wakefield is computed and the asymptotic l inear

evolution is noted. For illustration, numerical examples are given for

a plasma accelerator employing such a sheath. While the coasting

beam scalings are quite severe at low energy, single-bunch

instability growth can in fact be reduced to nil, for a very high-

gradient accelerator.

PACS: 52.40 Mj, 29.25 Fb, 52.35 Py and 52.50 Gj.
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I. INTRODUCTION

Much current work in accelerator and radiation research

focuses on the propagation of intense electron beams through

plasma. Stability against transverse beam b r e a k - u p1 is critical i n

such applications and is the subject of many works, treating resonant

interaction with structure modes,2 instability due to lossy walls,3

image return current displacement due to gaps in the beamline4 a n d

beam-plasma interactions such as ion-hose5 and resistive hose.6 Until

recently less attention has been given to the transverse two-s t ream

instability7 ,8  arising from the presence of a low energy electron

population in the beamline.

Sources of such excess electrons in the beamline include b e a m

ionization,9 multipactor,10 and laser-ionization. Applications such a s

ion-focused transport1 1  and laser-wakefield acceleration1 2  or p lasma-

wakefield acceleration1 3  can all access a regime in which an annula r

plasma surrounds an electron beam as it propagates down the b e a m

tube.

In this work, transverse beam break-up due to an idealized

uniform density finite plasma sheath is considered for a cylindrical

geometry. In Sec. II the transverse problem is formulated in terms of

three coupled equations describing the beam-sheath interaction. I n

Sec. III the wakefield is computed, and in Sec. IV, instability growth

is examined. In Sec. V, some conclusions are offered.



3

 II. COUPLED BEAM-SHEATH EQUATIONS

The equilibrium configuration is depicted in Fig. 1, consisting of

an annular plasma sheath with inner radius b1, and outer radius b2,

contained within a perfectly conducting pipe of radius R.  Return

currents within the plasma are neglected in the limit of large p lasma

skin depth, and the plasma is assumed collisionless and initially

uniform within the annulus. The beam is assumed to be uniform o u t

to radius a , with prescribed linear focusing characterized by be ta t ron

wavenumber kβ.  

The plasma equilibrium is maintained by a background of ions

uniform within the annulus and assumed fixed (i.e., infinitely

massive). Such an equilibrium is rather idealized, but approximates

the situation of interest in a number of applications, the two mos t

prominent being (1) a laser-formed channel,1 4  and (2) an electron-

beam formed channel in a pre-formed plasma.13 In the case of t h e

laser-formed channel, the plasma gradient is produced by expansion

of the plasma following the laser pulse. For the beam-formed

channel, the plasma annulus would result from laser ionization15 of a

column of radius b2, followed by expulsion of plasma electrons b y

the electron-beam. In this case, b 1  is the "neutralization radius", i.e.,

the radius such that the enclosed ion-charge is sufficient t o

neutralize the beam electrostatic field. Using Gauss's law one can

show that b
1

= 2 ν k p

−1

, where k p  is the plasma wavenumber ,

kp2=4πnpe2/mc2. The electron charge is -e , the electron mass is m

and c  is the speed of light. Here ν=I/I0 is Budker's parameter13 with I

the beam current and I0~mc3/e~17kA. Note that neglect of p lasma
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return currents requires kpb1<<1, or ν<<1, i.e.,  low current .16

Throughout this work ion-motion5 and beam-head erosion17 will b e

neglected. Retardation within the beam-pipe is neglected.

The equilibrium plasma electron charge density is assumed t o

take the form ρ e0 = −e n e H ( b 2 − r ) H ( r − b 1)  and the beam charge

density is ρ b 0 = −e n b H ( a − r ) where H  is the step function, -e  i s

the electron charge, n b  is the equilibirum number density for t h e

beam, and ne is the initial plasma number density.

We consider the effect of a perturbation to the beam centroid

in the form of a small displacement,  ξ, in the x-direction, as depicted

in Fig. 2. The perturbation to the beam charge density is t h e n

ρb 1 = −e n b ξδ ( a − r ) cos θ  where θ is the azimuth and δ is the Dirac

delta function.

