### Accelerator Physics Issues at LHC & Beyond Part II

Frank Zimmermann, CERN, SL/AP

(A) Past and Future

**CERN** 

(B) The Large Hadron Collider (LHC)

- parameters, magnets, beam-beam effects, preinjectors, ion collisions,...
- A new phenomenon: Electron Cloud (today)

(C) LHC Upgrades, VLHC-I and II (today)

F. Zimmermann

### **Electron Cloud**

Observed with the LHC beam:

1999 SPS, 2000 PS, 2000 PS-SPS transfer line

primary e- generated by photoemission or gas ionization; their number amplifies along a bunch train due to beam-induced multipacting

- (1) Build Up, Saturation, Decay
- (2) Wake Fields and Instabilities
- (3) Heat Load

**CERN** 

(4) LHC Approach



Intensity of 72-bunch LHC beam in SPS vs. time. Batch intensity (top) and bunch intensity for the first 4 bunches and last 4 bunches (where losses are visible after about 5 ms) of the batch (bottom). (Courtesy G. Arduini, 2001).

F. Zimmermann

**CERN** 

### Build Up, Saturation, Decay

 $e^-$  production mechanisms:

**CERN** 

- residual gas ionization; typical rate  $d^2 \lambda_e / (ds \ dt) \approx 5 \times 10^{11} e^- m^{-1} s^{-1}$
- synchrotron radiation and photo-emission; typical rate  $d^2 \lambda_e / (ds \ dt) \approx 5 \times 10^{18} \text{ e}^{-} \text{ m}^{-1} \text{s}^{-1}$
- secondary emission: (1) true secondaries &
   (2) elastically reflected or rediffused; →
   exponential growth

F. Zimmermann

#### ENERGY DISTRIBUTION OF SECONDARY ELECTRON EMITTED BY COPPER



Normalized secondary electron energy distribution for conditioned copper, revealing three components: true secondaries  $(E \ll E_p)$ , elastically scattered  $(E \approx E_p)$  and rediffused (in between). [N. Hilleret, 2001]

F. Zimmermann

CERN



Secondary emission yield for perpendicular incidence vs. primary electron energy with and w/o elastically scattered electrons. Parametrization based on measurements for LHC prototype chamber. [Ian Collins, 2000]

F. Zimmermann

CERN



Schematic of electron-cloud build up in the LHC beam pipe. [Courtesy Francesco Ruggiero]

Proper multipacting:  $n_{\min} \equiv \frac{h_y^2}{N_b r_e L_{\text{sep}}} = 1$ 

**CERN** 

F. Zimmermann

| 1                                    |        | IZDIZD | DC   | apa  | TTA   | DOD    |       |
|--------------------------------------|--------|--------|------|------|-------|--------|-------|
| accelerator                          | PEP-II | KEKB   | PS   | SPS  | LHC   | PSR    | SN    |
| species                              | $e^+$  | $e^+$  | р    | р    | р     | р      | р     |
| population $N_b$ [10 <sup>10</sup> ] | 10     | 3.3    | 10   | 10   | 10    | 5000   | 1000  |
| spacing $L_{\rm sep}$ [m]            | 2.5    | 2.4    | 7.5  | 7.5  | 7.5   | (108)  | (248) |
| bunch length $\sigma_z$ [m]          | 0.013  | 0.004  | 0.3  | 0.3  | 0.077 | 25     | 30    |
| h. beam size $\sigma_x$ [mm]         | 1.4    | 0.42   | 2.4  | 3    | 0.3   | 25     | 0.6   |
| v. beam size $\sigma_y$ [mm]         | 0.2    | 0.06   | 1.3  | 2.3  | 0.3   | 7.5    | 0.6   |
| ch. $\frac{1}{2}$ size $h_x$ [mm]    | 25     | 47     | 70   | 70   | 22    | 50     | 100   |
| ch. $\frac{1}{2}$ size $h_y$ [mm]    | 25     | 47     | 35   | 22.5 | 18    | 50     | 100   |
| circumf. $C$ [km]                    | 2.2    | 3.0    | 0.63 | 6.9  | 27    | 0.09   | 0.22  |
| beta function $\beta$                | 18     | 15     | 15   | 40   | 80    | 5      | 6     |
| parameter $n_{\min}$                 | 1      | 10     | 0.58 | 0.24 | 0.15  | 0.0002 | 0.000 |

F. Zimmermann

CERN

### Simulation of Cloud Build Up (Schematic)



F. Zimmermann

**CERN** 

indicators of  $e^-$  build up

**CERN** 

(1) nonlinear pressure rise → ρ<sub>e</sub>
 (2) pick ups or dedicated e<sup>-</sup> monitors → ρ<sub>e</sub>
 (3) tune shift along the train → ρ<sub>e</sub>
 (4) beam-size blow up along the train
 (5) luminosity drop

F. Zimmermann

example: magnitude of  $e^-$  cloud in the SPS (1) from pressure rise [O. Gröbner] : pressure balance reads  $S_{\text{eff}}P/(k_BT) = Q$ , where  $S_{\text{eff}}$ pumping speed in volume per meter per second,  $Q = \alpha d\dot{\lambda}_e/ds$  total flux of molecules per unit length ( $\alpha$ : desorption yield per electron) and  $P = k_B T N/V$ .

