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§World’s first e+e- linear collider
Ecm = 91.2 GeV (mZ)

§collision rate: 120 Hz
§max Luminosity ≈

3 × 1030 s-1 cm-2

§bunch size ≈ 4 × 1010

§small, stable beamspot
≈ 1.5 × 0.65 µm

§e- beam polarization
|Pe| ≈ 75%

Ideal environment for
precision tests of the 
electroweak model.
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The symmetry of the electroweak model is  SU(2)L ⊗ U(1)Y

The weak neutral current is,              weak isospin           hypercharge

where,
(weak mixing angle)

Vector and axial-vector couplings lead to 
parity violation. The extent of parity 
violation for fermion f can be expressed 
as,
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• Unpolarized Asymmetries:
(LEP)

• Polarized Asymmetries:
(SLD)
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Polarization gives SLD a statistical advantage of (Ae/Pe)2 ≈ 25.
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q CCD Vertex Detector

q Central Drift Chamber

q Cherenkov Ring Imaging 
Detector

q Liquid Argon Calorimeter

q Magnet Coil: 0.6 Tesla

q Warm Iron Calorimeter
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§307M pixels
§≥ 3 hits/track
§ inner radius = 2.7 cm
§max cosθ = 0.85
§X0/layer = 0.4%

§single hit resolution = 4.5 µm
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• Polarization is determined by 
compton scattering electrons 
off circularly polarized photons 
at  “compton IP” .

• Cross checks are performed 
with the Quartz Fiber Calorimeter
and Polarized Gamma Counter.

• precision for a 3 min run is ≈ 2%.

• Positron Polarization was 
measured in 1998:  

Pe+ = -0.02 ± 0.07%
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q Electroweak Measurements
ALR

Rb and Rc

Ab and Ac

q B Fragmentation Function

q B0 -B0 Mixing
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• We measure the raw asymmetry, 

• NR(L) = number of hadronic Z0s produced with right (left) polarized e- beams.

• |Pe| is the luminosity-weighted average polarization.

• Am is independent of absolute luminosity, acceptance, and efficiency.

• Corrections are applied for electroweak interference and Z0 pole energy.

• Main systematics are polarization measurement and above corrections.
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Final Result 92-98:
PRL 84:5945, 2000

ALR is the left-right cross section asymmetry in Z0 production by e+e-
collisions,

(world’s best measurement)
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• Use leptonic final states and polarized FB 
asymmetry to measure A l  in e+e- → Z0 → l+l- .

• Measure the differential cross section for Pe >(<) 0,

Ae = 0.1544 ± 0.0060
Aµ = 0.142 ± 0.015
Aτ = 0.136 ± 0.015

• Combine with ALR,

Ae = 0.1516 ± 0.0021          PRL 86:1162, 2001

lepton

Consistent with 
lepton universality.
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A l can be used to calculate sin2θW

in SM,

There may be some discrepancy 
between leptonic and quark AFB

Measurements. 
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Effective weak mixing angle 
involves virtual radiative 
corrections including Higgs and 
new physics. 

� upper bound on SM 
Higgs mass

• SLD sin2θW only:

mH < 133 GeV (95% CL)

• LEP+SLD:

mH < 220 GeV (95% CL)

• LEP+SLD w/0 Ab
FB:

mH < 145 GeV (95% CL)
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• Relatively long lifetime of B hadrons 
and large boost results in separated 
secondary vertices  � L � ≈ 2-3 mm.

• Exploit small, stable SLC beamspot 
and precision of VXD3 for inclusive
topological vertexing.

“seed”  vertices � regions of high track 
overlap probability.

Track Properties                                                

Run  33544,    EVENT   6476                                                     
27-APR-1996 06:05                                                               
Source: Run Data    Pol: R                                                      
Trigger: Energy CDC Hadron                                                      
Beam Crossing    1215252296                                                     

x                              

y                                    

z                                    

centimeters                                                                     
     0                                                                           0.4000                                                                          0.8000                                                                           1.200                                                               1.600                                      

Run  33544,    EVENT   6476                                                     
27-APR-1996 06:05                                                               
Source: Run Data    Pol: R                                                      
Trigger: Energy CDC Hadron                                                      
Beam Crossing    1215252296                                                     

• Additional track attachment is 
performed by a NN on lesser 
quality tracks and VXD 
segments. 

• A secondary vertex is located in 
73% of b hemispheres 
29% of c hemispheres.

