
Microwave Electronics

☞Maxwell's Equations & Modes in a Guide  
❐ Equivalent Circuit for Waveguide Modes
❐ Modes of a Cavity
❐ Cavity with a Port & External Q  
❐ Microwave Networks
❐ Slater's Perturbation Theorem

An Introduction to the 
Notion of Equivalent Circuit

Starting from Maxwell’s Equations

in six lectures



Microwave Electronics I 

Maxwell's Equations 
and

 Waveguide Modes

① Lorentz Force Law
② Maxwell’s Equations
③ Skin Depth 
④ Orthogonal Modes
⑤ Phase & Group Velocity
➯ Quiz



①Lorentz Force Law

Newtons per Coulomb=V/m
“electric field strength”

Hendrik Antoon Lorentz 
b. July 18, 1853, Arnhem, Netherlands
d. Feb. 4, 1928, Haarlem

●defines the fields & 
abstracts them from the sources
●describes “test particle” motion
●describes response of media
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”magnetic flux density” 
or “magnetic induction”



Example: Conductivity

P. Drude, 1900
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Georg Simon Ohm
(b. March 16, 1789, Erlangen, Bavaria --d. July 6, 1854, Munich)
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NB This is a simplified picture of
a normal conductor...occasionally
this picture breaks down...



and of course this model cannot be applied
to all materials...



②Maxwell’s Equations 

● Charges repel or attract
● Current carrying wires repel or attract
● Time-varying currents can induce 

currents in surrounding media

Electricity & Magnetism before Maxwell...

After Maxwell...

● Light is an electromagnetic 
phenomenon

● Nature is not Galilean
● Thermodynamics applied to  

electromagnetic fields gives divergent 
results

● Matter appears not to be stable
● Questions arise concerning 

gravitation...



Microwave Electronics

“Ordinary” Electronics

•voltages vary slowly on the scale of the
transit time = circuit size / speed of light
•circuit size small compared to wavelength
•voltage between two points independent of path
•may treat elements as “lumped”
•unique notion of impedance of an element
•bring a multimeter

•circuit size appreciable compared to a wavelength
•voltage between two points depends on path
•elements are “distributed”, spatial phase-shifts
occur between them
•if the word “impedance” is used, you may always
ask how it was defined...
•if any result of test & measurement is quoted, you 
may always ask how the equipment was calibrated
•bring crystal detectors, filters, mixers, a signal 
generator, a spectrum analyzer, and, if you have 
them a network analyzer, calibration kit, vector 
voltmeter



History
Henry Cavendish
(b. Oct. 10, 1731, Nice, France--d. Feb. 24, 1810, London, Eng.)

Charles-Augustin de Coulomb 
(b. June 14, 1736, Angoulême, Fr.--d. Aug. 23, 1806, Paris)

André-Marie Ampere
(b. Jan. 22, 1775, Lyon, France--d. June 10, 1836, Marseille)

Karl Friedrich Gauss
(b. April 30, 1777, Brunswick--d. 1855)

Hans Christian Ørsted
(b. Aug. 14, 1777, Rudkøbing, Den.--d. March 9, 1851, Copenhagen)

Siméon-Denis Poisson
(b. June 21, 1781, Pithiviers, Fr.--d. April 25, 1840, Sceaux)

Michael Faraday
(b. Sept. 22, 1791, Newington, Surrey --d. August 25, 1867, Hampton Court)

James Clerk Maxwell
(b. June 13 or Nov. 13, 1831, Edinburgh--d. Nov. 5, 1879, Glenlair )

Heinrich (Rudolf) Hertz
(b. Feb. 22, 1857, Hamburg--d. Jan. 1, 1894, Bonn)

Guglielmo Marconi
(b. April 25, 1874, Bologna, Italy--d. July 20, 1937, Rome)



Gauss’s Law

Ampere’s Law
before Maxwell
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or electric flux density
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In Vacuum...In Vacuum...