$$\frac{d\lambda_e}{ds} = \frac{T_{rev}}{\alpha k_B T} S_{\text{eff}} P$$

With P = 100 nTorr,  $\alpha \approx 0.1$  and  $S_{\text{eff}} \approx 20 \text{ l s}^{-1} \text{ m}^{-1}$ :

$$\frac{d\lambda_e}{ds} \approx 10^{10} \frac{\text{electrons}}{\text{bunch} - \text{train meter}}$$

F. Zimmermann

**CERN** 

# (2) from damper pick-up measurements[W. Hoefle]:

a few  $10^8$  electrons per bunch passage are deposited on the pick-up; this amounts to  $10^9 - 10^{10}$  per train, or, with an effective pick-up length of about 10 cm,

$$\frac{d\lambda_e}{ds} \approx 10^{10} \frac{\text{electrons}}{\text{bunch} - \text{train meter}}$$

The two estimates are consistent.

**CERN** 

F. Zimmermann



Sum and difference signal on damper pick-up during the passage of an LHC batch in the SPS  $(1\mu s/div)$ . (Courtesy W. Hofle, 2001).

F. Zimmermann

**CERN** 



Simulated electron-cloud build up for an SPS dipole chamber, with and without elastic electron reflection. Saturation at  $\lambda_{e,\text{sat}} \sim N_b/L_{\text{sep}} \approx 1.3 \times 10^{10} \text{ m}^{-1} \rightarrow \text{`neutralization' density}$  $\rho_{\text{sat}} \approx N_b/(\pi h_x h_y L_{\text{sep}}) \approx 3 \times 10^{12} \text{ m}^{-3}.$ 

F. Zimmermann

CERN



Fourier spectrum of the vertical oscillations of the LHC-beam bunch centroids as a function of bunch number

F. Zimmermann

CERN

### Wake Fields and Instability due to Electron Cloud

• Multi-Bunch Instability

**CERN** 

- Coherent and Incoherent Tune Shift, etc.
- Single-Bunch Instability
   strong head-tail (TMCI), regular head-tail,
   transverse & longitudinal wakes,
   potential-well distortion

F. Zimmermann



Snapshots of the horizontal and vertical electron phase space (top) and their projections onto the position axes (bottom). (Courtesy G. Rumolo, 2001).

F. Zimmermann

CERN

# adiabatic trapping (B. Richter, SLAC, March 2000)

WKB approximation  $\rightarrow$  adiabaticity condition

$$A \equiv \sigma_z \omega_{e,y} \sqrt{8e} / c \gg 1$$

where e = 2.718...

**CERN** 

 $A \approx 10$  for KEKB, PEP-II, PS, SPS, LHC!

F. Zimmermann

### Single-Bunch Instability



Simulated bunch shape after 0, 250 and 500 turns (centroid and rms beam size shown) in the CERN SPS with an e<sup>-</sup> cloud density of  $\rho_e = 10^{12}$  m<sup>-3</sup>, without (left) and with (right) proton space charge (Courtesy G. Rumolo).

F. Zimmermann

CERN



Beam size evolution for an SPS bunch interacting with an electron cloud as predicted by different simulation approaches. (Courtesy G Rimolo, 2001).

F. Zimmermann

**CERN** 



Wake force  $W_1$  induced by an electron cloud; each line represents a different cloud size. Left: KEKB; right: SPS. [K. Ohmi et al., HEACC'01]. (Courtesy K. Ohmi, 2001).

F. Zimmermann

CERN



Wake force in V/m/C computed by displacing slice 1 and 40 (out of 100) of a Gaussian bunch (Courtesy G. Rumolo, 2001).

F. Zimmermann

CERN



TMCI calculation: betatron side band frequencies  $(\omega - \omega_{\beta})/\omega_s$  vs.  $cR_s/Q \propto \rho_e$  for KEKB LER. [K. Ohmi et al., HEACC'01]. (Courtesy K. Ohmi, 2001).

F. Zimmermann

**CERN** 

### estimated TMCI thresholds

| accelerator                                     | PEP-II | KEKB | PS   | SPS  | LHC | PSR   | SNS   |
|-------------------------------------------------|--------|------|------|------|-----|-------|-------|
| $e^-$ osc./bunch                                | 0.8    | 1.0  | 1    | 0.75 | 3   | 34    | 970   |
| $n_{ m osc} \equiv \omega_e \sigma_z / (\pi c)$ |        |      |      |      |     |       |       |
| TMCI threshold                                  | 1      | 0.5  | 5    | 0.25 | 3   | (0.6) | (0.5) |
| $ ho_e \ [10^{12} \ { m m}^{-3}]$               |        |      |      |      |     |       |       |
| density ratio                                   | 19     | 4    | 0.35 | 11   | 4   | (92)  | (27)  |
| $ ho_{e,\mathrm{sat}}/ ho_{e,\mathrm{thresh}}$  |        |      |      |      |     |       |       |

F. Zimmermann

CERN



Detail of the sum (top) and delta (bottom) signals at the SPS provided by the wide-band transverse pick-up in the vertical plane. Head-tail motion inside the bunches is visible. (Courtesy G. Arduini, 2001). Wake period determined from measured head-tail motion:  $\lambda_{e^-,\text{wake}} \approx \sigma_z$ ! (K. Cornelis).