2 mm

NIM A388:247



T.B. Moore SSI 2001

Make a correction to invariant mass based 
on missing pT,

TTrawpT ppmm ++= 22

pT

pL

pCh

p0

IP

Vertex Mass Tag Typical Results:
cut mpT at 2.0 GeV 
B selection efficiency = 57%
B sample purity = 98%
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b c 
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Use Topological Vertexing with 
additional NN hemisphere selection:
§Vertex MpT

§Vertex momentum
§Decay Length
§Charged track multiplicity

b Tag: NN >0.75
c Tag:  NN < 0.3

Systematics are reduced by using double 
tags in both hemispheres to measure tag 
efficiency from data.

Tag Performance:
b:  ε = 62%  π = 98%
c:  ε = 18%  π = 84%
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b

Rb Measurements (Summer-2001)

ALEPH Multi-var

DELPHI Multi-var

L3 Impact+Lept

OPAL VtxNN+Lept

SLD VtxMass NN

World Average

0.2159±0.0009±0.0011

0.2163±0.0007±0.0006

0.2174±0.0015±0.0028

0.2176±0.0011±0.0014

0.2164±0.0009±0.0008

0.21646±0.00065
SM
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Recent Improvements
• Improved tracking resolution 

corrections.
• Better understanding of running 

b-quark mass effects on jet rates.
• new g→bb correction.

SLD 93-98 data:
Rb = 0.2164 ± 0.0009stat ± 0.0006syst
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c
Rc Measurements (Summer-2001)

ALEPH Lepton

ALEPH c-counting

DELPHI c-counting

OPAL c-counting

ALEPH D* incl/excl

DELPHI D* incl/excl

OPAL D* incl/excl

ALEPH D excl/excl

SLD Multi-tag

World Average

0.1675±0.0062±0.0103

0.1738±0.0047±0.0113

0.1692±0.0047±0.0097

0.167  ±0.011  ±0.012

0.166  ±0.012  ±0.009

0.161  ±0.010  ±0.009

0.180  ±0.010  ±0.012

0.173  ±0.014  ±0.009

0.1738±0.0031±0.0021

0.1719±0.0031
SM
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SLD Result:
Rc = 0.1738 ± 0.0031stat ± 0.0021syst

New multitag analysis:
• Includes the same “hard”  c and b 

tags as Rb analysis,

b Tag:  NN > 0.75
c Tag:  NN < 0.3 

• plus additional “soft”  tags
b-like Tag:  0.5 < NN < 0.75
c-like Tag:  0.3 < NN < 0.5 

• Tagging efficiency measured from 
double-tagged events in the data.
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We want to measure parity violation in couplings  Z0 → qq for
b and c quarks � Use the polarized forward-backward asymmetry.

Measure the differential cross section dN/d cosθ for q(q) with left and 
right polarized electrons to extract Ab/Ac.

Ab / Ac measurements must:

♦ Select pure bottom and charm hemispheres. 

♦ Estimate the initial quark directions.

♦ Tag the quark flavor (q orq)  produced in each hemisphere.
SLD has produced Ab and Ac results with several flavor tags including: 

Jet Charge, Leptons, Kaons and Vertex Charge.

b c

Z
e+e-

q

q

θ
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• Vertex Mass Tag to identify 
b hemispheres

• Thrust axis defines initial quark
directions.

• b quark flavor tagged by 
Jet Charge,

• Tag analyzing power is 
calculated from data. 

b
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b c

• Use Topological vertexing with 
NN c/b hemisphere selection as 
for Rb

• Use thrust axis as an estimate
of initial quark directions.

• quark flavor is tagged by 
vertex charge (QVTX ≠ 0). 
K± are also included for Ac.

• Extract Ab and Ac

simultaneously.

Vertex Charge Results:
Ab = 0.921 ± 0.018stat ± 0.018syst

Ac = 0.673 ± 0.029stat ±0.024syst

Left Right
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b c 

Lepton Final Results 93-98:
Ab = 0.919 ± 0.030stat ± 0.024syst

Ac = 0.583 ± 0.055stat ±0.055syst

• quark flavor tagged by lepton charge (e/µ) from semileptonic decays,
b,c → X lν

• Nearest jet axis defines quark direction ( JADE ycut = 0.005)
• Topological Vertexing
• A Neural Net is used to identify lepton source and mistag probability for 

electrons. Muons use a binned analysis,
♦ lepton p, pT with respect to jet axis
♦ Vertex momentum, pT corrected mass, and decay length significance
♦ L/D of lepton
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b c
Ab Measurements (Summer-2001)

