New Particle Searches at HERA

Bruce Straub Yale University

Representing the

- Leptoquarks
- Contact Interactions
- Lepton Flavor Violation
- *R*-Parity Violating SUSY
- Isolated Leptons
- Search for $ep \rightarrow tX$
- Excited Fermions

Data Sets

$$E_e = 27.5 \,\mathrm{GeV}$$

$$E_p = \begin{cases} 820 \,\text{GeV} & \text{until 1997} \\ 920 \,\text{GeV} & \text{from 1998} \end{cases}$$

run period	e charge	\sqrt{s}	$\int dt {\cal L}$	
			H1 [°]	ZEUS
1994-1997	e^+	300 GeV	37 pb^{-1}	48 pb $^{-1}$
1998-1999	e^-	318 GeV	14 pb $^{-1}$	17 pb $^{-1}$
1999-2000	e^+	318 GeV	65 pb^{-1}	66 pb $^{-1}$

ZEUS Detector

Uranium-Scintillator Calorimeter 6000 Cells, each read out by 2 PMTs $\sigma_{\theta_e} = 5 \text{ mrad}$ σ/\sqrt{E} (e) = 18 % σ/\sqrt{E} (had) = 35 %

H1 Detector

Liquid Argon Calorimeter 44000 Cells $\sigma_{\theta_e} = 2-5 \text{ mrad}$ σ/\sqrt{E} (e) = 12 % σ/\sqrt{E} (had) = 50 %

- Color triplet boson with spin zero or one
- Dimensionless chiral coupling(s) λ_L or λ_R are $SU(3) \times SU(2) \times U(1)$ invariant.
- For $M_{LQ} < \sqrt{s}$, LQ is produced as *s*-channel resonance at $x = M_{LQ}^2/s$.
- Partial width $\sim \lambda^2 / M_{LQ}$.
- Scalar LQs decay isotropically \rightarrow uniform in $\cos \theta^*, y$
- Vector LQs decay $\sim (1 + \cos \theta^*)^2 \sim (1 y)^2$
- F = 2 (couples to e^-q or $e^+\bar{q}$): 4 scalars: $S_0^L, S_0^R, \tilde{S}_0^R, S_1^L$ 3 vectors: $V_{1/2}^L, V_{1/2}^R, \tilde{V}_{1/2}^L$
- F = 0 (couples to e^+q or $e^-\bar{q}$): 3 scalars: $S_{1/2}^L, S_{1/2}^R, \tilde{S}_{1/2}^L$ 4 vectors: $V_0^L, V_0^R, \tilde{V}_0^R, V_1^L$. labeled by weak isospin and lepton helicity.

Bruce Straub

Leptoquarks with $M_{\rm LQ} < \sqrt{s}$

• Narrow-width approximation:

$$\sigma(ep \to LQ) = (\pi/4s)\lambda^2 q(M_{\tilde{q}}^2/s) \times \begin{cases} 1 \text{ spin zero} \\ 2 \text{ spin one} \end{cases}$$

- Search for a narrow resonance in e+jet mass
- y = fraction of E − P_z transferred from beam e to hadronic final state discriminates LQ from NC-DIS (~ 1/y²).

e-jet mass spectrum before and after optimized cut $y > y_{\rm cut}(M_{\rm LQ})$

Tevatron sensitivity for eq decays is >> than for νq HERA eq and νq sensitivities are roughly equal

Limits for $M_{LQ} > \sqrt{s}$ derived from likelihood fit to $M_{LQ}, \cos \theta^*$ distribution. Use full LQ cross section including LQ-NC interference.

Contact Interactions

$$\mathcal{L} = \frac{g^2}{\Lambda^2} \sum_{q=u,d} \sum_{\alpha=L,R} \sum_{\beta=L,R} \eta^{eq}_{\alpha\beta} (\overline{e}_{\alpha} \gamma^{\mu} e_{\alpha}) (\overline{q}_{\beta} \gamma_{\mu} q_{\beta})$$

$$g^2 = 4\pi \qquad \qquad |\eta^{eq}_{\alpha\beta}| = 0 \text{ or } 1$$

Different combinations of η_{LL} , η_{LR} , η_{RL} , η_{RR} yield different Contact Interactions.