F. Zimmermann

CERN



y<sub>centroid</sub> (mm)



Simulated centroid motion and vertical beam size with zero and positive chromaticity in the SPS ( $\xi_y = 0.2$ ). Machine broadband impedance is also included. (Courtesy G. Rumolo, 2001).

F. Zimmermann

CERN

#### Electron-Cloud Heat Load



Energy distribution of  $e^{-s}$  incident on LHC chamber wall for a chamber radius r = 158 mm (left) and 29 mm (right) (G. Rumolo).

F. Zimmermann

**CERN** 



Snapshot of transverse e<sup>-</sup> distribution in an LHC dipole chamber (F.Z., 1997). Parameters:  $\delta_{\text{max}} = 1.3$ ,  $\epsilon_{\text{max}} = 450$  eV, R = 0.1, and  $Y^* = 0.025$ .

F. Zimmermann

CERN



Average arc heat load and cooling capacity as a function of bunch population  $N_b$ , for various  $\delta_{\text{max}}$ . Other parameters are  $\epsilon_{\text{max}} = 240$ eV, R = 5%, Y = 5%, and elastic electron reflection is included.

F. Zimmermann

CERN

### LHC Recipe

- in arc dipoles: use sawtooth chamber to reduce photon reflections
- coat all warm sections with getter material TiZr (low secondary emission yield)
- rely on surface scrubbing during the commissioning to reduce the maximum secondary emission yield to a value of 1.1

**CERN** 

00101/05-490 Zahnhöhe 33.6 dump HGBN-TO Zahnhöhe 38.6 µm The second Material ALCON ELECTRA Algemenes. CERN - Profilerungsversuch Stahl - Cu Band Reflectionswinkel 100. Albinitial Inkel 99.07 500 200 µm 200 µm 906P0471 200 Probe vom 17.06.98 Links 200 Probe vom 17.05,99 Links 900P0400 00 Probe vom 17.08.99 Links Officered State P00361 Metallographie 12:06.1999

Sawtooth chamber protoype; the sawtooth reduces the photon reflectivity R to 1.3% [co-laminated Cu:  $R \approx 80\%$ ]. (Ian Collins).

F. Zimmermann

CERN



Comparison of dose dependence of the Secondary Emission Yield as maeasured at CERN and SLAC (N. Hilleret et al., 2001).

F. Zimmermann

CERN

Newly Installed SPS  $e^-$  Cloud Detectors

- Pick-ups for e<sup>-</sup> characteristics
  - e<sup>-</sup> cloud build up, e<sup>-</sup> energy distribution, triggering on the batch
- Behavior of e<sup>-</sup> in a dipole magnetic field
  - 'strip detector'
  - 'triangle detector'

CERN

- Scrubbing effect by in-situ measurement of secondary emission yield
- Ion detectors to exclude ion-stimulated desorption
- WAM\_PAC Cu calorimeter to directly measure heat load from  $e^{-1}$  cloud

F. Zimmermann

### Cu Calorimeter



SSWG 17/7/2001

## WAMPAC in BA4



SSWG 17/7/2001




# **Triangle detector**



SPS Machine as a vacuum test bench for the electron cloud studies with LHC type beams

SSWG prepared by J.M. JIMENEZ CERN Division LHC - Vacuum Group



F. Zimmermann

**CERN** 



# **Strip detector**



SSWG prepared by J.M. JIMENEZ CERN Division LHC - Vacuum Group



Stripe signal for 8.5 mm orbit bump with 2 s duration. The stripe clearly follows the beam. (G. Arduini, et al., 2001).

F. Zimmermann

CERN



Electron-stripe intensity in a 2-T dipole field vs. bunch population. Threshold at  $2 \times 10^{10}$  protons per bunch.

F. Zimmermann

CERN



e<sup>-</sup> cloud behaviour in a dipole magnetic field - Magnetic field passing through 0 Gauss

e<sup>-</sup> stripe vs. magnetic field; signal disappears for  $|B| \leq 15$  G.

F. Zimmermann

CERN



At higher intensity  $N_b \approx 6 \times 10^{10}$  two stripes are observed! Spacing consistent with simulation.

F. Zimmermann

CERN

# (C) Beyond LHC: LHC-II and VLHC

- higher luminosity and/or energy
- more bunches?
- crossing angle & crabbing
- magnets (stronger and/or cheaper)
- synchrotron radiation
- emittance control
- $\bullet$  collective effects & electron cloud
- IP debris, quench limits, & safe beam abort
- quasi-continuous beams?

**CERN** 

F. Zimmermann

#### Luminosity for Bunched Beams

$$L = \frac{N_b^2 f_{\rm rep} H_D}{4\pi \sigma_x \sigma_y} \ \eta_L$$

For a horizontal crossing,  $\eta_L$  is

CERN

$$\eta_L = \frac{2}{\sigma_z \sqrt{\pi}} \int_0^\infty \frac{\exp\left(-\left(\frac{z}{\sigma_z}\right)^2 \left\{1 + \frac{\theta_c^2}{4\theta_d^2} \left[\frac{1}{1 + (z/\beta_x^*)^2}\right]^2\right\}\right)}{\sqrt{(1 + (z/\beta_x^*)^2) (1 + (z/\beta_y^*)^2)}}$$

where  $\theta_d = \sigma_x / \sigma_z$ ,  $\theta_c$  the full crossing angle.

