CLEO Results & Plans

Nari Mistry, Cornell University (for the CLEO Collaboration) August 22, 2001

CLEO has pioneered many studies and measurements in the field of *b*-quark physics for over twenty years.

In 2002, CESR will broaden its range of operation at high luminosity to include the $\bar{c}c$ resonance & charm threshold regions as well as the Upsilon resonances.

I will present some recent CLEO results and then turn to the plans for the future.

CLEO & CESR at the Y(4S)

Features at the $\Upsilon(4S)$:

- Symmetric e^+e^- collisions at the $\Upsilon(4S)$, very close to \overline{BB} threshold. $p_B \sim 300$ MeV/c, $E_B = E_{beam}$.
- $\sigma_{bb} \sim 1$ nb; σ_{qq} (bkgnd.) ~ 3 nb. "Continuum" data obtained just below Υ (4S) for subtraction .
- All of the results presented here represent data collected in CLEO-II & CLEO-II.V configurations.

◆ 9.1 *f*b⁻¹ ON-4S, (9.7M *BB* evts.); 4.4 *f*b⁻¹ below 4S.

 CESR has run with a peak luminosity of 1.3 x 10³³ cm⁻²s⁻¹ in the past year, collecting ~ 9.3 fb⁻¹ in the CLEO-III configuration [see LP01].

Some Recent CLEO Results

- Rare B Decays & Direct CP Violation studies.
 - More than 60 Charmless B-decay modes measured by CLEO.
 - ◆ Electromagnetic & Gluonic Penguin- (loops) & box- diagrams: Measured Br ~ 10⁻⁶ – 10⁻⁴.
 - CP asymmetries and limits.
- Semileptonic B Decays & CKM matrix elements.
 - Inclusive & Exclusive leptonic decays, $|V_{ub}| \& |V_{cb}|$.
- Search for New Physics via Mixing & CP Violation in Charm Decays.
 - "Wrong-sign" decays and limits on mixing.
 - ♦ CP Asymmetries in D⁰ Decays.
 - Lifetime Differences in D⁰ Decays to CP-eigenstates: mixing.

Rare B Decays

- Rare *B* decays are a useful probe of new physics, & branching ratios are reasonable as V_{cb} is small. (Br(rare *B*) ~ 10⁻⁶ – 10⁻⁴, while Br(rare *K*) ~ 10⁻¹⁰ – 10⁻¹².)
- Box & loop diagrams can involve new physics, Higgs, SUSY ...

replacing W.

Rare **B** Modes & bounds on **CP** Asymmetries

- Charmless hadronic modes:
 - $B \rightarrow \phi K, \phi K^*, \eta' K, \eta K^*$: any surprises? ($\eta' K$ unusually large (CLEO 1997))
 - $B \rightarrow K\pi$, $\pi\pi$, KK: BrF & bounds on direct *CP* violation.
- Radiative Decays:
 - Inclusive $b \rightarrow s \gamma$: *CP* asymm.; γ -spectrum; *HQET* parameters; Fermi motion of *b* quark in *B* meson.
 - $B \rightarrow K^* \gamma$: *CP* asymmetry
 - $B \rightarrow K \ell \ell$, $K^* \ell \ell$: FCNC, new *u.l.* within 50% of SM.
 - $\overline{BB} \rightarrow \ell \ell$: *CP* asymmetry in dileptons (mixing).

Direct CP Violation in B decays

- Direct *CP* violation arises if there is a difference between amplitudes for $(\overline{B} \rightarrow \overline{f}) \& (B \rightarrow f)$.
 - Requires two or more interfering processes in the decay.
 - Non-zero differences in *both* weak & strong phases.
 - CP-violating weak phase may arise from CKM phase or from new physics.
 - Tree & loop diagrams can interfere in this way.
 - Hard to predict asymmetry as strong amplitudes & phases are unknown.
- Asymmetry parameter:

$$\mathbf{A}_{CP} \equiv \frac{\mathbf{B}(\overline{B} \to \overline{f}) - \mathbf{B}(B \to f)}{\mathbf{B}(\overline{B} \to \overline{f}) + \mathbf{B}(B \to f)}$$

August 22, 2001

Charmless hadronic modes Typical analysis technique:

- Signal candidate variables:
 - Beam-energy constraint: $E_{Cand.} \approx E_{beam}$

$$\boldsymbol{M}_{Cand.} \equiv \sqrt{E_{beam}^2 - |\mathbf{p}_{cand.}|^2}$$

$$\sigma_m \sim 2.5 \text{ MeV} (3.0 \text{ MeV if } \pi^0)$$

Energy difference

$$\Delta E \equiv \left(E_{cand.} - E_{beam} \right)$$

 $\sigma_E \sim 20-25$ MeV, mode dependent.