2

$$\frac{d^2\sigma(e^{\pm}p)}{dxdQ^2} = \frac{2\pi\alpha^2}{xQ^4} \quad \left\{ (1+(1-y)^2)F_2 \mp (1-(1-y)^2)xF_3 \right\}$$

$$F_{2}(x,Q^{2}) = \frac{1}{2} \sum_{f} xq_{f}^{+} \left\{ (V_{f}^{L})^{2} + (V_{f}^{R})^{2} + (A_{f}^{L})^{2} + (A_{f}^{R})^{2} \right\}$$
$$xF_{3}(x,Q^{2}) = \sum_{f} xq_{f}^{-} \left\{ V_{f}^{L}A_{f}^{R} - V_{f}^{R}A_{f}^{L} \right\}$$
$$q_{f}^{\pm}(x,Q^{2}) = q_{f}(x,Q^{2}) \pm \overline{q}_{f}(x,Q^{2})$$

$$\begin{split} V_{f}^{L} &= e_{f} - (v_{e} + a_{e})v_{f}P_{Z}(Q^{2}) + \frac{Q^{2}}{8\pi\alpha}\frac{g^{2}}{\Lambda^{2}}(\eta_{LL} + \eta_{LR}) \\ V_{f}^{R} &= e_{f} - (v_{e} - a_{e})v_{f}P_{Z}(Q^{2}) + \frac{Q^{2}}{8\pi\alpha}\frac{g^{2}}{\Lambda^{2}}(\eta_{RL} + \eta_{RR}) \\ A_{f}^{L} &= -(v_{e} + a_{e})a_{f}P_{Z}(Q^{2}) + \frac{Q^{2}}{8\pi\alpha}\frac{g^{2}}{\Lambda^{2}}(\eta_{LL} - \eta_{LR}) \\ A_{f}^{R} &= -(v_{e} - a_{e})a_{f}P_{Z}(Q^{2}) + \frac{Q^{2}}{8\pi\alpha}\frac{g^{2}}{\Lambda^{2}}(\eta_{RL} - \eta_{RR}) \\ P_{Z} &= \frac{1}{4\sin^{2}\theta_{W}\cos^{2}\theta_{W}}\left(\frac{Q^{2}}{Q^{2} + M_{Z}^{2}}\right) \end{split}$$

Curves show excluded models (95% CL). ZEUS, H1 both use entire data set (e^- and e^+).

Bruce Straub

Limits on Λ^{\pm} (TeV) for various models.

	Coupling structure			ZEUS		H1		
Model	η^{eq}_{LL}	η^{eq}_{LR}	η^{eq}_{RL}	η^{eq}_{RR}	Λ^{-}	Λ^+	Λ^{-}	Λ^+
VV	+1	+1	+1	+1	7.0	6.5	9.2	3.0
AA	+1	-1	-1	+1	5.3	4.6	5.4	1.8
VA	+1	-1	+1	-1	3.4	3.3	3.9	4.0
LL	+1				-	-	4.3	1.6
LR		+1			-	-	5.4	1.8
RL			+1		-	-	5.4	1.9
RR				+1	-	-	4.3	1.6
X1	+1	-1			4.0	2.7	-	-
X2	+1		+1		4.7	4.7	-	-
X3	+1			+1	4.3	4.2	-	-
X4		+1	+1		5.6	5.6	-	-
X5		+1		+1	4.8	4.8	-	-
X6			+1	-1	2.6	3.9	-	-

Heavy leptoquarks look like contact interactions e.g. S_0^L corresponds to $\eta_{LL}^{eu} = +\frac{1}{2}$ 95% C.L. limits on S_0^L : $M_{LQ}/\lambda > \begin{cases} 1.07 \text{ TeV} & \text{H1} \\ 0.75 \text{ TeV} & \text{ZEUS} \end{cases}$ For different LQ species, lower limits on M_{LQ}/λ range from 0.3 TeV to 1.7 TeV

If δ compact dimensions $(R \sim 1 \text{mm} = 5 \times 10^{12} \text{GeV}^{-1})$, \Rightarrow Gravitational interactions with scale M_S $M_S^{1+\delta/2} \sim R^{-\delta/2} M_P$, where $(M_P = 1.2 \times 10^{19} \text{GeV})$ $\Rightarrow M_S \sim 1 \text{ TeV}$