F. Zimmermann

#### Beam-Beam Tune Shifts for Bunched Beams

Assuming  $\beta_x^* \approx \beta_y^*$  and  $\epsilon_x \approx \epsilon_y$  the beam-beam tune shifts for a particle at the center of the bunch are

$$\begin{split} \Delta Q_x &= -\frac{N_b r_p}{2\pi\gamma} \frac{1}{\sqrt{2\pi\sigma_z}} \int_{\infty}^{\infty} \left(\beta^* + \frac{s^2}{\beta^*}\right) \left[ \left(\frac{1}{(\beta^* + s^2/\beta^*)\epsilon} + \frac{1}{\theta_c^2 s^2}\right) \right. \\ &\left. \exp\left(-\frac{\theta_c^2 s^2}{2\left(\beta^* + s^2/\beta^*\right)\epsilon}\right) - \frac{1}{\theta_c^2 s^2} \right] \exp\left(-\frac{s^2}{2\sigma_z^2}\right) \, ds \\ \Delta Q_y &= -\frac{N_b r_p}{2\pi\gamma} \frac{1}{\sqrt{2\pi\sigma_z}} \int_{\infty}^{\infty} \left(\beta^* + \frac{s^2}{\beta^*}\right) \left[\frac{1}{\theta_c^2 s^2} \left(1 - \frac{\theta_c^2 s^2}{2(\beta^* + s^2/\beta^*)\epsilon}\right)\right) \right] \exp\left(-\frac{s^2}{2\sigma_z^2}\right) \, ds \,, \end{split}$$

F. Zimmermann

**CERN** 



Luminosity (left) and total beam-beam tune shift (right) vs. crossing angle; parameters:  $N_b = 1.7 \times 10^{11}$ ,  $\beta^* = 0.25$  m,  $\sigma_z = 7.7$  cm,  $n_b = 2800$ ,  $\gamma \epsilon_{\perp} = 3.75$  µm.

F. Zimmermann

CERN



Applying a deflection of opposite sign to the head and tail of each bunch, luminosity loiss due to the crossing angle is avoided.

F. Zimmermann

**CERN** 

## Crab Cavities cont'd

Distance between last quadrupole and IP about 20 m. Outer quadrupole radius 25 cm. Two separate final quadrupoles require  $\theta_c \geq 25$  mrad. Transverse crab deflecting voltage:

$$V_{\perp} = \frac{cE \tan \theta_x/2}{e\omega_{rf} \sqrt{\beta_x^* \beta_{\rm crab}}}$$

| variable              | symbol      | KEKB HER              | LHC                  |
|-----------------------|-------------|-----------------------|----------------------|
| beam energy           | E           | $8.0 \mathrm{GeV}$    | $7 { m TeV}$         |
| RF frequency          | $f_{ m rf}$ | $508.9 \mathrm{~MHz}$ | $1.3~\mathrm{GHz}$   |
| half crossing angle   | $	heta_c/2$ | 11 mrad               | $12.5 \mathrm{mrad}$ |
| IP beta function      | $eta_x^*$   | $0.33 \mathrm{\ m}$   | $0.25 \mathrm{~m}$   |
| cavity beta function  | $eta_x$     | 100 m                 | 2000 m               |
| required kick voltage | $V_{\perp}$ | $1.44 \mathrm{MV}$    | $144 \mathrm{MV}$    |

#### CERN -

F. Zimmermann



#### phase diagram ofNb<sub>3</sub>Sn





 $\epsilon = 0$  after cool-down to 4.2 K

## Stronger Magnets? $Nb_3Sn$ instead of NbTi

| year | group       | type               | field/gradient    |
|------|-------------|--------------------|-------------------|
| 1982 | CERN        | quad               | $71 \mathrm{T/m}$ |
| 1983 | CERN/Saclay | dipole             | $5.3~\mathrm{T}$  |
| 1985 | LBL         | dipole D10         | 8 T               |
| 1986 | KEK         | dipole             | $4.5 \mathrm{~T}$ |
| 1988 | BNL         | dipole             | $7.6 \mathrm{~T}$ |
| 1991 | CERN-ELIN   | dipole             | $9.5~\mathrm{T}$  |
| 1995 | LBNL        | hybrid dipole D19H | $8.5~\mathrm{T}$  |
| 1995 | UT-CERN     | dipole MSUT        | 11.2 T            |
| 1996 | LBNL        | dipole D20         | 13.3 T            |
| 2001 | LBNL        | common coil dipole | 14.4 T            |

#### CERN

F. Zimmermann

# LHC-II Parameters

| parameter                                  | LHC    | LHC-II |
|--------------------------------------------|--------|--------|
| beam energy $E$ [TeV]                      | 7      | 14     |
| dipole field $B$ [T]                       | 8.39   | 16.8   |
| total energy/beam $[MJ]$                   | 334    | 1130   |
| number of bunches $n_b$                    | 2800   | 5600   |
| bunch population $N_b$ [10 <sup>11</sup> ] | 1.05   | 1.05   |
| rms IP beam size $\sigma_{x,y}^*$ [µm]     | 15.9   | 7.4    |
| rms IP div. $\sigma^*_{x',y'}$ [µrad]      | 31.7   | 34     |
| IP beta $\beta_{x,y}^*$ [m]                | 0.5    | 0.22   |
| beam-beam tune shift / IP $\xi_{x,y}$      | 0.0034 | 0.005  |
| crossing angle $\theta_c \ [\mu rad]$      | 300    | 300    |
| rms bunch length $\sigma_z$ [cm]           | 7.7    | 4.0    |