~ 40-50 MeV if π^{o} .

• dE/dx and ΔE for PID.

- Background rejection:
- Mainly e⁺e⁻→ qq continuum, (negligible from other *B* decays.)
 Continuum suppression variables:
- Two-jet vs. spherical BB event:
 - ♦ angle of Thrust axis.
 - ◆ Fischer Discriminant F :
 - Linear combination of 11 shape variables:
 - Angle of Sphericity axis $\cos \vartheta$.
 - Fox-Wolfram ratio R_2 .
 - Energy flow into nine (10°) cones around Sphericity axis.

Maximum Likelihood fit using all variables.

August 22, 2001

B decays to $\phi K \& \phi K^*$:

- A gluonic penguin with no BB bkgnd. ⇒ a clean signature.
- Maximum likelihood fits for each topology:

August 22, 2001

$B \rightarrow \phi K \& \phi K^*$: Results

CLEO 2001: [hep-ex/0101032], PRL 86, 3718 (2001)

Decay Mode		Theory			
	Yield	Eff. (%)	Stat. Signif.	BF (10 ⁻⁶)	BF(10 ⁻⁶)
ϕK^-	$14.2^{+5.5}_{-4.5}$	54	5.4σ	5.5 $^{+2.1}_{-1.8}$ ±0.6	0.7 - 16
ϕK^0	$4.2^{+2.9}_{-2.1}$	48	2.9σ	< 12.3	0.7 – 13
$B \Rightarrow \phi K$			6.1 <i>σ</i>	$5.5 + 1.8 \pm 0.7$	
$\phi K^{*0}_{\to K^-\pi^+}$	$12.1_{-4.3}^{+5.3}$	38	4.5σ		
$\phi K^{*0}_{\to K^0 \pi^0}$	$5.1^{+3.9}_{-2.8}$	20	2.7σ		
$B \Rightarrow \phi K^{*0}$			5.1σ	$11.5 \begin{array}{c} +4.5 \\ -3.7 \end{array} \begin{array}{c} +1.8 \\ -1.7 \end{array}$	0.2 - 31
$\phi K^{*-}_{\to K^-\pi^0}$	$3.8^{+4.1}_{-2.8}$	25	1.5σ		
$\phi K^{*-}_{\to K^0 \pi^-}$	$4.0^{+2.1}_{-2.2}$	32	2.7σ		
$B \Rightarrow \phi K^{*-}$			3.1σ	< 22.5	0.2 - 31
$B \Rightarrow \phi K^*$			5.9σ	$11.2 \begin{array}{c} +3.6 \\ -3.1 \\ -1.7 \end{array}$	

August 22, 2001

B decays to $\pi\pi$ & $K\pi$ modes:

CLEO: PRL 85, 515 (2000)

Decay Mode		Theory			
	$N_{\it Signal}$	Signif.	Effic. (%)	BF(10 ⁻⁶)	$BF(10^{-6})$
$\pi^+\pi^-$	$20.0^{+7.6}_{-6.5}$	4.2σ	48	$4.3^{+1.6}_{-1.4}\pm0.5$	8-26
$\pi^{+}\pi^{0}$	$21.3^{+9.7}_{-8.5}$	3.2σ	39	< 12.7	3-20
$\pi^{0}\pi^{0}$	$6.2^{+4.8}_{-3.7}$	2.0σ	29	< 5.7	0.3-4.6
$K^{+}\pi^{-}$	$80.2^{\scriptscriptstyle +11.8}_{\scriptscriptstyle -11.0}$	11.7σ	48	$17.2^{+2.5}_{-2.4} \pm 1.2$	7-24
$K^{0}\pi^{+}$	$25.2_{-5.6}^{+6.4}$	7.6σ	14	$18.2^{^{+4.6}}_{^{-4.0}}\pm1.6$	3-15
$K^+\pi^0$	$42.1_{-9.9}^{+10.9}$	6.1σ	38	$11.6^{+3.0}_{-2.7}{}^{+1.4}_{-1.3}$	8-26
$K^{0}\pi^{0}$	$16.1^{+5.9}_{-5.0}$	4.9σ	11	$14.6^{+5.9}_{-5.1}^{+2.4}_{-3.3}$	3-9
K^+K^-	$0.7^{\tiny +.3.4}_{\tiny -0.7}$	-	48	< 1.9	_
K^+K^0	$1.4^{+2.4}_{-1.3}$	1.1σ	14	< 5.1	0.7-1.5
$K^{0}\overline{K}^{0}$	0	_	5	< 17	_

BaBar & BELLE: recent new results confirm CLEO measurements

CP Asymmetries in $B \rightarrow hh$

- Charge asymmetries measured in two-body hadronic "self-tagging" modes.[CLEO PRL 85,525 (2000)]
- No significant asymmetry found.
- SM theory: Ali, Kramer & Lü, PRD 59,014005 (1999).