Lepton Flavor Violation

- Use 1994-1997 e^+p data. $\sqrt{s} = 300 \text{ GeV}^2$. $\mathcal{L}_{\text{H1}} = 37 \text{ pb}^{-1}$, $\mathcal{L}_{\text{ZEUS}} = 48 \text{ pb}^{-1}$.
- Search for μq and τq final states.
- Require isolated high P_t lepton, opposite high P_t jet.
- Both ZEUS and H1 observed no candidates.
- Set limits on $\lambda_{eq}\sqrt{B_{\ell q}}$ vs. LQ mass.
- For $M_{lq} > \sqrt{s}$, treat as a contact interaction with

$$\sigma \sim \left[\frac{\lambda_{eq_{\alpha}}\lambda_{\ell q_{\beta}}}{M_{lq}^{2}}\right]^{2}$$

New Particle Searches at HERA

	ZEUS preliminary 1994-1999 (64.4 pb^{-1})								
	$e \rightarrow \mu$ $F = 0$								
	Π								
αβ	$S^L_{1/2} \ e^+ u$	$S^R_{1/2} \ e^+(u+d)$	$ ilde{m{S}_{1/2}^L}{e^+d}$	$V_0^L \ e^+ d$	$egin{array}{c} m{V_0^R} \ e^+d \end{array}$	$egin{array}{c} ilde{m{V}_0^{m{R}}} \ e^+u \end{array}$	$egin{array}{c} V_1^L \ e^+(\sqrt{2}u+d) \end{array}$		
11	$ \begin{array}{c} \mu N \rightarrow e N \\ 7.6 \times 10^{-5} \\ 1.8 \end{array} $	$ \begin{array}{c} \mu N \rightarrow e N \\ 2.6 \times 10^{-5} \\ 1.5 \end{array} $	$ \begin{array}{c} \mu N \rightarrow e N \\ 7.6 \times 10^{-5} \\ \hline 2.6 \end{array} $	$ \begin{array}{c} \mu N \rightarrow e N \\ 2.6 \times 10^{-5} \\ 1.5 \end{array} $	$ \begin{array}{c} \mu N \rightarrow e N \\ 2.6 \times 10^{-5} \\ 1.5 \end{array} $	$ \begin{array}{c} \mu N \rightarrow e N \\ 2.6 \times 10^{-5} \\ 1.1 \end{array} $	$ \begin{array}{c} \mu N \rightarrow e N \\ 1.1 \times 10^{-5} \\ 0.5 \end{array} $		
12	$\begin{array}{c} D \rightarrow \mu \bar{e} \\ 4 \end{array}$	$K \rightarrow \mu \overline{e}$ 2.7 × 10 ⁻⁵ 1.6	$K \rightarrow \mu \bar{e}$ 2.7 × 10 ⁻⁵ 2.7	$K \rightarrow \mu \bar{e}$ 1.3×10^{-5} 2.0	$K \rightarrow \mu \bar{e}$ 1.3×10^{-5} 2.0	$\begin{array}{c} D \rightarrow \mu \overline{e} \\ 2 \\ \hline 1.6 \end{array}$	$K \rightarrow \mu \bar{e}$ 1.3×10^{-5} 0.8		
13	*	$\begin{array}{c} B \rightarrow \mu \overline{e} \\ 0.8 \\ 2.8 \end{array}$	$B ightarrow \mu \overline{e}$ 0.8 2.8	$egin{array}{c} V_{ub} \ 0.2 \ {f 2.4} \end{array}$	$B ightarrow \mu \overline{e}$ 0.4 2.4	*	$egin{array}{c} V_{ub} \ 0.2 \ {f 2.4} \end{array}$		