F. Zimmermann

CERN

## LHC-II Parameters (cont'd)

| bunch spacing $L_{\rm sep}$ [m]                             | 7.48           | 3.74                   |
|-------------------------------------------------------------|----------------|------------------------|
| SR power $P_{\rm SR}$ [kW]                                  | 3.6            | 114                    |
| SR dipole heat load $dP/ds$ [W/m]                           | 0.2            | 6.6                    |
| rms transv. emittance $\gamma \epsilon_{x,y}$ [µm]          | 3.75           | $3.75 \rightarrow 1.0$ |
| eq. horiz. emittance $\gamma \epsilon_x^{eq}$ [µm]          | $2.03^{\star}$ | $1.07^{\star}$         |
| longit. emittance $\epsilon_L$ ( $\sigma$ ) [eVs]           | 0.2            | $0.15^{\star}$         |
| damp. time $\tau_{x,\text{SR}}$ [hr]                        | 52             | 6.5                    |
| IBS growth time $\tau_{x,\text{IBS}}$ [hr]                  | 142            | 345 (in.)              |
| events per crossing                                         | 18             | 90                     |
| peak luminosity $L [10^{34} \text{ cm}^{-2} \text{s}^{-1}]$ | 1.0            | 10.                    |
| lum. lifetime $\tau$ [hr]                                   | 10             | 3.2                    |

F. Zimmermann

CERN

#### Emittance Evolution

synchrotron radiation amplitude damping time

$$\tau_z J_z = \left(\frac{3(m_p c^2)^3}{e^2 c^3 r_p Z^2}\right) \frac{1}{B^2 E} \left(\frac{C}{2\pi\rho}\right) \approx \frac{16644 \text{hr}}{E[\text{TeV}]B[\text{T}]^2} \left(\frac{C}{2\pi\rho}\right) \frac{A^4}{Z^4}$$

damping decrement (for 2 IPs)

CERN

$$\delta = \frac{T_0}{n_{\rm IP}\tau_{x,y}} \approx 5.7 \times 10^{-13} \ E[{\rm TeV}]^2 B[{\rm T}] \frac{Z^3}{A^4}$$

does this affect the maximum beam-beam tune shift? maximum  $\xi$ : measurements and simulations fitted by  $\xi_{\rm max} \propto 0.009 + 0.021 \ (\delta/10^{-4})^{0.5}$ 

[E. Keil & R. Talman, 1983; S. Peggs, 1999; R. Assmann et al., 2000]

F. Zimmermann



Tune shift parameter vs. damping decrement. [LEP data courtesy of R. Assmann; not beam-beam limited]

F. Zimmermann

CERN

more important consequence of synchrotron radiation: shrinkage of emittance during the store situation different from  $e^-$  storage rings;  $\tau_{SR} \sim$ hours SR equilibrium emittance:

$$\epsilon_{x,N}^{\mathrm{SR}} \approx \frac{55}{32\sqrt{3}} \frac{\dot{\lambda}_A}{J_x} \left(\frac{\gamma^3}{Q_\beta^3}\right) \left(\frac{C}{2\pi\rho}\right)^3$$

for LHC-II and HF VLHC 2–3 orders of magnitude below desired design emittance!

 $\rightarrow$  large beam-beam tune shifts, halo, background,...? (J. Gareyte)

F. Zimmermann

**CERN** 

equilibrium emittance determined by balance of radiation damping and **intrabeam scattering** 

$$\frac{1}{\tau_{\mathbf{x},\text{IBS}}} \approx \frac{\mathbf{cr_p^2 N_b L_c}}{16 \mathbf{Q} \epsilon_{\mathbf{x},\mathbf{N}}^2 \sqrt{\kappa} \sqrt{\kappa + 1} \gamma \sigma_{\mathbf{z}} \sigma_{\delta}} \quad [\text{J. Wei}]$$

where  $L_c \approx 20$ . Asymptotically, for  $\gamma \gg Q_\beta$ :  $1/\tau_{\delta,\text{IBS}} \approx 1/\tau_{x,\text{IBS}}$  and  $\sigma_{\delta} \approx Q_{\beta}^{3/2} \sqrt{\epsilon_x/\rho}$ IBS equilibrium emittance:

$$\epsilon_{\mathbf{x},\mathbf{N}}^{\mathrm{IBS}} = \frac{\rho^{5/6} \mathbf{N}_{\mathbf{b}}^{1/3}}{\mathbf{Q}_{\beta} \gamma^{7/6}} \left( \frac{\mathbf{Z} \mathbf{f}_{\mathrm{rf}} \mathbf{e} \mathbf{V}_{\mathrm{rf}}}{\mathbf{c} \mathbf{E} \kappa (\kappa + 1)} \right)^{1/6} \left( \frac{\mathbf{C}}{2\pi \rho} \right)^{1/6} \left( \frac{\mathbf{3} \mathbf{r}_{\mathbf{p}} \mathbf{L}_{\mathbf{c}}}{\mathbf{16}} \right)^{1/3}$$
  
$$f_{\mathrm{rf}}: \text{ rf frequency; } V_{\mathrm{rf}}: \text{ total rf voltage}$$

 $\epsilon_y = \kappa \epsilon_x$  due to coupling and spurious D; assume  $\kappa = 1$  for LHC-II

CERN

F. Zimmermann



Evolution of transverse emittance vs. time in LHC-II.

