
EED Git Standards and 
Workflow
Patrick Pascual 8/03/2017
(Draft)



2

Quick Intro to Git

• Git is a distributed version control system
• No absolute “upstream” or “downstream” repo (user-defined)
• Git tracks changesets, not individual files
• One feature/bug fix can involve changes across multiple files
• Git and related tools (GitHub, GitLab) make collaborative 

development (especially remote) easier
• Widespread adoption => many APIs and plugins available for a 

wide range of tools (Trello, Jira, etc.)



3

Common CVS operations and Git equivalents

Operation CVS Git
Checking out a repo cvs checkout <module> git clone <path_to_module>

Adding a file cvs add <filename> git add <filename>

Committing changes cvs commit <filename> git commit # local repo

Merging revisions cvs update git pull [--rebase] # same as git
fetch; git merge

*Upstream commits (Git-
specific)

git push # may require resolving of 
conflicts and pull request accepted 
by repo maintainer

Tagging cvs tag <tagname> git tag <tagname> -m 
“<tagcomment>”



4

Collaborative development models

Clone and pull
• Anyone can fork an existing repo and push changes without 

affecting the original source repo
• Changes are pulled from the clone repo into the original source 

repo by generating a pull request
• Maintainers who have push access to the source repo can make 

changes to the pull request
• This model is typically used for open source projects to help new 

contributors get to work



5

Use case: GitHub forks



6

Collaborative development models, cont.

Shared repository model
• Collaborators all have push access to a single shared repo
• Topic branches are generated for changes
• Pull requests are generated when merging the branch into the main 

repo
• Pull requests initiate code review before merge



7

Use case: Operations E-Log

Project owner: Patrick Pascual
Developer: Matt Gibbs

Migrating to GitHub
1. Patrick creates a local copy of the latest source repo in AFS
2. Patrick creates a new empty repo at https://github.com/slaclab/mccelog
3. Patrick sets the remote url of his local copy to point at the GitHub repo 

(git@github.com:slaclab/mccelog.git)
4. Patrick pushes the latest source code from the local repo to the GitHub repo (from an internet 

accessible AFS machine, e.g. lcls-dev3)

https://github.com/slaclab/mccelog
mailto:git@github.com:slaclab/mccelog.git


8

Use case: Operations E-Log, cont.

Deploying changes
1. Matt creates a local clone from https://github.com/slaclab/mccelog
2. Matt creates a topic/feature branch in the local clone
3. Upon completion, Matt creates a remote topic branch on the GitHub repo and pushes his local 

changes up
4. Matt creates a GitHub pull request to merge the new topic branch into the “master” branch
5. Patrick and Matt review the changes in the pull request and iterate as needed
6. Once completed, Patrick accepts the pull request and merges the changes to the GitHub master 

branch
7. Patrick pulls the changes into an AFS “release” copy of the mccelog repo
8. Patrick “deploys” the changes into Operations E-Log production (to be replaced by directly 

deploying application as a Git branch/clone)

https://github.com/slaclab/mccelog


9

GitHub forks, cont.

The GitHub Flow (aka Integration Manager workflow)
(Adapted from https://git-scm.com/book/en/v2/GitHub-Contributing-to-a-Project)

1. Fork the project
2. Create a topic branch
3. Commit changes to topic branch
4. Push branch to GitHub project (from step #1)
5. Open a Pull Request on GitHub
6. Discuss/iterate (additional commits)
7. Project owner merges or declines the Pull Request

https://git-scm.com/book/en/v2/GitHub-Contributing-to-a-Project


10

Transitioning to GitHub

Importing a project from CVS
1. Use eco's cvs2git option (from the --help menu):

'epics-checkout also supports a command called cvs2git "eco cvs2git" that imports a module from 
CVS into a git bare repo.
"eco cvs2git" prompts you for a module name and type and repo location.
It then creates a bare git repo in the location specified; imports the history from CVS and adds a 
default .gitignore.
It comments out the module location in the CVSROOT/modules file; however, it does NOT do a cvs
remove of the software from CVS.’



11

Transitioning to GitHub, cont.

Importing existing code into GitHub
1. Join the slaclab organization on GitHub by sending your GitHub username (which may or may not be the 

same as your SLAC username) and info requesting access to bvan@slac.stanford.edu
Alternatively, SLAC employees also have access to Stanford’s GitLab Enterprise site by logging into 
https://code.stanford.edu with their Stanford credentials.

2. Create a new private repo on https://github.com/slaclab
3. In your working copy, set the remote-url to point at GitHub:

git remote set-url origin git@github.com:slaclab/<reponame>.git
git remote -v
origin git@github.com:slaclab/<reponame>.git (fetch)
origin git@github.com:slaclab/<reponame>.git (push)

4. Do an initial push to the repo on GitHub (must be done from internet-accessible machine, e.g. lcls-dev3):

git push origin master

mailto:bvan@slac.stanford.edu
https://code.stanford.edu/
https://github.com/slaclab


12

Deploying code

Goals
• EED should have a consistent, uniform deployment workflow *regardless* of role (IOC engineer, 

collaborator, operator, accelerator physicist, etc.)
• All external collaboration must conform to the EED software deployment workflow as part of EED 

coding standards and practices
• Corner use cases (e.g., emergency hot fixes) must be accounted for in the EED software 

deployment workflow
• To encourage modern software practices that help increase productivity and code quality (code 

review, etc.)



13

Deploying code, cont.

• Continue to use cram and eco utilities for most applications (EPICS IOCs, etc.)
• (Re-)create staged software deployment (similar to PEPII era):

Development (GitHub, working directory repos)

Test (centralized AFS repos)

Release (“Gold” AFS/production repos)



14

Deploying code, cont.

Future Goals
• Implement continuous integration for builds (Jenkins, etc.)
• Formally integrate EED software deployment with project management/issue tracking (CATER, Jira, 

etc.)
• Completely test-driven development cycle, with CI, unit-testing, and *DOCUMENTATION* for all 

applications (documentation as code)
• Containerized application deployment (Docker, etc.), where applicable