Radiative *B* Decays: $b \rightarrow s \gamma$

$b \rightarrow s \gamma$: Measuring the photon spectrum

- Mono-energetic photon, $E_{\gamma} = m_B/2$, (smeared by Fermi motion of *b* quark in *B*).
- Measure E_{γ} spectrum ON-4S & OFF-4S $(e^+e \rightarrow qq \text{ continuum})$.
- Huge qq bkgnd must be suppressed.
 - Veto photons from $\pi^0 \& \eta$.
 - Eight shape variables combined.
 - "Pseudo reconstruction" of X_S :(*K*+*n* π)
 - High momentum P_{lepton} where available.
 - Combine available variables in neural nets, calculate weights w(r_i)
 - Sum w's for ON-4S and OFF-4S.
- Subtract surviving continuum spectrum.
- Model BB bkgnd & subtract.

$b \rightarrow s \gamma$: Energy Spectrum

Fit the energy spectrum for P_{Fermi} & ⟨m_b⟩ & obtain moments (E_γ>2GeV):
⟨E_γ⟩ = 2.346 ± 0.032 ± 0.011 GeV
⟨E_γ²⟩ - ⟨E_γ⟩² = 0.0226 ± 0.0066 ± 0.0020 GeV²
HQET & O.P.Expansion: express moments in powers of α_s & 1/M_B to obtain Ā = 0.35 ± 0.08 ± 0.10 GeV
Theory: Ligeti *et al.*, PRD 60 034019 (1999) & C.Bauer, PRD 57, 5611(1998)

August 22, 2001

$b \rightarrow s \gamma$: Branching Fraction

- Yield measured for $(2.0 < E_{\gamma} < 2.7 \text{ GeV})$
 - Signal efficiency (weight per event) from MC.
 - 5% subtraction for expected $(b \rightarrow d \gamma)$.

[hep-ex/0108032, submitted to PRL]

 $\mathsf{BF}(b \to s \gamma) = (3.21 \pm 0.43 \pm 0.27) \times 10^{-4}$

Theory: $BF(b \rightarrow s \gamma) = (3.73 \pm 0.30) \times 10^{-4}$ [Gambino & Misiak, hep-ph/0104034]

The CLEO result agrees with theory – theory & experimental errors are comparable.

August 22, 2001

$b \rightarrow s \gamma$ Bounds on CP Asymmetry

Two types of flavor tags

• Lepton tag: $(1.4 < p_{\ell} < 2.2 \text{ GeV/c})$ from other *B*.

$$A_{CP}^{lepton} = +0.191 \pm 0.181$$

• Pseudo-reconstruction of X_s in the same *B*.

 $A_{\rm CP}^{\rm pseudo} = -0.178 \pm 0.132$

 Lepton & Pseudo-reconstruction analyses are statistically independent, so can combine using statistical weights:

$$A_{_{CP}}^{combined} = -0.079 \pm 0.108$$

 $-0.27 < A_{_{CP}} < +0.10$

PRL 86, 5661 (2001)

The Asymmetry is consistent with Standard Model & can rule out some extreme models.

Semileptonic *B* decays: $|V_{ub}| \& |V_{cb}|$

Semileptonic *B* decays provide a clean method for extracting the CKM elements $|V_{ub}| \& |V_{cb}|$.

$$\Gamma(\overline{B} \to X_q \ell \nu) = \frac{B(\overline{B} \to X_q \ell \nu)}{\tau_B} = \gamma_q |V_{qb}|^2$$

- The BF and lifetime can be measured, but the factors γ_q must be understood from theory.
- For $|V_{cb}|$, HQET & OPE provide expansions for γ_c in powers of $(1/M_B)$ with parameters $\overline{\Lambda}$, λ_1 , λ_2 , We can measure $\overline{\Lambda}$, λ_1 , λ_2 , and use theoretical estimates for the other parameters.
- For $|V_{ub}|$, we use γ_u from theory. [Hoang,Ligeti & Manohar, PRD **59** 074017 (1999)]

$|V_{ub}|$ from the inclusive lepton spectrum.