Maxwell’s equations are most simply expressed in terms of t h e

perturbed vector potential A z  and the "pinch potential" ψ ≡A z-φ, wi th

φ the perturbed scalar potential. The Lorentz gauge is assumed a n d

the “frozen-field” approximation is enforced, with which t h e

D’Alembertian operator is replaced by the transverse Laplacian ∇ ⊥
2

and radiative effects are neglected, corresponding to the limit

kpR/γ<<1.   Maxwell's equations reduce to

    
∇⊥







= −

−





2 1

1

4
ψ

π
ρ
ρAz

e

b

, (1)

The perturbed plasma electron charge density, ρe1, i s

determined from the potentials through the electron cold-fluid

equations,
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∂ρ
∂

ρe
e et
V1

0 0+ • ( ) ≈⊥

r r
∇ , (2)

    

∂
∂

φ
r

rV

t

e

m
e ≈ ⊥∇ ,   (3)

where     
r
Ve  is the plasma-electron velocity, and t is time.

To close this system one needs the Lorentz force law describing

the deflection of the beam centroid ξ . This takes the form

    

∂
∂

γ ∂
∂

γ ξ ∂ψ
∂βz z

k
e

m c x
+







= −2

2
, (4)

where γ is the Lorentz factor for the beam, c  is the speed of light, a n d

the z-derivative is taken with the "beam coordinate" τ=t-z/c fixed.

Henceforth we will use variables z,τ rather than z,t. Thus the b e a m

centroid ξ=ξ(z,τ) varies along the beam (in τ) and varies along t h e

beamline (in z) due to focusing, acceleration, and electrostatic

deflection by the plasma sheath.

We proceed by rewriting the fluid equations as

      

∂ ρ
∂τ

ρ φ ρ φ
2

1
2

0 2
0

e e
e

e

m

e

m
+ = − •⊥ ⊥∇ ∇ ∇

r r
. (5)

In this form it is clear that ρe1 consists of polarization layers located

at the discontinuities in ρe0, i.e., at r=b1 and r=b2.  Thus ρe1 may b e

expressed as

    ρ η δ η δ θe een r b r b1 1 1 2 2= − − −{ }( ) ( ) cos , (6)
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where η1(z,τ) and η2(z,τ) are dynamic variables representing t h e

displacements of the centroids of the inner and outer surfaces of t h e

plasma annulus. Integrating the fluid equations alternately across

each surface, there result two equations for the annulus variables,

    

∂
∂τ

ω η θ ω
π

∂φ
∂

2

2 0
2 0

2

2
+









=




 =

en
re j

r bj

cos . (7)

here j=1,2 and ω0=ωp/21/2, with ωp=kpc the plasma frequency. The

bar indicates an average of the (discontinuous) derivatives at t h e

surface.

Having determined the beam and annulus response to t h e

fields, in Eqs. (4) and (7), it remains only to determine the fields i n

terms of ξ , η1, and η2. The solution for the vector potential takes t h e

fo rm

    
A

Ar r a

Br Cr a r R
z = ( ) < <

+ < <




−
cos

;

;
θ

0
1

,
(8)

where the parameters A, B, and C are determined from t h e

conducting boundary condition at Az(R)=0, continuity at r=a, and t h e

discontinuity in derivative specified by Eq. (1).  The result is
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A en

a

R
b= − −







2 1
2

2
π ξ            (9)

    
B en

a

R
b= 2

2

2
π ξ  (10)

    C en ab= −2 2π ξ (11)

The pinch potential takes the form

    

ψ θ= ( )
< <

+ < <
+ < <









−

−

cos

;

;

;

D r r b

Er Fr b r b

Gr H r b r R

0 1

1
1 2

1
2

,
(12)

where the coefficients D, E, F, G, and H are determined f rom

continuity in ψ, the discontinuities in derivative specified by Eq. (5),

and the conducting boundary condition ψ(R)=0. Some lengthy algebra

reveals

    
D en

b

R
en

b

R
e e= − −







+ −






2 1 2 11
1
2

2 2
2
2

2
π η π η ,

(13)

    
E en

b

R
en

b

R
e e= + −







2 2 11
1
2

2 2
2
2

2
π η π η ,

(14)

    F en be= −2 1 1
2π η ,

(15)

    
G en

b

R
en

b

R
e e= −2 21

1
2

2 2
2
2

2
π η π η ,

(16)

    H en b en be e= − +2 21 1
2

2 2
2π η π η .