21	$\begin{array}{c} D \rightarrow \mu \bar{e} \\ 4 \\ 4.4 \end{array}$	$K \rightarrow \mu \bar{e}$ 2.7 × 10 ⁻⁵ 3.2	$K \rightarrow \mu \bar{e}$ 2.7×10^{-5} 4.6	$K \rightarrow \mu \bar{e}$ 1.3×10^{-5} 1.8	$K \rightarrow \mu \bar{e}$ 1.3×10^{-5} 1.8	$D \rightarrow \mu \bar{e}$ 2 1.5	$K \rightarrow \mu \bar{e}$ 1.3×10^{-5} 0.7		
22	$\begin{array}{c} \mu \to e e \overline{e} \\ 5 \times 10^{-3} \\ 9.2 \end{array}$	$\begin{array}{c} \mu \to e e \overline{e} \\ 7.3 \times 10^{-3} \\ 4.7 \end{array}$	$\begin{array}{c} \mu \to e e \overline{e} \\ 1.6 \times 10^{-2} \\ 5.7 \end{array}$	$\begin{array}{c} \mu \to e e \overline{e} \\ 8 \times 10^{-3} \\ 2.8 \end{array}$	$\mu \to e e \bar{e}$ 8 × 10 ⁻³ 2.8	$ \begin{array}{r} \mu \to e e \bar{e} \\ 2.5 \times 10^{-3} \\ 4.4 \end{array} $	$\begin{array}{c} \mu \rightarrow e e \bar{e} \\ 1.5 \times 10^{-3} \\ 1.8 \end{array}$		
23	*	$B \rightarrow \overline{\mu} e K$ 0.6 6.9	$B \rightarrow \overline{\mu} e K$ 0.6 6.9	$B \rightarrow \overline{\mu} e K$ 0.3 4.5	$B \rightarrow \overline{\mu} e K$ 0.3 4.5	*	$B \rightarrow \bar{\mu} e K$ 0.3 4.5		
31	*	$\begin{array}{c} B \to \mu \bar{e} \\ 0.8 \\ 6.0 \end{array}$	$\begin{array}{c} B \to \mu \overline{e} \\ 0.8 \\ 6.0 \end{array}$	V_{ub} 0.2 2.0	$\begin{array}{c} B \to \mu \bar{e} \\ 0.4 \\ 2.0 \end{array}$	*	V _{ub} 0.2 2.0		
32	*	$B \rightarrow \overline{\mu} e K$ 0.6 9.3	$B \rightarrow \overline{\mu} e K$ 0.6 9.3	$B \rightarrow \bar{\mu} e K$ 0.3 3.3	$B \rightarrow \overline{\mu} e K$ 0.3 3.3	*	$\begin{array}{c} B \rightarrow \bar{\mu} e K \\ 0.3 \\ \textbf{3.3} \end{array}$		
33	*	$ \begin{array}{r} \overline{\mu \to eee} \\ 7.3 \times 10^{-3} \\ 13 \end{array} $	$ \begin{array}{r} \overline{\mu \to eee} \overline{e} \\ 1.6 \times 10^{-2} \\ 13 \end{array} $	$ \begin{array}{r} \overline{\mu \to e e \overline{e}} \\ 8 \times 10^{-3} \\ 6.5 \end{array} $	$ \begin{array}{r} \overline{\mu \to eee} \\ 8 \times 10^{-3} \\ 6.5 \end{array} $	*	$ \begin{array}{c} \overline{\mu \to eee} \\ 1.5 \times 10^{-3} \\ 6.5 \end{array} $		

