
Comon Git based
EPICS Module
Development

Bruce Hill
Murali Shankar
Sept 6, 2016

Motivation
�Several groups within SLAC use EPICS, but with different build
systems, some using CVS and some using subversion for version
control.
�This makes collaboration within the lab difficult.
�For packages such as EPICS base, modules, and extensions, the
primary owner of the package is someone in the worldwide EPICS
collaboration.
�Most of these collaboration packages are now being hosted on
github, with more packages moving there as time goes by.
�This proposal outlines a git based workflow w/ common build
support tools that attempts to meet the above needs.

Git Workflow Objectives
�For local development, we need git repo’s which any developer can pull or push
to so that anyone can create new releases as needed.
�These local SLAC master git repos need to be reachable from our development
environments so build scripts can checkout and build releases as needed. For
now, these SLAC master repos will be under
/afs/slac/g/cd/swe/git/repos/package/epics
�Once we have a gitlab accessible from our development systems, we can move
the SLAC master git repos to gitlab.
�Github master branch should not be committed to locally, as it’s history is
controlled by the package owner.
�To ensure we preserve locally added features/fixes, we need the git repo to
have access to the latest versions from CVS and svn, and preferably the full
history from each.
�Following common naming and build strategies will facilitate sharing of module
development and new features.

Workflow template for
EPICS modules

�SLAC master repo directory for EPICS modules:
/afs/slac/g/cd/swe/git/repos/packages/epics/modules
�Github repo added as remote github-origin
�Github master branch mapped to github-master
�A pre-receive hook is enabled for the SLAC repo to block pushing
changes to github-master. It can only be updated by pulling from
github-origin.

Initial import from CVS and SVN to Git
�Initial import to a dedicated git repo for each CVS and svn module
�CVS imported using cvs2git script in the cvs2svn package. Based on the existing
cvs2git support in eco_tools w/ addition of an authors file to provide git style author
and email for each commit.
�CVS history exported via eco_tools script to
/afs/slac/g/cd/swe/git/repos/package/epics/modules/from-cvs/$MODULE

�MAIN_TRUNK imported as master branch
�Other branches imported using branch name
�Tags imported as is

�SVN imported using “git svn clone” using a new eco_tools script,
svnModuleToGit.py
�SVN history git repo: /afs/slac/g/cd/swe/git/repos/package/epics/modules/from-
svn/$MODULE

�trunk/pcds/epics/modules/$MODULE/current imported as master
�Other branches imported using branch name
�Tags imported using just the version specific portion. i.e. R2.1-0.1.0

Merging history in git
�The version history from cvs and svn, not
that it’s in git, can be easily fetched to a git
repo like this:

�git fetch cvs-origin master:cvs-history
�git fetch svn-origin master:svn-history

�These new branches aren’t easily merged w/
the github-master, as they share no common
ancestors. Merges create many, many
conflicts which must be resolved. If you view
the repo via a gui such as gitk, the branches
don’t join.
�As git allows rewriting history, I fix this by
using the GitPython package in a new
eco_tools script to recreate a new commit

Example of gitk for sscan
showing lcls-trunk and pcds-trunk

rhel6-x86_64

�We’ll need to support building modules for
different RedHat releases, which often don’t have
compatible builds
�Currently PCDS uses:

�linux-x86_64 # RedHat 5 64 bit builds
�rhel6-x86_64 # RedHat 6 64 bit builds
�rhel7-x86_64 # RedHat 7 64 bit builds

�I propose we move to this naming scheme for
new base releases and the modules/iocs built for
them.
�This can be handled w/ a simple change to
$EPICS_BASE/startup/EpicsHostArch

EPICS_BASE and RELEASE.local

�Moving forward we’ll need to support building
modules for different versions of EPICS_BASE,
ideally w/o needing to create new module release
tags.
�EPICS V4 has -include
$TOP/configure/RELEASE.local in all V4
modules, as do many of the areaDetector
modules. Sometimes CONFIG_SITE.local as
well. These .local files are not included in the
distribution. I propose we follow this model to
allow building our modules w/ only the addition of
a RELEASE.local and possibly a
CONFIG_SITE.local

Deriving relative EPICS_BASE
�$EPICS_SITE_TOP/$BASE_VERSION/RELEASE.local

�BASE_VERSION = R3.15.0.1-0.1.0
�EPICS_MODULES = $EPICS_SITE_TOP/$BASE_VERSION/modules

�Module releases follow the pattern
�$EPICS_SITE_TOP/$BASE_VERSION/modules/sscan/R2.9.1-0.1.0

�$TOP/configure/RELEASE.local
�-include $TOP/../../RELEASE.local
�ASYN_MODULE_VERSION = R4.26-0.1.0
�ASYN = $EPICS_MODULES/asyn/$ASYN_MODULE_VERSION

�$TOP/configure/CONFIG_SITE.local
�Optional, add if needed
�CROSS_COMPILER_TARGET_ARCHS = linuxRT_glibc-x86_64

Release tags

�To facilitate common scripted build support,
such as automatic creation of new module
versions on demand, I propose a common
scheme for release tags.
�All tags will be normalized to the form R2.1.3-
0.2.0

�The first portion, R2.1.3 is based on the
collaboration version number. Other
variants could include R3.14.12.4, or R3.5
�The second portion, 0.2.0, represents local
modifications
�Local releases starting w/ 0 indicate little to
no changes vs collab and are generated

Git Workflow
�Local development is done using the SLAC git
repos as the master upstream repo.
�Feature development is done on topic branches,
which can be kept in the developer’s local repo and
rebased as desired until pushed to the SLAC repo.
�No branches or other work which has been pushed
to the SLAC repo should be rebased.
�No work is pushed to github from our SLAC repo.
Instead, users should create their own github forks
and push topic branches to their github fork where
they can become pull requests.
�New updates from the collaboration are handled by
a local developer who pulls github-master directly
from github.

The End

�Thanks for your attention
�Comments welcomed