µ π0
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In Media...In Media...

magnetic dipole moment density 
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D E P E= + =ε ε0

electric dipole moment density   
r r

P Ee= χ ε0
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M Hm= χ

Finer Points:
•These are really frequency domain 
expressions
•In general ε,µ are tensors
• µ may be non-linear & biased by a DC
field
•H,D depend on your point of view
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Faraday’s Law
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●Before Maxwell, Ampere’s Law was inconsistent with 
conservation of charge
●After Maxwell, the fields didn’t need charge to 
support them, they could propagate on their own

●Of course no one believed Maxwell, but the fields
didn’t mind



Charge Conservation
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Ampere’s Law (before Maxwell’s addition
of Displacement Current) implied

...actually not a bad approximation in 
conductors, or a dense plasma..
excellent for electrostatics, magnetostatics



Gauss’s Law

Ampere’s Law
with
Maxwell’s Displacement Current

Faraday’s Law

  
r r
∇ • =D ρ

  

r r
r

∇ × = −E
B
t

∂
∂

  

r r r
r

∇ × = +H J
D
t

∂
∂

  ∇ • =
r
B 0No Magnetic Charge

Maxwell’s Equations

James Clerk Maxwell
b. June 13 or Nov. 13, 1831, Edinburgh
d. Nov. 5, 1879, Glenlair



Medium 2

Medium 1
+ + + + + + + + + + + + + + ++

surface charge density Σ
pillbox area A
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Boundary Conditions
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Example to Illustrate ε:
Unmagnetized Plasma

  

r
E Ee Ee E ej t j t j t= ℜ( ) = +( )−˜ ˜ ˜ *ω ω ω1

2

  
m

dv
dt

qE m
v

r r r

= −
τ

˜ ˜ ˜ ˜ ˜v
j

q
m

E J nqv
j

EDC=
+( )

⇒ = =
+( )

1
1 1ωτ

τ σ
ωτ

Apply charge conservation & Gauss’s Law...

  

∂ρ
∂

ωρ
t

J j J+ ∇ • = ⇒ + ∇ • =
r

0 0˜ ˜

∇ • = = − ∇ • = − ∇ •
+( )

ε ρ
ω ω

σ
ωτ0

1 1
1

˜ ˜ ˜ ˜E
j

J
j j

EDC

∇ • +
+( )









= ⇒ = +
+( )

ε
ω

σ
ωτ

ε ε
ω

σ
ωτ0 0

1
1

0
1

1j j
E

j j
DC DC˜

N B with
nq
m

p
p. . lim

τ

ε
ε

ω
ω

ω
ε→∞

= − =
0

2

2
2

2

0
1



Evidently...

•electric permittivity is a frequency-domain concept...
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ω

σ
ωτ

ε ω= +
+( )

= ( )0
1

1j j
DC

•electric displacement depends on what you consider to 
be the “external” circuit, electric field does not

View #1
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Polarization in the time domain...
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Example...unmagnetized plasma...
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for t<0, contour
may be closed
at Imω→−∞
so that G=0

contour
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from two poles



Susceptibility in the High Frequency Limit 

when the Green’s function is analytic near t>0,
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Kramers-Kronig Relations

Since G is causal χe must be analytic
in the Imω<0 half-plane, so that

for points ω,ω’  and contour in the 
lower half-plane. Let the contour lie
just below the real axis and use
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Scalar & Vector Potentials

Maxwell’s Equations...
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Hertzian Potentials

in a homogeneous, isotropic source-free region...

Magnetic Hertzian potential
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Energy ConservationEnergy Conservation

In a linear medium, with ε and µ  
independent of frequency:
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When ε and µ are  not independent of frequency 
we should work in the frequency domain... 
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somewhat more challenging is the calculation of the
rate of change of field energy density

Questions arise...is this integrable? 
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To address this problem we first compute

take

and compute P...

then
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③Skin Depth
Start from Maxwells Equations

Fields ∝  exp(jωt)

Reduce to an equation for H
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ξ

CONDUCTORVACUUM
t angent ial H

normal H

Let’s solve for fields in conductor...