Upper limits on
$$\frac{\lambda_{eq_{\alpha}}\lambda_{\mu q_{\beta}}}{M_{LQ}^2}$$

 α,β =Generations of quarks which couple to e,μ

	ZEUS preliminary 1994-1997 (47.7 pb^{-1})								
	$e \to \tau$ $F = 0$								
αβ	$S^L_{1/2} \ e^+ u$	$S^R_{1/2} \ e^+(u+d)$	$ ilde{S}^L_{1/2} \ e^+ d$	$V^L_0_{e^+d}$	$V^{oldsymbol{R}}_{0}_{e^+d}$	$ ilde{oldsymbol{V}_0^{oldsymbol{R}}}{}_{e^+u}$	$V_1^L \ e^+(\sqrt{2}u+d)$		
11	$\begin{array}{c} \tau \rightarrow \pi e \\ 0.4 \\ \textbf{3.0} \end{array}$	$egin{array}{c} au o \pi e \ 0.2 \ {f 2.5} \end{array}$	$egin{array}{c} au o \pi e \ 0.4 \ extsf{4.6} \end{array}$	G _F 0.2 3.3	$ au ightarrow \pi e \ 0.2 \ 3.3$	$ au ightarrow \pi e$ 0.2 2.4	G_F 0.2 1.2		
12	3.0	$ au \rightarrow Ke$ 5 2.5	$K \to \pi \nu \bar{\nu}$ 10^{-3} 4.6	$ au ightarrow Ke \ 3$ 3.6	au o Ke 3 3.6	2.6	$K \rightarrow \pi \nu \bar{\nu}$ 2.5×10^{-4} 1.2		
13	*	$B \rightarrow \tau \bar{e} X$ 8 4.9	$B \rightarrow \tau \bar{e} X$ 8 4.9	$B \rightarrow l\nu X$ 2 4.4	$B \to \tau \bar{e} X$ 4 4.4	*	$B \rightarrow l\nu X$ 2 4.4		
21	15	$ au o Ke \ 5 \ 9.2$	$K \to \pi \nu \bar{\nu}$ 10^{-3} 11	$ au o Ke \ 3 \ 4.9$	$ au o Ke \ 3 \ 4.9$	6.1	$K \rightarrow \pi \nu \bar{\nu}$ 2.5×10^{-4} 2.6		
22	$\begin{array}{c} \tau \to e e \overline{e} \\ 20 \\ \hline 19 \end{array}$	$ au ightarrow eear{e}$ $ ext{30}$ $ ext{10}$	$ au ightarrow eear{e}$ $ begin{array}{c} 66 \ \hline 12 \end{array}$	$ au ightarrow eear{e}$ $ ext{33}$ 6.1	$ au \to e e \overline{e}$ 33 6.1	$\tau \rightarrow ee\bar{e}$ 10 10	$\begin{array}{c} \tau \to e e \bar{e} \\ 6.1 \\ \hline 4.1 \end{array}$		
23	*	$B \rightarrow \tau \bar{e} X$ 8 15	$B \rightarrow \tau \bar{e} X$ 8 15	$B \rightarrow l\nu X$ 2 10	$B \to \tau \bar{e} X$ 4 10	*	$B \rightarrow l\nu X$ 2 10		
31	*	$B \rightarrow \tau \bar{e} X$ 8 16	$B \rightarrow \tau \bar{e} X$ 8 16	V _{ub} 0.2 5.2	$B \rightarrow \tau \bar{e} X$ 4 5.2	*	V _{ub} 0.2 5.2		
32	*	$B \rightarrow \tau \bar{e} X$ 8 20	$B \rightarrow \tau \bar{e} X$ 8 20	$B \rightarrow l\nu X$ 2 7.3	$\begin{array}{c} B \to \tau \bar{e} X \\ 4 \\ 7.3 \end{array}$	*	$B \rightarrow l\nu X$ 2 7.3		
33	*	$\begin{array}{c} \tau \rightarrow e e \overline{e} \\ 30 \\ \hline 28 \end{array}$	$ au ightarrow ee\overline{e}$ $ begin{array}{c} 66 \ \hline 28 \end{array}$	$ au ightarrow eear{e}$ $ ext{33}$ $ ext{14}$	$ au ightarrow eear{e}$ $ ext{33}$ $ ext{14}$	*	$ au ightarrow eear{e}$ $ ext{6.1}$ $ ext{14}$		

Upper limits on
$$\frac{\lambda_{eq_{\alpha}}\lambda_{\tau q_{\beta}}}{M_{LQ}^2}$$

 α,β =Generations of quarks which couple to e,τ

R-Parity Violating Supersymmetry

 $R_p = (-1)^{3B+L+2S} = 1$ for particles, -1 for sparticles (B = baryon number, L = lepton number, S = spin). R_p violation \Rightarrow sparticles can decay to particles. R_p violating term of SUSY superpotential: $W_{\mathcal{R}_p} = \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k$ L-handed lepton, quark doublet superfields. $\frac{L}{E}, \frac{Q}{D}, \overline{U} =$ R-handed charged lepton, d and u-type quark singlet superfields. i, j, k =generation indices. Expand $\lambda'_{ijk}L_iQ_j\bar{D}_k$: $\lambda'_{ijk} \quad [\quad -\tilde{e}^i_L u^j_L \overline{d}^k_R - e^i_L \tilde{u}^j_L \overline{d}^k_R - (\overline{e}^i_L)^c u^j_I (\tilde{d}^k_R)^*$ $+\tilde{\nu}_{L}^{i}d_{T}^{j}\overline{d}_{R}^{k}+\nu_{L}^{i}\tilde{d}_{T}^{j}\overline{d}_{R}^{k}+(\overline{\nu}_{L}^{i})^{c}d_{L}^{j}(\tilde{d}_{R}^{k})^{*}]+\text{h. c.}$ In ep collisions $e^+d^k \rightarrow \tilde{u}^j$ and $e^-u^j \rightarrow \tilde{d}^k$ occur. Narrow-width approximation: $\sigma(e^+p \to \tilde{u}^j) = (\pi/4s)(\lambda'_{1\,i\,k})^2 d^k (M_{\tilde{q}}^2/s)$ (here d^k is the parton density for down type quarks) Strong limits on λ'_{111} from $dd \rightarrow uue^-e^-$.