- Determine the BF $\overline{B} \rightarrow X_u \ell v$ by measuring the inclusive lepton spectrum near the endpoint, above the limit of $\overline{B} \rightarrow X_c \ell v$.
- A large extrapolation is needed to include the entire momentum range.
- The high momentum end is most influenced by Fermi motion of the *b* quark in the *B* meson.

$|V_{ub}|$: Untangling the Fermi motion

- Use the photon spectrum from $b \rightarrow s \gamma$ to understand Fermi motion.
 - Fermi motion broadens the simple, well understood photon spectrum.
 - Fit the *measured* spectrum of photons in $b \rightarrow s \gamma$ using shape function [Ali & Greub,1991]
 - Extract p_{Fermi} & m_b from the photon spectrum.
 - Apply the same parameters to the lepton spectrum & determine the fraction f(p) of the measured. [Kagan ph/9805303]

$|V_{ub}|$ from the inclusive lepton spectrum.

- Lepton spectrum near the end-point (2.2 GeV/c < p_l ≤ 2.6 GeV/c) after suppressing & removing continuum & other backgrounds ⇒
- Subtract the yield for $B \rightarrow X_c \ell v$ (MC).
- Partial br.fr. (2.2 < $p_l \le$ 2.6 GeV/c), $\Delta B_u = (2.35 \pm 0.15 \pm 0.45) \times 10^{-4}$.
- Apply the fraction $f(\mathbf{p}) = 0.138 \pm 0.034$ obtained from Fermi motion analysis to get the BF for $\overline{B} \rightarrow X_u \ell v$. A 5% QED radiative correction is applied.

PRELIM IN ARY

$$6000 \qquad \bullet O N - O F F c a ta$$

$$4000 \qquad \bullet O N - O F F c a ta$$

$$1000 \qquad \bullet O N - O F F c a ta$$

$$2000 \qquad \bullet O N - O F F c a ta$$

$$2000 \qquad \bullet O N - O F F c a ta$$

$$|V_{ub}| = (4.09 \pm 0.14 \pm 0.66) \times 10^{-3}$$

August 22, 2001

N.Mistry SLAC Summer Institute.

20

$|V_{cb}|$ from $B \rightarrow X_c \ell v$: hadronic moments

HQET & OPE[¶] : inclusive observables as expansion in powers of $\alpha_s \& (1/m_B)$:

 $|V_{cb}|^2 = \Gamma(b \rightarrow c\ell v) \times h(\overline{\Lambda}, \lambda_1, \lambda_2)$ to ~ $\Theta(m_B^{-3})$

- $\overline{\Lambda}$ ~ energy of light quark & gluon d.o.f.
- $\lambda_1 \sim \text{rms}$ momentum of *b* quark.
- $\lambda_2 \sim 0.13 \text{ GeV}^2$, extracted from $(m_{B^*} m_B)$
- Λ , λ_1 can be determined from
 - Lattice QCD [Kronfeld & Simone, hep-ph/0006345]
 - CLEO: hadronic spectral moments in $b \rightarrow c \ell v$
 - CLEO: photon energy spectrum moments in $b \rightarrow s\gamma$
- Theory:
 A.Falk, M. Luke, & M. Savage, PRD53 (2491) 1996.
 Z.Ligeti, M. Luke, A. Manohar

 M. Gremm & A. Kapustin, PRD55 (6934) 1997.
 and M. Wise PR D60, 034019(1999)

 W. Voloshin, PRD51 (4934) 1995.
 and M. Wise PR D60, 034019(1999)

$B \rightarrow X_c \ell v$ Hadronic Mass Moments

- Reconstruct the neutrino p_v & calculate the recoil mass M_X (p_ℓ >1.5 GeV/c).
- Fit the M_X spectrum with D, $D^* \& X_h$ modes.
- Extract moments: $(M_2 M_2) = 0.251 \pm 0.066$
 - $\langle M_X^2 M_D^2 \rangle = 0.251 \pm 0.066 \text{ GeV}^2$ Combine with $\langle E_{\gamma} \rangle$ from
 - $(b \rightarrow s\gamma)$ to get $\overline{\Lambda}$, λ_1 .