F. Zimmermann

CERN



Evolution of **beam current** during a store in LHC-II.

F. Zimmermann

CERN



Evolution of **beam-beam tune shift** vs. time in LHC-II.

F. Zimmermann

**CERN** 



Evolution of **luminosity** during a store in LHC-II.

F. Zimmermann

CERN

# Collective Effects

 loss of Landau damping for higher-order longitudinal modes (F. Ruggiero, J. Rogers):

$$\sigma_s \ge \frac{C}{2\pi} \left[ \frac{\pi^3 N_b f_{\text{rev}} e}{6 h_{\text{rf}}^3 V_{\text{rf}}} \operatorname{Im} \left( \frac{Z_L}{n} \right)_{\text{eff}} \right]^{1/5}$$

- longitudinal microwave instability
- transverse coupled-bunch resistive-wall instability
- electron cloud

**CERN** 

F. Zimmermann

#### simulation with SR damping, IBS, particle consumption



Evolution of **rms bunch length** during a store in LHC-II, and instability thresholds for  $\text{Im}(Z_L/n)_{\text{eff}} \approx 0.1 \Omega$  (LHC).

F. Zimmermann

CERN

#### simulation with SR damping, IBS, particle consumption



Evolution of **rms bunch length** during a store in LHC-II, when after 3 hours **noise** maintains  $\epsilon_L \ge 0.104$  eVs.

F. Zimmermann

CERN

#### Total Beam Current

synchrotron radiation power

**CERN** 

$$P_{\rm SR} = \frac{C_{\gamma} E^4 N_b n_b c}{C \rho} = U_0 f_{\rm rev} n_b N_b$$

using L and  $\xi$  this can be rewritten as

$$P_{\rm SR} = \left(\frac{8\pi r_p^{3/2}}{\sqrt{3cE_A}}\right) \frac{\kappa}{1+\kappa^2} \frac{E^{3/2}L\beta_x^*}{\xi\sqrt{J_z\tau_z}} \sqrt{\frac{C}{2\pi\rho}}$$

scaling:

 $B = \text{constant} \rightarrow J_z \tau_z \propto 1/E \text{ and } P_{\text{SR}} \propto E^2 L$  $B \propto E^{1/2} \rightarrow J_z \tau_z \propto 1/E^2 \text{ and } P_{\text{SR}} \propto E^{5/2} L.$ 

F. Zimmermann



F. Zimmermann

**CERN** 



Wall plug power density vs. SR load for different solutions: cold BS, warm BS/shield & photon stop (P. Bauer et al.).

F. Zimmermann

CERN



Sketch of the proposed VLHC-II photon stop (P. Bauer et al., PAC2001).

F. Zimmermann

CERN

### Electron Cloud Heat Load for Shorter Bunch Spacing (LHC Luminosity Upgrade)



Average arc heat load as a function of bunch population for bunch spacings of 12.5 ns, 15 ns, and 25 ns, and a maximum secondary emission yield  $\delta_{\text{max}} = 1.1$ . Elastically reflected electrons are included.

CERN

F. Zimmermann



Average arc heat load as a function of bunch spacing, for  $\delta_{\text{max}} = 1.1$ and various bunch populations.

F. Zimmermann

CERN



Fermilab-TM-2149 June 11, 2001

# www.vlhc.org

### Design Study for a Staged Very Large Hadron Collider



Snowmass



#### **Stage 2 VLHC Tunnel**




### Transmission Line Magnet



- ✤ 2-in-1 warm iron
- Superferric: 2T bend field
- 100kA Transmission Line
- alternating gradient (no quadrupoles needed)
- ✤ 65m Length
- Self-contained including Cryogenic System and Electronics Cabling
- Warm Vacuum System

Snowmass

# Operating Margin &rified





### 17 meter 100 kA test loop

Seven Designs Tested -0.8Kmargin at design current of 87.5 kA -25kA margin at nominal peak temperature of 6.0 K (similar margins for three variants used in Design Report) Very Large Hadron Collider

#### VLHC DESIGN STUDY SITE LAYOUT



### 'Continous Beams' or Super Bunches

- ISR was extremely successful
- continuous beams abandoned due to scarcity of antiprotons, no longer a problem
- no PACMAN bunches!
- no electron cloud!
- use induction acceleration modules, 25 kV/m, to generate long bunches bounded by barrier buckets (K. Takayama)
- stochastic cooling
- higher current
- route to high luminosity

**CERN** 

exciting new development

F. Zimmermann



Schematic of Super Bunches in a High-Luminosity Collider (K. Takayama et al.)