Bruce Straub

 $e^- + \text{jets}$ final states have ~ 0 background

RPV SUSY analysis covers many different final states

decay	ZEUS	H1
$\tilde{q} \to e^+ q'$	•	•
$\tilde{d} \to \nu + d$		●
$\tilde{q} \to e^+ q q \bar{q}$	•	•
$\tilde{q} \to e^- q q \bar{q}$	•	•
$\tilde{q} \to \nu q q \bar{q}$	•	•
$\tilde{q} \to e^+ q q \bar{q} q \bar{q}$	•	•
$\tilde{q} \to e^- q q \bar{q} q \bar{q}$	•	•
$\tilde{q} \rightarrow \nu q q \bar{q} q \bar{q}$	•	•
$\tilde{q} \to e^+ q q \bar{q} \ell^+ \ell^-$		•
$\tilde{q} \to e^- q q \bar{q} \ell^+ \ell^-$		•
$\tilde{q} \to \nu q q \bar{q} \ell^+ \ell^-$		•
$\tilde{q} \to e^+ q q \bar{q} \ell \bar{\nu}_\ell$		●
$\tilde{q} \to e^- q q \bar{q} \ell \bar{\nu}_\ell$		●
$\tilde{q} \to \nu q q \bar{q} \ell \bar{\nu}_{\ell}$		●

Not included:

- Decays involving $\chi^0_3, \chi^0_4, \chi^+_2$
- Decays with a final state Higgs.
- Decays with final state top.

Scan over SUSY parameters μ and M_2

SUGRA model: Sparticle masses, branching ratios determined by $m_0, m_{1/2}, \tan \beta, \operatorname{sign}(\mu)$.

Standard Model sources

- $ep \to WX$ followed by $W \to \ell \nu$
- NC DIS $(ep \to eX \not P_t)$
- $ep \to \ell^+ \ell^- X$ via inelastic $\gamma \gamma \to \ell^+ \ell^-$

Event Selection						
cut	H1	ZEUS				
$P_t^{\text{cal}} >$	12 GeV	20 GeV				
$P_t^{\text{track}} >$	10 GeV	10 GeV				
Track polar angle	$5^{\circ} < \theta_{\mathrm{track}} < 145^{\circ}$	$17^{\circ} < \theta_{\text{track}} < 115^{\circ}$				
$\eta\phi$ isolation from nearest jet	$D_{\text{jet}} > 1$	$D_{jet} > 1$				
$\eta\phi$ isolation from nearest track	$D_{ m track} > 0.5$	$D_{ m track} > 0.5$				
Reject if additional μ	Yes	No				
$P_t^X >$	12 GeV	5 GeV				
Acoplanarity $\ell X >$	$20^{\circ}(e), 10^{\circ}(\mu)$	11.5°				

Number of events $(e + \mu)$ passing cuts

	H1 (115 pb^{-1}))	ZEUS	¹)	
	Observed	Expected	W	Observed	Expected	. W
	5 + 8 = 13	5.1 ± 1.3	4.2	10 + 7 = 17	16.4 ± 2.3	4.0
$P_{t_{}}^X > 25{ m GeV}$	4 + 6 = 10	2.8 ± 0.7	2.3	1 + 1 = 2	2.4 ± 0.2	2.0
$P_t^X > 40 \mathrm{GeV}$	2 + 4 = 6	1.0 ± 0.3	0.9	0	1.0 ± 0.1	0.9

H1 sees an excess at high P_t^X W Monte Carlo is LO QCD

H1 PRELIMINARY 101.6pb⁻¹ e⁺p data 94-00

Leptonic selections are applied to isolated lepton sample.