 $\langle E_{\gamma} \rangle = 2.346 \pm 0.032 \pm 0.011 \text{ GeV}$

$|V_{cb}|$ from $\overline{\Lambda}$, λ_1

 $\overline{\Lambda} = 0.35 \pm 0.07 \pm 0.10 \ GeV$

$$\lambda_1 = -0.238 \pm 0.071 \pm 0.078 \ GeV^2$$

We use

- **B**(B $\rightarrow X_c l \nu$)=(10.39±0.46)% (CLEO: PRL76 (1570) 1996)
- $\tau_{\pm} = (1.548 \pm 0.032)$ psec(PDG)
- $\tau_0 = (1.653 \pm 0.028)$ psec (PDG)
- $f_{+}/f_{00} = 1.04 \pm 0.08$

(CLEO: PRL 86, 2737 (2001), hep-ex/0006002)

hep-ex/0108033, submitted to PRL:

23

$$\Gamma(b \to clv) = (0.427 \pm 0.020) \times 10^{-10} \text{ MeV}$$
$$|V_{cb}| = (40.4 \pm 0.9 \pm 0.5 \pm 0.8) \times 10^{-3}$$
$$(\Lambda, \lambda_{I})_{exp} \quad \Gamma_{exp} \quad [\alpha_{S}, O(1/M_{B}^{-3})]$$
N.Mistry SLAC Summer Institute.

Exclusive Semileptonic *B* decays: |*V*_{*cb*}|

 $|V_{cb}| \text{ from } B \rightarrow D^* \ell v:$

Decay width:

$$\frac{d\Gamma}{dw} = \frac{G_F^2}{48\pi^3} G(w) F_{D^*}^2(w) |V_{cb}|^2$$

Strong interaction effects are in the form factor $F_{D^*}(w)$.

HQET: D* boost in B rest-frame

 $w = (m_B^2 + m_{D*}^2 - q^2) / (2m_B m_D^*)$ (1< w <1.5 : w = 1 when D* is a t rest B in yst end

HQET c onst ra ins form fa $E_M(dt) \Rightarrow 1$ a $sn_Q \Rightarrow \infty$.

G(w) is a known function, G(1)t = 0! (pha se-space).

Measure the decay rate $d\Gamma/dw$ & extrapolate to w = 1

[N early linear extra polation, but slope patura thet ern be mea sured.]

August 22, 2001

$|V_{cb}|$ from $B \rightarrow D^* \ell v$:

- 3.3 M *BB* events [3.1 *fb*⁻¹ CLEO-II data ON Y(4S)]
- Reconstruct events:
 - Leptons: (0.8 $< p_e < 2.4 \text{ GeV/c}$); (1.4 $p_{\mu} < 2.4 \text{ GeV/c}$).
 - $D^{*+} \rightarrow D^0 \pi^+; \quad D^0 \rightarrow K^- \pi^+. \quad \Delta m = (m_{K-\pi+\pi+} m_{K-\pi+}). \\ D^{*0} \rightarrow D^0 \pi^0; \quad D^0 \rightarrow K^- \pi^+. \quad \Delta m = (m_{K-\pi+\pi0} m_{K-\pi+}).$

August 22, 2001

N.Mistry SLAC Summer Institute.

$|V_{cb}|$ from $B \rightarrow D^* \ell v$ (contd.):

Backgrounds:

- $B \rightarrow D^* \pi \ell v \& B \rightarrow D^{**} \ell v$: separate out using $\cos \Theta_{B-D^* \ell} \& MM^2$ distr.
- ◆ Combinatorics; uncorr. $D^* \& \ell$; $B \rightarrow D^*(D_s \rightarrow X \ell v)$; continuum.
- Fit to signal & backgrounds in each *w* bin. ($\sigma_w = 0.03$).
- Combine D^{*+} & D^{*0} to obtain single distribution in w.

• Assume common $\Gamma_{B \to D\ell v}$; common F(w);

& CLEO (PRL 86): $(f_{+-}/f_{00})(\tau_{B^{-}}/\tau_{B^{0}}) = 1.11 \pm 0.08$

26

LEP get $s/V_{cb}/= (40.5 \pm 1.9 \pm 2.3) \times 10^{-3}$

• CLEO: $B(B \rightarrow D^* \ell \nu) = (5.66 \pm 0.29 \pm 0.33)\%$

August 22, 2001

 $F(1)^* |V_{cb}| \text{ from } B \rightarrow D^* \ell v$:

PRELIM IN ARY

$F(1)/V_{cb} = (42.4 \pm 1.8 \pm 1.9) \times 10^{-3}$

- A Global fit to (CLEO + LEP) shows consistency @ 7% c.l.
- ALEPH, OPAL, DELPHI & CLEO show large correlation between $F(1)/V_{cb}/ \& \rho^2$ values.