(17)



8

With these expressions in hand, it is straightforward t o

compute φ. With some algebra we have

    

∂φ
∂

θ

π ξ θ π η η θ

r
B C b E D F b

en a
R b

en
b

R

b

R

r b

b e







= − − + −( )







= +






− + −













=

− −

1

1
2

1
2

2

2
1
2 1

1
2

2 2
2
2

2

1

2

2
1 1

2 1

cos

cos cos ,

(18)

    

∂φ
∂

θ

π ξ θ π η η θ

r
B C b E G F b H b

en a
R b

en
b

R

b

b

b

R

r b

b e







= − − + − −( )







= +






− +






−







=

− − −

2

2
2

2
2

2
2

2

2
2
2 1

1
2

2
1
2

2
2 2

2
2

2

1

2

2
1 1

2

cos

cos cos ..

(19)

Substituting these coefficients in Eq. (7) the result is

    

∂
∂τ

ω η ω ξ ω η
2

2 1
2

1 0
2

2

1
2

2

2 0
2

2
2
2

2
1+









= +






− −






en en
a

b

a

R
en

b

R
e b e , (20)

    

∂
∂τ

ω η ω ξ ω η
2

2 2
2

2 0
2

2

2
2

2

2 0
2

1
1
2

2
1
2

2
2

+








= +






− +






en en
a

b

a

R
en

b

R

b

b
e b e ,   

(21)

where we abbreviate

    
ω ω1

2
0
2 1

2

2
1= +







b

R
,

(22)
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ω ω2

2
0
2 2

2

2
1= −







b

R
.

(23)

Note that   ω ω ω2
2

0
2

1
2≤ ≤ . For subsequent analysis, Eqs. (22) and (23) a r e

most simply written as

  

∂
∂τ

ω η µ ξ ν η
2

2 1
2

1 1
2

1
2

2+








= − ,
(24)

  

∂
∂τ

ω η µ ξ ν η
2

2 2
2

2 2
2

2
2

1+








= − ,
(25)

where the coefficients are

    
µ ωj b

j

ja

b

b

R
2 2

2

2

2

2

1

2
1= +







,

(26)

    
ν ω1
2

0
2 2

2

2
1= −







b

R
,

(27)

    
ν ω2
2

0
2 1

2

2
1
2

2
2

= +






b

R

b

b
,

(28)

with ωb2=4πnbe2/m .

These equations are coupled to that for the beam

    

∂
∂

γ ∂
∂

γ ξ κ η κ ηβz z
k+









= −2
1
2

1 2
2

2 ,
(29)

where the constants



1 0

    
κ ω

j
j

c

b

R
2 0

2

2

2

2
1= −







,

(30)

Equations (24), (25) and (29) provide a complete description of t h e

linear evolution of the electron-hose instability in an annular shea th

geometry, in the large skin-depth limit.

III. WAKEFIELD FORMULATION

To understand the behavior of this system, consider first t h e

homogeneous problem with ξ=0, corresponding to a freely vibrat ing

sheath. For a perturbation varying as η1, η2 ∝ exp(-iωτ), Eqs.(24) a n d

(25) take the form

  

ω ω ν
ν ω ω

η
η

1
2 2

1
2

2
2

2
2 2

1

2

0
−

−












= . (31)

A non-trivial solution results only if the determinant of the matr ix

vanishes, and this condition is the eigenvalue equation for t h e

angular frequency ω,

  
ω ω ω ω ν ν2

2
2 2

1
2

1
2

2
2−( ) −( ) = .               (32)