ZEUS

- $E P_Z < 45 \text{ GeV}$ (e only)
- $\mathbb{P}_t(\mu + had) > 12 \text{ GeV} (\mu \text{ only})$
- $P_t^X > 40 \,\mathrm{GeV}$

no events pass, 0.96 expected, efficiency $(e + \mu) = 5.5\%$

H1

- $P_t^X > 25 \text{ GeV}$
- a jet with $P_t^{\rm jet} > 25 \, {
 m GeV}$ (35 GeV if $heta_{
 m jet} < 35^\circ$)
- $M_T^{\ell \nu} > 10 \, {\rm GeV}$
- lepton must have positive charge
- 3 e events pass, 0.8 expected, efficiency= 4.0%
- 2 μ events pass, 0.8 expected, efficiency=4.8%

efficiencies include $BR(W \rightarrow \ell \bar{\nu}_{\ell})$

ZEUS Hadronic selection ($\mathcal{L} = 127.5 \text{ pb}^{-1}$)

- 3 jets with $-1 < \eta^{
 m jet} < 2.5$
- $E_T^{\text{jet}} > 40, 25, 14 \, \text{GeV}$
- $0.16 < y_{JB} < 0.95$
- Veto NC DIS
- $63 \,\text{GeV} < M^{JJ} < 91 \,\text{GeV}$
- $158 \,\mathrm{GeV} < M^{3J} < 192 \,\mathrm{GeV}$

19 events remain, 20.0 expected, efficiency = 31% of all top decays

 γp background normalized to data with $M^{3J} < 158~{\rm GeV}$

H1 Hadronic selection ($\mathcal{L} = 36.5 \text{ pb}^{-1}$)

- 3 jets with $E_T^{\rm jet} > 25, 15, 10 \, {\rm GeV}$
- $E_t > 120 \,\mathrm{GeV}$
- Veto NC DIS
- $70 \,\mathrm{GeV} < M^{JJ} < 90 \,\mathrm{GeV}$
- $150 \,{\rm GeV} < M^{3J} < 198 \,{\rm GeV}$

10 events remain, $8.3^{+4.2}_{-1.9}(\exp)\pm4.2(\mathrm{the})$ expected efficiency =21% of all top decays

ZEUS Lepton + hadron channels \rightarrow 95% CL limit $\sigma(ep \rightarrow etX) < 0.25 \text{ pb}(\sqrt{s} = 320 \text{ GeV})$ Limit on anomalous FCNC coupling: $\kappa_{tu\gamma} < 0.19$

H1 Lepton + hadron channels \rightarrow 95% CL limit $\sigma(ep \rightarrow etX) < 0.87 \,\mathrm{pb}(\sqrt{s} = 320 \,\mathrm{GeV})$ Limit on anomalous FCNC coupling: $\kappa_{tu\gamma} < 0.305$

Excited Fermions

If fermions are composite, then excited states are expected

$$\mathcal{L} = \frac{1}{2\Lambda} \bar{F}_R^* \sigma^{\mu\nu} \left[g \mathbf{f} \frac{\tau^a}{2} W_{\mu\nu}^a + g' \mathbf{f}' \frac{Y}{2} B_{\mu\nu} + g_s \mathbf{f}_s \frac{\lambda^a}{2} G_{\mu\nu}^a \right] F_L + h.c.$$

- Magnetic coupling between fermion weak-isodoublet F_L and excited fermions F_R^*
- f, f', f_s are weight factors for Standard Model gauge fields.
- Λ = the compositeness scale

Decay to $e\gamma \sim f + f'$

Conclusions

- HERA is sensitive to LQ, \tilde{q} , f^* production with masses < 300 GeV if coupling is high enough.
- More massive states can be detected via virtual effects.
- Most searches use $> 100 \text{ pb}^{-1}$ data sets.

Outlook

- HERA has been upgraded to increase ${\cal L}$ by $4\times.$
- Detector upgrades for H1 and ZEUS (μ -vertex detector).
- New run starting in October.
- Expect 1 fb $^{-1}$ by 2005.