Ab

LEP Average 0.880 ± 0.018

DELPHI NN 0.883 ± 0.032 ± 0.021

OPAL JetC 0.894 ± 0.049 ± 0.036

L3 JetC 0.843 ± 0.090 ± 0.050

DELPHI JetC 0.892 ± 0.042 ± 0.016

ALEPH JetC 0.911 ± 0.024 ± 0.014

OPAL Lept 0.851 ± 0.038 ± 0.021

L3 Lept 0.873 ± 0.058 ± 0.029

DELPHI Lept 0.918 ± 0.052 ± 0.022

ALEPH Lept 0.886 ± 0.035 ± 0.020

SLD Average 0.916 ± 0.021

SLD VtxQ 0.921 ± 0.018 ± 0.018

SLD K± tag 0.855 ± 0.088 ± 0.102

SLD Lepton 0.924 ± 0.030 ± 0.023

SLD JetC 0.907 ± 0.020 ± 0.024

SM

LEP Measurements:  Ab = 4 A0,bFB / 3 Ae
Using Ae=0.1501±0.0016 (Combine SLD ALR and LEP Al)
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Ac Measurements (Summer-2001)

Ac

LEP Average 0.608 ± 0.032

OPAL D* 0.628 ± 0.104 ± 0.050

DELPHI D* 0.635 ± 0.083 ± 0.025

ALEPH D* 0.617 ± 0.080 ± 0.024

OPAL Lepton 0.575 ± 0.054 ± 0.039

L3 Lepton 0.774 ± 0.314 ± 0.160

DELPHI Lepton 0.645 ± 0.080 ± 0.061

ALEPH Lepton 0.580 ± 0.047 ± 0.040

SLD K & vtx-Q 0.673 ± 0.029 ± 0.024

SLD Lepton 0.589 ± 0.055 ± 0.053

SLD D*,D+ 0.690 ± 0.042 ± 0.021

SLD soft π* 0.685 ± 0.052 ± 0.038

SLD Average 0.670 ± 0.027

SM

LEP Measurements: Ac = 4 A0,cFB / 3 Ae
Using Ae=0.1501±0.0016 (Combine SLD ALR and LEP Al)
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SLD Final Averages:

Ab = 0.916 ± 0.021               Ac = 0.670 ± 0.027
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• Measure the B hadron energy using charged tracks only.
• Use standard Topological Vertexing.
• 2 unknowns: p0

L , m0.  Use the mB constraint to 
remove one and calculate an upper bound on m0.

• In B rest frame, 

Measure the inclusive B hadron scaled energy distribution in Z0 decays,
D(xB), xB ≡ EB/Ebeam. 
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• select hemispheres with small m0,max

→ set m0 = m0,max

• good energy resolution
σcore ≈ 9.6% (83.6%)

• flat efficiency (4.17%) over the 
full range of xB

• data
-- MC
(Jetset+Peterson)

Several fragmentation models and 
functional forms are inconsistent with 
the data (within Jetset):
BCFY, CS, Peterson, HERWIG
Consistent models:
Bowler, Lund, Kartvelishvili and UCLA

97-98 data:
xB = 0.710 ± 0.003stat ± 0.005syst ± 0.004model

B hadron Energy (GeV)
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We have also studied B hadron energy 
correlations in the two hemispheres.
• Locate Jets with Durham (ycut = 0.015)
• Require:

2 secondary vertices in distinct jets
cosϕ < 0.99 (angle between jets)
one vertex MpT > 2.0 GeV
both –1 < M2

0,max < 12 GeV2

• calculate the moments,

Results are consistent with factorization
in pQCD.
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Neutral B flavor eigenstates (B0, B0) are coupled by 2nd order weak 
interactions,

so that physical particles are the heavy and light state BH and BL. The result is
particle/antiparticle oscillations with frequency ∆m = mH – mL,

∆md is sensitive to the CKM matrix element Vtd,

B0 –B0 Mixing
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Mixing Ingredients:
§ Initial State Tag: determine b quark flavor at production

All SLD mixing analyses use the same combined initial state tag

§Final State Tag: determine b quark flavor at decay
SLD Analyses:  Kaon Tag ( Bd mixing)

Ds + Tracks
Lepton+D               Bs mixing 
Charge Dipole

§B Decay Time: measure B decay length and boost, cL βγ=t

We want to measure the mixed fraction as a function of time,

( )mt
PP

P
fractionmix

unmixmix

mix ∆−=
+

= cos1
2

1
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• Polarization: We exploit the large polarized forward-backward asymmetry 
of the b quark.  