F. Zimmermann

CERN

### Continuous Beams – Luminosity

$$L = \frac{c\lambda_1\lambda_2 l_{\text{det}}}{4\pi\sigma_0^2} \ K\left(\frac{l}{2\beta^*}, \frac{\beta^*\theta_c}{\sigma_0}\right)$$

where

$$K(\xi,\eta) = \frac{1}{\xi} \int_{-\xi}^{\xi} \frac{1}{1+u^2} \exp\left[-\frac{\eta^2}{4} \frac{u^2}{1+u^2}\right] du$$

The integral  $K(\xi, \eta)$  is defined such that  $K(\xi, \eta) \to 2$  for  $\xi, \eta \to 0$ (E. Keil, et al., 1972/73).

F. Zimmermann

CERN

### Continuous Beams – Tune Shift

For horizontal crossing, the beam-beam tune shifts are

$$\Delta Q_x = \frac{2\lambda r_p l}{4\pi\gamma\epsilon_{\perp}} I_x \left(\frac{l}{2\beta^*}, \frac{\beta^*\theta_c}{\sigma_0}\right)$$
$$\Delta Q_y = \frac{2\lambda r_p l}{4\pi\gamma\epsilon_{\perp}} I_y \left(\frac{l}{2\beta^*}, \frac{\beta^*\theta_c}{\sigma_0}\right)$$

where

$$I_{x}(\xi,\eta) = \frac{1}{\xi\eta^{2}} \int_{-\xi}^{+\xi} (1+u^{2}) \left[ \left( u^{-2} + \frac{\eta^{2}}{1+u^{2}} \right) \exp\left( -\frac{\eta^{2}}{2} \frac{u^{2}}{1+u^{2}} \right) -u^{-2} \right] du$$
  
$$I_{y}(\xi,\eta) = \frac{1}{\xi\eta^{2}} \int_{-\xi}^{+\xi} (1+u^{-2}) \left[ 1 - \exp\left( -\frac{\eta^{2}}{2} \frac{u^{2}}{1+u^{2}} \right) \right] du$$

and the interaction happens between -l/2 and l/2. The integrals  $I_{x,y}(\xi,\eta)$  are defined such that  $I_{x,y}(\xi,\eta) \to 1$  for  $\eta \to 0$  and all  $\xi$ .

F. Zimmermann

**CERN** 



Luminosity (left) and beam-beam tune shifts (right) as a function of crossing angle, for a continuous beam with a line density  $\lambda = 8.8 \times 10^{11} \text{ m}^{-1}$  (40 A current),  $\beta^* = 0.25 \text{ m}$ ,  $l_{\text{det}} = 1 \text{ m}$ , l = 20 m, and  $\gamma \epsilon_{\perp} = 3.75 \ \mu \text{m}$ .

F. Zimmermann

CERN

Optimization of Continuous Beam Parameters – Length & Number & Charge of Super-Bunches? Ongoing Study at CERN

- maximum luminosity
- maximum beam-beam tune shift
- acceptable heat load
- timing constraints by (induction) rf system
- injectors and filling time
- beam abort system

**CERN** 

F. Zimmermann

## (D) Conclusions

- hadron colliders have performed exceedingly well in the past
- the LHC will break new territory:
  - highest energy (14 TeV) and highest luminosity ( $10^{35}$  cm<sup>-2</sup>s<sup>-1</sup>) ever
  - long-range collisions
  - strong-strong collisions
  - electron cloud

CERN

F. Zimmermann

- radiation damping stronger than IBS

- beyond LHC: LHC upgrades and various stages of VLHC, Eloisatron, ...
  - higher fields or larger circumference ( $\rightarrow$  peculiar collective effects)
  - more synchrotron radiation; possibly more electron cloud
  - new exciting development:
    'quasi-continuous beams' (closing the circle to the ISR)

F. Zimmermann

**CERN** 

### Thanks

G. Arduini, R. Assmann, P. Bagley, P. Bauer, F. Bordry,
L. Bottura, D. Brandt, O. Brüning, I. Collins, K. Cornelis,
A. Faus-Golfe, W. Fischer, J. Gareyte, O. Gröbner,
H. Grote, G. Guignard, W. Herr, J.B. Jeanneret,
J.M. Jimenez, C. Johnstone, J. Jowett, E. Keil,
J.-P. Koutchouk, K.-H. Mess, K. Ohmi, S. Peggs, F. Pilat,
L. Rossi, F. Ruggiero, G. Rumolo, F. Schmidt,
R. Schmidt, E. Shaposhnikova, V. Shiltsev, M. Syphers,
T. Taylor, R. Thomas, A. Verdier, L. Vos, J. Wei,...