August 22, 2001

Charm Decays: Mixing & CP Violation

- Mixing & CP violation in Charm decays provide a unique opportunity to observe effects of new physics.
 - ♦ Within the Standard Model, mixing & CP violation are highly suppressed: ~ 0.1% 1%

New **CLEO** Results: $[9 fb^{-1}On \& Off the \Upsilon(4S)]$

- First Measurement of $D^0 \rightarrow K^+\pi^-\pi^0 \& D^0 \rightarrow K^+\pi^-\pi^+\pi^-$
 - ◆ "Wrong sign": Doubly Cabibbo Suppressed Decay (DCSD) or \overline{DD} mixing ⇒ decay rates & A_{CP} ; & limits on Mixing & DCSD
- Mixing parameters & A_{CP} for decays to CP-eigenstates $D^0 \rightarrow K^+K^-, \pi^+\pi^-; \& A_{CP}$ for $D^0 \rightarrow K_S^0\pi^0, \pi^0\pi^0, K_S^0K_S^0$.

$D^0 \rightarrow K^+ \pi^- \pi^0$ "Wrong sign" decays

- Can occur through mixing $(D^0 \rightarrow D^0 \rightarrow K^+ \pi^- \pi^0 (C \text{ F}) \text{Don}$ as a *DCSD*.
- CLEO measures the ratio of "Wrong sign" to "Right Sign" decays integrated over time:

$$R_{WS} \equiv \frac{\Gamma(D^0 \to K^+ \pi^- \pi^0)}{\Gamma(\overline{D}^0 \to K^+ \pi^- \pi^0)}$$

- Select $D^{*+} \rightarrow D^0 \pi^+_{slow} : D^0$ flavor is tagged by sign of π_{slow} .
- Two dimensional fits using $M_{cand}(K \pi \pi^0)$

$$\& \qquad Q \equiv M(K \pi \pi^0 \pi_s) - M_{cand} - m_{\pi}$$

August 22, 2001

N.Mistry SLAC Summer Institute.

30

$D^0 \rightarrow K^+ \pi^- \pi^0$ "Wrong sign" results

- Signal: 38±9 events
- Statistical 4.9σ

 $R_{WS} = \left(0.43^{+0.11}_{-0.10} \pm 0.07\right)\%$ PRL 87, 071802 (2001)

For Asymmetry: perform the analysis separately for D^0 & \overline{D}^0 :

$$\Delta_{\rm CP} \equiv \frac{\Gamma(D^0 \to f) - \Gamma(\overline{D^0} \to \overline{f})}{\Gamma(D^0 \to f) + \Gamma(\overline{D^0} \to \overline{f})} = 8 \begin{array}{c} ^{+25} \\ ^{-22} \end{array} \%$$

Limits on Mixing & DCSD

- Mixing amplitudes: $x \equiv 2M_{12}/\Gamma = \Delta M/\Gamma$: *via* virtual states $y \equiv \Gamma_{12}/\Gamma = \Delta \Gamma/2\Gamma$: *via* real states
 - SM: |x| suppressed by t a $\frac{2}{10}c$ & GIMnon-SM |x| could be >0.01.
- **DCSD** (~ $V_{cd}V_{us}^*$) & CFD (~ $V_{cs}V_{ud}^*$) ampls. w/ rel. phase δ :
 - define ratio of *rates* $R_D \equiv (\Gamma_{DCSD} / \Gamma_{CFD})$.
- Mixing & DCSD combined: $y' \equiv (yc \circ \delta x \sin \delta)$ a $md' \equiv (x \circ \delta s + y \sin \delta)$
- The ratio we measured can be expressed as:

$$R_{WS} \equiv \frac{\Gamma\left(D^0 \to K^+ \pi^- \pi^0\right)}{\Gamma\left(\overline{D}^0 \to K^+ \pi^- \pi^0\right)} = \overline{R}_D + y' \sqrt{\overline{R}_D} + \frac{1}{2} (x'^2 + y'^2)$$

We can then plot \overline{R}_D *vs y*' from our measurement, for limiting values of |x'| measured by CLEO in $D^0 \rightarrow K^+\pi^-$.