ε = 100%   �π � ≈ 72%

• Charged Tags: in opposite 
hemisphere (NN)
Jet Charge
high pT lepton charge
Kaon charge 
vertex charge
Charge Dipole

�π� ≈ 71%

• event-by-event mistag probability

( )b
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b AP
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Initial State b-quark Probability

  SLD Data

 MC

 MC b

 MC b-bar

�π � ≈ 78%
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d
Final State tag from K± identified in Cherenkov Ring Imaging Detector

96-98 Data

Bd → D-/ D0 → K +

Bd → D+/ D0 → K-

K± Right Sign Fraction: (82±5)%
(Argus)

2D likelihood fit for ∆md and
correct tag fraction:

∆md = 0.503 ± 0.028 (stat)  
± 0.020 (syst) ps-1

Correct tag fraction = 0.797±0.022

number of vertices:  7844

mixed fraction vs proper time
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∆ d
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In principle we can extract Vtd from ∆md but the theoretical uncertainty is 
large, 

� Measure ∆ms and form ratio

But Bs mixing is much harder,

• Bs fraction is smaller
fraction Bs(Bd) ≈ 10%(40%)

• Frequency is much larger

we need excellent proper 
time resolution.
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s
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• Bs → Ds
- X with full reconstruction of the D-

s decay in 2 modes:
Ds

- → φπ- ( 280 candidates )
Ds

- → K*K- ( 81 candidates )

• Kaons identified in Cherenkov 
Ring Imaging Detector (CRID).

• Neural Network Ds selection.

• Final state b quark flavor determined 
by the charge of the Ds ( mistag 13%,
decreases to 5% with a lepton ).

• Bs fraction increases to 38%

• Excellent decay length resolution,
core σL = 50 µm (60%)
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• Identified e and µ tag the b quark
final state, Bs → D+ l- ν.

• Inclusive D vertex reconstruction.

• B vertex is the intersection of the lepton
with the D “ track” .

• NN is applied to suppress b → c → l
(wrong sign) backgrounds.
very low mistag ≈ 4% (Bs)

• excellent decay length resolution
core σL = 54 µm (60%)
tail   σL = 213 µm

• Bs fraction 16% overall
→ 34% opposite sign l/k 
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Charge Dipole

  Data

  MC

  b quark

  b-bar quark

• Fully inclusive reconstruction of
secondary and tertiary vertices.

• Tag b quark decay flavor with 
“charge dipole” :
δq = (QB –QD) × Distance B to D

• Final state mistag: 
22%  overall
9%  for Bs → Ds X

47%  for Bs → Ds D X

• Good decay length resolution:
core σL = 81 µm (60%)
tail   σL = 297 µm

• Select neutral hemispheres,
Bs fraction  = 16% 
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Mixing is a periodic oscillation in the mixed fraction so we can measure the 
frequency spectrum. In the likelihood functions we insert the amplitude 
parameter A,

(1 ± cos∆mst ) → ( 1 ± Acos∆mst)
• For any value of the frequency ∆ms, we can perform a 

log-likelihood fit for A.
• A is the normalized Fourier Amplitude 

at frequency ∆ms.
• Expect A ≈1 at the true mixing frequency 

and A ≈ 0 far from the true value.
• σA grows as a function of ∆ms due to 

proper time resolution.
• Values of ∆ms where A+1.645σA < 1

are excluded at 95% CL.
• The sensitivity of the experiment is the 

value of ∆ms where 1.645 σA =1. -1
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3 Preliminary Analyses
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SLD COMBINED PRELIMINARY
Preliminary result:

sensitivity = 13.2 ps-1

Excluded at 95% C.L.:

∆ms <   11.1 ps-1
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Contributions from:
LEP
SLD
CDF

sensitivity = 18.3 ps-1

excluded at 95% CL:
∆ms <   14.6 ps-1
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Mixing measurements are able to make powerful constraints on CKM matrix 
elements and CP violation.
• ∆md and ∆ms can be represented as circular bands centered at (1,0)

in the ρ -η plane.
• These constraints are orthogonal to the sin2β measurements from the B 

factories.
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• The SLD experiment has made large contributions in many areas of physics 
including electroweak, heavy-flavors, and QCD.

• The unique features of the SLC and SLD have resulted in many results that  
are one of a kind or represent the world’s standard in precision. 

• Precision tests of the Standard Model include:
ALR, Rb and Rc, Ab and Ac as well as others which I couldn’ t squeeze in.

• Bs
0 –Bs

0 mixing measurements have contributed significantly to the world 
effort to constrain the quark mixing matrix and CP violation in the SM. 

• Future linear colliders will build on the experience gained at the SLC and
SLD.