The solutions for the eigenfrequencies take the form



1 1

    

ω ω ω ω ω ν ν

ω

± = + ± −





+

= − − ± −





+












2 1
2

2
2

1
2

2
2

2

1
2

2
2

0
2 2

2
1
2

2
2
2

1
2

2

2

1
2

2
2

2 2

1
2 2

b b

R

b b

R

b

b
,

(33)

corresponding to symmmetric (ω-) and antisymmetric (ω+)  modes of

coupled vibration. The roots are always real as one would expect for

a cold, collisionless plasma. From Eq. (33) one can also show t h a t

    ω ω ω ω− +≤ ≤ ≤2
0
2 2 2

p .

Next we solve for the response of the system to a s h a r p

impulse, ξ=δ(τ).  For τ>0, the solution must be a superposition of t h e

eigenmodes of the homogeneous system, with displacements

vanishing at τ=0. Thus

    η η ω τ η ω τj j j= ( ) + ( )+
+

−
−sin sin , (34)

where, from Eq. (31), the eigenmode amplitudes must be re la ted

according to

  
η ν

ω
ρ ω τ1

1
2

±

±
± ±= ( )sin ,

(35)

  
η

ω ω
ω

ρ ω τ2

2
1
2

± ±

±
± ±=

−( ) ( )sin ,

(36)
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with constants ρ±- determined by the initial excitation. From Eqs. (24)

and (25),

    

∂η
∂τ

µ ξ µj
j j0 2

0

0
2+( ) = =

−

+

∫ , (37)

and in terms of ρ±   this is

  

1 1
2

1
2 2

1
2

1
2

1
2

2
2ω ω ω ω

ρ
ρ

µ ν
µ+ −

+

−− −











=






/

, (38)

with the solution,

    
ρ

ω ω µ µ ν

ν ω ω±
+ −

= ±
−( ) +

−( )
1
2 2

1
2

2
2

1
2

1
2 2 2

m
. (39)

For a more general beam impulse, the result for the shea th

displacements may be obtained from superpostion,

    

η
η

τ τ ν
ω ω

ρ
ω τ τ

ω
ξ τ

τ
1

2 0

1
2

2
1
2







= ′
−







− ′( )[ ]











′∫ ∑

± ±
±

±

±

( , )
sin

( , )z d z . (40)

Substituting this result in Eq. (29), we arrive at an equation for t h e

evolution of the beam centroid, in a form familiar in studies of b e a m

break-up ,18

    

∂
∂

γ ∂
∂

γ ξ τ τ τ τ ξ τβ

τ

z z
k z d G z+









= ′ − ′( ) ′∫2

0

( , ) ( , ), (41)
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where the Green's function G is just a sum of the wakefields excited

in each mode,

    
G G( ) sinτ ω τ= ( )

±
± ±∑ , (42)

a n d

    

G

c

b

R
p

±
±

±
±

±

±
±

= −( ) +{ }
= −







−( )

ρ
ω

κ ω ω ν κ

ρ
ω

ω ω ω

2
2

1
2 2

1
2

1
2

0
2

2
2
2

2

2 21 .

(43)

More explicitly this can be written as,

      
G

b R

p o

±
±

± + −

± +






−( ) −( )
−( )2

1 1

1
2 2

2 2 2 2

2 2
ν

ω ω ω χ ω

ω ω ω
m

,

(44)

w h e r e

    
χ = + + −







+






−

1 1 11
2

2
1
2

2
2

2
4

4
1
2

2

1

b

R

b

b

b

R

b

R
. (45)

It will be helpful to have the slope of the wakefield for small τ ,

    
′ = = −







+




± ±

±
∑G G

b b

b b

R
ω νω2

1 1
10

2

1
2

2
2

1
2

2
2

4
. (46)
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These results simplify considerably in either of the limits R→ ∞

    
lim
R

G
I

I b

b

b→∞ ±
±

= −




0

0
2

1
2

1
2

2
2

1
ω

ω
, (47)

    
lim
R

b

b→∞

± = ±ω
ω

2

0
2

1

2

1 , (48)

or b2→R, where G -→0,ω-→0, and

    
lim
b R

G
b

b

R2

2
1

10
2

1
2

1
4

4→ +
+

= −






ν ω
ω

, (49)

    
lim
b R

b

R2

2

0
2

1
2

2
1

→

+ = +ω
ω

. (50)