August 22, 2001

L imits on Mix ing & D C SD

"Wrong sign" Mixing & DCSD measurements:
 •FOCUS: Phys. Lett.B 485, 62 (2000)
 •CLEO (K⁺π⁻): PRL 84, 5038,(2000)
 •CLEO (Kππ⁰): PRL 87, 071802 (2001)

August 22, 2001

Cabibbo Suppressed decays to *CP*-eigenstates: $D^0 \rightarrow K^+K^-$, $\pi^+\pi^-$

- What's the interest here?:
 - SU(3) predicts, in the absence of FSI: $R \equiv \frac{\Gamma(D^0 \to K^+ K^-)}{\Gamma(D^0 \to \pi^+ \pi^-)} = 1$ but measured value is 2.8 ± 0.2[PD G] due to FSI?
 - Large FSI may include large strong phase differences δ_{strong} which may enhance *CP* violating terms.
- What do we measure?
 - Ratios to $D^0 \rightarrow K^- \pi^+$:
 - $A_{CP}(KK)$ & $A_{CP}(\pi\pi)$

$$R_{KK} \equiv \frac{\Gamma(D^0 \to K^+ K^-)}{\Gamma(D^0 \to K^- \pi^+)}, \quad R_{\pi\pi} \equiv \frac{\Gamma(D^0 \to \pi^+ \pi^-)}{\Gamma(D^0 \to K^- \pi^+)}$$

• Mixing parameter $y \equiv \Delta \Gamma/2\Gamma$: *CP*-eigenstates propagate as pure masseigenstates ~ $\exp{\{\Gamma(1-\eta_{CP}y)\}t}$ if CP is conserved. $[\eta_{CP}=\pm 1]$

• We measure lifetimes
$$\tau_+$$
 for $KK_{(CP+)}$ & $\pi\pi_{(CP+)}$ & τ for $K\pi_{(CP mix)}$.

Then
$$y_{CP-Eigenstate} = \eta_{CP} (\tau / \tau_{\pm} - 1)$$

August 22, 2001

$D^0 \rightarrow K^+K^-, \pi^+\pi^-$: CLEO Results <u>PRELIMINARY</u>

Ratios:

 $R_{KK} = (10.40 \pm 0.33 \pm 0.27) \%$ $R_{\pi\pi} = (3.5 \pm 10.16 \pm 0.1) \%$ $R = R_{KK} / R_{\pi\pi} = 2.96 \pm 0.16 \pm 0.15$

■ No evidence for Asymmetries: Separating D^0 & \overline{D}^0 (using $D^* \rightarrow D\pi$):

 $A_{CP}(KK) = (0.0\pm 2.2\pm 0.8) \%$

$$A_{CP}(\pi\pi) = (1 \pm 3.2 \pm 0.8) \%$$

- $A_{CP}(\pi^0 \pi^0)$, $A_{CP}(K_s^0 \pi^0)$, $A_{CP}(K_s^0 K_s^0)$, a 11 c onsist ent wit hPREMOS (2001)]
- No evidence for Mixing:

•
$$y_{CP+}(KK) = -0.019 \pm 0.029 \pm 0.016$$

• $y_{CP+}(\pi\pi) = + 0.005 \pm 0.043 \pm 0.018$ • $y_{CP}(\text{c omb in}) = -0.011 \pm 0.025 \pm 0.014$

August 22, 2001

N.Mistry SLAC Summer Institute.

35

Mix ing in the C harm Sector

- Compilation of recent results:
 - E791: PRL 77, 2384 (1996);
 - & PRL **83**, 32 (1999).
 - FOCUS: Phys Lett B485, 62 (2000)
 - **& (preliminary)**: hep-ex/0106093
 - BELLE (preliminary): hep-ex/0104053
 - CLEO (*K*⁺π⁻): PRL 84, 5038, 2000
 - CLEO (preliminary): hep-ex/0102006

August 22, 2001

N.Mistry SLAC Summer Institute.

36

The C L E O - c Program

- The planned CLEO-c program is aimed at these specific areas in Electroweak & QCD Physics:
 - Absolute branching ratios of a large number of charm decays, measured to 1%–2%.
 - Precise measurements of *form-factors* and *decay constants*, to improve our understanding of strong dynamics & to test the predictions of Lattice QCD.
 - Precise measurements of cc & bb quarkonia, through spectroscopy & decay.
 - Physics beyond the standard model through DDmixing, CP-violation & rare decays of charm & tau.

The C L E O - c Program

The overall aim is to explore a broad set of weak and strong-interaction phenomena.

These measurements will help remove the constraints, complications and uncertainties of strong dynamics that now limit measurements & understanding of weak-interaction physics.

- $|V_{ub}|$ limited by form-factor uncertainties in $b \rightarrow u \ell^+ v$.
- $|V_{td}|$ limited by *B* decay constant and bag parameter.
- $|V_{cb}|$ extraction from $b \rightarrow c \ell^+ v$ restricted to $q^2 = q_{max}$

Strong coupling is to be *expected* in physics beyond the *SM* (e.g., SUSY & Technicolor) – we need a better understanding & theory for it.