CERN

### Web addresses

- LHC http://lhc.web.cern.ch/lhc/
- LHC beam-beam effects http://wwwslap.cern.ch/collective/zwe/lhcbb/Welcome.html
- LHC electron cloud http://wwwslap.cern.ch/collective/electroncloud/electron-cloud.html
- Accelerator Physics Group of the CERN SL (SPC+LHC) Division http://wwwslap.cern.ch/
- VLHC http://vlhc.org/

**CERN** 

F. Zimmermann

### Extended Parameter Set for pp or $p\bar{p}$ Colliders x

| acc.                                                                        | $\mathrm{Sp} \bar{\mathrm{p}} \mathrm{S}$ | TeV2a                | LHC  | LHC-II        | VLHC-I | VLHC-II                |
|-----------------------------------------------------------------------------|-------------------------------------------|----------------------|------|---------------|--------|------------------------|
| $E [{\rm TeV}]$                                                             | 0.32                                      | 0.98                 | 7    | 14            | 20     | 87.5                   |
| B [T]                                                                       | 1.4                                       | 4.34                 | 8.4  | 16.8          | 2      | 9.8                    |
| $\frac{\text{energy}}{\text{beam}}$ [MJ]                                    | 0.05                                      | 1                    | 334  | 1320          | 3328   | 4200                   |
| $C \; [\mathrm{km}]$                                                        | 6.9                                       | 6.28                 | 26.7 | 26.7          | 233    | 233                    |
| $n_b$                                                                       | 6                                         | 36                   | 2800 | 5600          | 40000  | 40000                  |
| $N_b \ [10^{11}]$                                                           | 1.7~(p)                                   | 2.7~(p)              | 1.05 | 1.05          | 0.26   | 0.075                  |
|                                                                             | $0.8~(ar{p})$                             | $\sim 1.0~(\bar{p})$ |      |               |        |                        |
| $\hat{L} \left[ \frac{1}{10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}} \right]$ | 0.0006                                    | $\sim 0.02$          | 1.00 | 10.           | 1.0    | 2.0                    |
| $\sigma^*_{x,y}~[\mathrm{\mu m}]$                                           | 80,  40                                   | 32                   | 15.9 | $7.4^{\star}$ | 4.6    | $3.4 \rightarrow 0.79$ |
| $\sigma^*_{x',y'}$ [µrad]                                                   | 136, 272                                  | 91                   | 31.7 | $34^{\star}$  | 15     | $5 \rightarrow 1$      |

### CERN

F. Zimmermann

| acc.                                   | $\mathrm{Sp}\bar{\mathrm{p}}\mathrm{S}$ | TeV2a         | LHC    | LHC-II                          | VLHC-I | VLHC-                |
|----------------------------------------|-----------------------------------------|---------------|--------|---------------------------------|--------|----------------------|
| $\beta^*_{x,y}$ [m]                    | 0.6,0.15                                | 0.35          | 0.5    | 0.22                            | 0.3    | 0.71                 |
| no. of IPs                             | 3                                       | 2             | 2(4)   | 2(4)                            | 2      | 2                    |
| bb ts./IP $\xi_{x,y}$                  | 0.005                                   | 0.01          | 0.0034 | $0.003 {\leftrightarrow} 0.005$ | 0.002  | $\rightarrow 0.008$  |
| $\theta_c \; [\mu \mathrm{rad}]$       | 0                                       | 0             | 300    | 300                             | 153    | 10                   |
| $\sigma_z [{ m cm}]$                   | 30                                      | 37            | 7.7    | 4.0                             | 3.0    | $\rightarrow 1.5$    |
| $L_{\rm sep}$ [m]                      | 1150                                    | 119           | 7.48   | 3.74                            | 5.645  | 5.645                |
| $P_{\rm SR}$ [kW]                      |                                         | $< 10^{-3}$   | 3.6    | 114                             | 7      | 1095                 |
| dP/ds [W/m]                            |                                         | $\ll 10^{-3}$ | 0.2    | 6.6                             | 0.03   | 4.7                  |
| $	au_{\mathrm{IBS}} \ [\mathrm{hr}]$   | 10                                      | 50(?)         | 142    | 345 (in.)                       | 400    | $4000 \rightarrow 1$ |
| $	au_{y,\mathrm{SR}} \; [\mathrm{hr}]$ |                                         | 1200          | 52     | 6.5                             | 200    | 2                    |
| d.d./IP $\delta~[10^{-10}]$            |                                         | 0.025         | 2.5    | 20                              | 5      | 400                  |
| events/cross.                          |                                         | $\sim 6$      | 18     | 90                              | 21     | 54                   |

## F. Zimmermann

| acc.                                   | $\mathrm{Sp}\bar{\mathrm{p}}\mathrm{S}$ | TeV2a             | LHC  | LHC-II                 | VLHC-I | VLHC-II                |
|----------------------------------------|-----------------------------------------|-------------------|------|------------------------|--------|------------------------|
| lum. lifet. $\tau_L$ [hr]              | 9                                       | 9                 | 10   | 3.2                    | 24     | 8                      |
| tune $Q_{eta}$                         | 26                                      | $\sim 20$         | 63   | 63                     | 220    | 220                    |
| $\gamma\epsilon_{x,y}~[\mu{ m m}]$     | 3.75                                    | $\sim 3$          | 3.75 | $3.75 \rightarrow 1.0$ | 1.5    | $1.6 \rightarrow 0.04$ |
| $\gamma \epsilon_x^{eq}  [\mu { m m}]$ |                                         | $\sim 10^{\star}$ | 2.03 | 1.07                   | 1.0    | 0.06                   |
| $\epsilon_L (\sigma) [eVs]$            | 0.11                                    | 0.11              | 0.2  | $\rightarrow 0.15$     | 0.4    | $0.4 \rightarrow 0.1$  |

F. Zimmermann

CERN