IV. SINGLE-BUNCH BEAM BREAK-UP

 To calculate the asymptotic growth we will specialize to t h e

case of a bunch much shorter than the natural periods of t h e

wakefield ("single-bunch beam breakup"). In the limit of a shor t

pulse, the wake is approximately linear,     G G( )τ τ≈ ′ . For illustration,

examples will assume the ion-focusing condition, γk β
2˜k 0

2  with k 0
2

=kp
2 /2, corresponding to the case where the channel is filled w i th

unneutralized ions equal in density to that in the surrounding sheath.

First we consider the case of no acceleration ("coasting beam").

The asymptotic form for the beam centroid in this case is wel l -

known,1
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ξ τ

π
π

β( , ) cos
/

/ /

/ /z A e k z AA≈ − +








− −3

2
3

12

1 4

3 2 1 2 1
1 2 1 2

1
1 ,

(51)

where the exponent Α 1=(z/L1)1/3, with growth length,

    
L

k

G
1

6

9 2 2

2

3
=

′/

γ
τ

β .   

(52)

This result assumes strong focusing L>λβ, and this condition imposes

an upper bound on the product of charge and bunch length, since t h e

length scale varies as (Qτ)-1.  Eq. (52) can be cast in a m o r e

transparent form assuming ion-focusing,

    L p1
2 2 2 13 6 10≈ × ( )− − − −. λ ω τ νβ Λ ,

(53)

w h e r e

    

Λ2

1

2

2

2
1
2

2
2

4

1 1
1=

( )
−

( )












+




k b k b

b b

R
p p

. (54)

For illustration, consider a bunch of charge Q˜100pC travelling

through a plasma channel with np=1x1017cm -3, corresponding t o

λ p=100µm. We take R→∞ and b 1/b2=0.5, with kpb 1=1 or b1=16µm so

that Λ ˜0.87. We assume a bunch length ωpτ=2π/100 or τ ˜3 fs. The

peak current I˜Q/τ ˜30kA corresponding to Budker parameter ν˜1.8.
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This gives L1˜22λ β. For a beam energy of 10MeV (γi˜20) the be ta t ron

period λ β=(2γ)1/2λ p is 630µm and the propagation range to 100-fold

growth in the beam centroid (A 1˜6.9) is about 5m. This is a r a t h e r

short range and it suggests that one consider injection at a higher

energy, and take into account the salubrious effect of acceleration.

To determine the asymptotic growth with acceleration, w e

apply an eikonal approximation to Eq. (41), assuming that growth

will turn out to be slow on the scale of a betatron period. We define a

slowly varying amplitude χ, in terms of which ξ   may be expressed

a s

    

ξ τ
γ
γ

χ τ θβ

β
βz

k

z k z
z i z, , exp

/

( ) = ℜ
( ) ( )
( ) ( )









 ( ) ( )( )













0 0
1 2

,

(55)

with the betatron phase,

    
θ γ γβ βz dzk

k

g
z

z

( ) = = ( ) − ( )



∫

0

0
1 2 1 22

0
/ /

,

(56)

and we take γk β
2˜k 0

2= k p
2 /2) and γ=γ0+gz. Substituting Eq. (55) in Eq.