Z
j

R js s= + = +( )1
1

sgn
sgn

ω
σδ

ω

select coordinate 
along
outward normal

“impedance boundary condition”

R

at GHz in Cu

s = =

≈

1

1
σδ

surface resistance

8.3mΩ

d
d

H j Ht t

2

2 2
2

0
ξ

ω
δ

˜ sgn ˜− =

˜ ˜ exp ( sgn )H H jt tξ ξ
δ

ω( ) = ( ) − +







0 1

  
˜ ˜ ˆ

˜
ˆ ˜E H n

H
Z n Hs t= ∇ × ≈ × = − ×1 1

σ σ
∂
∂ξ

r



Power per m2 into the conductor...
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where in the last line we have made use
of the result for surface current density,



④Orthogonal Modes
(Uniform Waveguide)

From Maxwell’s Equations, with fields 
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The divergence conditions take the form
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1

so that the longitudinal field components may be determined 
from the transverse components. In addition,we may write 
the curl equations

to express the transverse components in terms
of the longitudinal
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TE Modes Ez=0
transverse fields may be determined from Hz
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TM Modes Hz=0
transverse fields may be determined from Ez
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Cut-Off & Characteristic Impedance Zc

In general for a given mode we have

Z H z Ec
˜ ˆ ˜⊥ ⊥= ×

where

Boundary conditions restrict the permissible values
of cut-off wavenumber kc to a discrete set. Each mode
has a corresponding minimum wavelength λc beyond 
which it is “cut-off” in the waveguide.
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Modal Decomposition

A general solution for a given geometry may be
represented as a sum over modes

where 

and we adopt the normalization

  

˜ ( , )

˜ ( , )

E E r V z

H H r I z Z

t a
a

a

t a
a

a ca

= ( )∑

= ( )∑ ( )

⊥ ⊥

⊥ ⊥

r

r

ω

ω ω

Z H z Eca a a⊥ ⊥= ×ˆ

  d r E r E ra a
2 1⊥ ⊥ ⊥ ⊥ ⊥∫ ( ) • ( ) =

r r
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This requires Green’s Theorem,
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One can also show, for non-degenerate modes, that

and the eigenvalue equations for Hz & Ez
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Relation between Power, V & I

As a result, one may express the power flow in the
waveguide, in terms of V & I according to
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Meaning of  V,I

Given the orthogonality relations, one can determine V,I 
from the transverse fields at a point z
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and this is enough to determine the solution
everywhere in the uniform guide, since this
fixes the right & left-going amplitudes.

Given the uniqueness of V,I, their
relation to power, and the units
(volts, amperes) it is natural to refer
to them as voltage & current. 

It is important to keep in mind however 
that they appear as complex mode 
amplitudes,not work done on a charge 
or time rate of change of charge.

at the same time, for particular geometries and 
applications, V & I can often be related to these more 
conventional concepts



⑤Phase & Group Velocity
consider a narrow-band drive at z=0
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can see that constant phase-fronts
travel at

v
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Summary

✓ Lorentz Force Law 
✓ Maxwell’s Equations
✓ Skin Depth  δ
✓ Modes in a Waveguide
✓ Phase Velocity vφ  & Group 

Velocity vg
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Vocabulary

● Electric Field E
● Magnetic Field H
● Energy U, Power P
● Frequency f, or Angular Frequency ω
● Conductivity,  σ or Resistivity ρ
● Phase Velocity vφ, Group Velocity vg

● Distributed vs Lumped Elements
● E & H Fields, Charged Particles
● Behavior of Fields in Media



For More Information...

W3 Virtual Library of Beam Physics

http://beam.slac.stanford.edu/

links to all accelerator labs on the planet
...conferences...schools...news...jobs...

companies...vendors...databases...
researchers...preprints...
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A graduate level electrodynamics text.
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RF Engineering 
for Particle 

Accelerators

➯Understand
➯Invent
➯Design
➯Build
➯Operate

To

RF Systems

Joint Accelerator School
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Why are you here?

•Distributed vs. Lumped Elements
•The Meaning of Current & Voltage
•Transit Time & Retardation

What do you want?

Understanding of fundamentals...

Familiarity with the language...

•V, I, Z, δ, Rs, Qw, Qe, R/Q...
• π mode, Travelling Wave,...
•Tee, Load, Circulator, 3dB Coupler...

Ability to Solve Problems...

•How to design, build & tune my cavity?
•What is the right power source to use?
•My system isn’t working, what to do?