(41), and performing a Laplace transform in τ , one can show that

∂χ
∂ γ

χ
β

˜
,

˜
˜ ,

z
z p

G p
i k

z p( ) = ( ) ( )
2

,

(57)
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where the tilde denotes the Laplace transform, and p  is the Laplace

transform variable. Inverting the Laplace transform, the solution for

the beam centroid is

    
χ τ

π
τ γ γz

i
dp

p
p i

G

gk p
z

i

i

, exp
/ /( ) = − ′ ( ) − ( )











− ∞

∞

∫1

2

1
0

0
2

1 2 1 2
, (58)

and we have used ˜ /G p G p( ) = ′ 2 . This integral may be computed

approximately by the method of steepest descents,1 9  and the resul t

for the beam centroid displacement is

    
ξ τ

π
γ
γ

θ π
β( , ) cos

/

/ /

/

/

/z
z

e

A
A

A

≈
( )
( )









 − +









−3

2

0
3

12

1 4

3 2 1 2

1 4

2

1 2

1 2
2

2

, (59)

with exponent

    
A

G

gk
z2

3 2

5 3

2

0

1 2 1 2
1 3

3

2
0= ′ ( ) − ( )













/

/

/ /
/

τ γ γ . (60)

Asymptotically, A 2→ (z/L2)
1/6, with

    
L gkp p2

2 2 2 2 1
2

2 6 10≈ × ( ) ( )





− − − − −. ω τ νΛ . (61)

Comparing this with Eq. (53), one sees that the length scale λβ h a s

been replaced with the length scale gkp
-2, and varies as (Q τ  )-2, a much

more favorable scaling.

For illustration we consider a numerical example corresponding

to a 2.5 TeV accelerator. As in the previous example, we assume
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Q˜100pC,  np=1x1017cm -3, λ p=100µm, τ ˜3 fs, I˜30kA, ν˜1.8, R→∞,

b 1/b2=0.5, and b1=16µm. However, in this case, we assume injection

at a  high  energy, 10GeV (γi˜2x104) followed by acceleration t o

2.51TeV (γf˜5x106). The betatron period λ β=(2γ)1/2λ p is initially 2 c m

and increases to 30cm at the exit. With these parameters fixed, w e

consider three cases corresponding to different accelerating

gradients: (1) 1 GeV/m (2) 10GeV/m and (3) 100GeV/m. Associated

parameters are listed in Table 1. To check these scalings we solve Eq.

(41) numerically with results indicated in Fig. 3. The analytic resul ts

are the dashed curves overlayed in Fig. 3 and they are almost

indistinguishable from the numerical results. Evidently only in t h e

lower gradient case is the instability cause for concern.
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V. CONCLUSIONS

Transverse two-stream instability in an annular p lasma

geometry has been analyzed in the limit of low plasma r e t u r n

current. Asymptotic growth for an accelerated beam has b e e n

computed for several illustrative examples and compared to m o r e

exact numerical results giving good agreement. While the coasting

beam scalings appear quite severe at low energy, single-bunch

instability growth can in fact be reduced to nil, for a very high-

gradient accelerator.
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Table 1. Parameters for three 2.5 TeV accelerator examples.

Gradient 1GeV/m 10GeV/m 100GeV/m

Length, z 2 5 0 0 m 2 5 0 m 2 5 m

Betatron Periods 1 6 0 0 0 1 6 0 0 1 6 0

g=dγ/dz 10 3m - 1 10 4m - 1 10 5m - 1

Exponent A 2 12.9 6.0 2.8

Analytic ξ 7.4x103 1 1 0.6

Numeric ξ 7.6x103 1 0 0.6
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FIG. 1 .  In equilibrium, a relativistic electron beam of radius a

propagates in the z-direction (out of the page). Plasma electrons a n d

ions fill an annulus of inner radius b 1  and outer radius b2. The inne r

channel could be neutral or consist of unneutralized ions.

FIG. 2. A displacement of the beam centroid by an amount ξ   in t h e

x-direction, induces a displacement η1 of the inner surface of t h e

plama, and a displacment η2 of the outer surface. The result ing

polarization of the channel deflects follow-on portions of the beam,

resulting in instability.  

FIG. 3. Depicted is evolution of the amplitude of the beam centroid

oscillation |ξ | through 2.5TeV of acceleration as computed

numerically from Eq. (41). The amplitude is evaluated at the pulse

tail for three different accelerating gradients: 1GeV/m, 10GeV/m a n d

100GeV/m. Dashed curves are the analytic amplitudes from Eq. (59).
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