The C L E O - c D ata set

Here is what we propose:

- The CLEO-c program as a focused perspective for about three years of running, following an initial period of Upsilon data:
 - ◆ 2001-2002: 1–2 fb⁻¹ each on Y(1S), Y(2S), Y(3S), ...

We will start on this after the summer shutdown.

After CESR-c is approved and upgraded:

- 2003: 3 *fb*⁻¹ on Ψ(3770), 30M *DD* events.
- 2004: 3 fb^{-1} at $\sqrt{s} \sim 4100, 1.5 M D_s D_s$ events.
- 2005: 1 fb^{-1} on Ψ (3100), 1 Billion J/ Ψ decays.

What's unique about L E O - c

- A data set that is 20 to 500 times bigger than previous experiments.
- A state-of-the-art detector (CLEO-III) with
 - Excellent tracking resolution
 - Excellent shower resolution
 - RICH particle identification
 - Large solid angle
 - Flexible trigger and DAQ capability
- Parallel Data sets in the same detector:
 - Upsilon & Ψ resonances & $\gamma \gamma$ collisions

The C L EIDeflector

August 22, 2001

D ata Set: C omp arison with ex isting d ata.

- Upsilon resonances: 1– 2 fb⁻¹ each will amount to
 ~ 10 20 times existing world data sets.
- Ψ(3770): 3 fb⁻¹ ⇒ 30M DD events & 6M tagged D decays. [~ 300 times previous data set.]
- √s ~ 4100: 3 fb⁻¹ ⇒ 1.5M D_sD_s events, & 300K tagged D_s decays. [~ 480 times previous data set; ~ 130 times BES II data set.]
- Ψ(3100): 1 fb⁻¹ ⇒ 1 Billion J/Ψ decays. [~170 times previous data set; ~ 20 times BES II data set.]

D ata At C harm Threshold

- Advantages [similar to \overline{BB} studies at $\Upsilon(4S)$]:
 - Coherent initial state, with quantum numbers of the photon \Rightarrow many favorable constraints.
 - Pure $\overline{D}D$ or $\overline{D}_s D_s$ initial state, no extra particles.
 - Tagged, fully reconstructed events, with no background.
 - Neutrino reconstruction.
- Better than charm studies at √s = 10.6 GeV: at threshold ⇒ large cross section & low multiplicity!
 - SIGNAL/BACKGROUND: On the Ψ(3770), DD:continuum is 1:1, while at 10.6 GeV, cc production is only a small part of the total hadronic cross section.

At C harm Threshold

Clean tagged events, no background in hadronic tag modes ⇒ *Absolute* branching ratios!

August 22, 2001

Branching ratios at C harm Threshold

Background free hadronic tag modes:

August 22, 2001

Semil ep tonic D eca $W_{\mathcal{S}_{\mathcal{K}}}$ ², $|f(q^2)|^2$

August 22, 2001

Pure L ep tonic D ecay s: D ecay C onstant

47

Quark onia & QC D

- One Billion J/ Ψ decays (1 fb⁻¹) ⇒ a glue factory!)
 - $J/\Psi \rightarrow \gamma gg \rightarrow \gamma X$: Look for glueballs (gg), hybrids (gqq) & other exotic states.
 - + [1 Gev/c² < M_{χ} < 3 Gev/c²], partial wave analysis.
 - Masses, spin-parity, decay modes, etc.
 - Inclusive γ spectrum (σ =20 MeV) for states with Br ~ 10⁻⁴.
- resonances:(~4 fb⁻¹)⇒ Spectrosopy & transitions.
 - Masses; Leptonic widths; photon transitions; exotic states.
 - Compare with Lattice QCD predictions.
 - Corroborate or debunk glueball candidates.
- $\gamma \gamma \rightarrow X$: Corroborate or debunk glueball candidates ($\Gamma_{\gamma \gamma} < 1 \text{ eV}$)

Probing New Phy sics

Look for enhancements in phenomena expected to be highly suppressed in the *SM*.

Rare Decays : Br > 10⁻⁶ accessible.

D*D* mixing: highly suppressed in the SM.

• Systematic studies exploiting oherence c onditions at threshold.

♦ C omplement a ry c onst ra int ψ (3770) → $DD_{(C = 1)}$

& $\psi (4140) \rightarrow \gamma DD_{(C =+1)} d$ ec a ys.

• D C SD is $\operatorname{zer}(\mathfrak{F}\mathfrak{F}\mathfrak{F}0) \to \overline{D}D_{(C=1)} \to \mathfrak{K}^-\pi^+) (\mathfrak{K}^-\pi^+)_{0 \text{ nl yM ixing!}}$

• *CP* violation: direct $A_{CP} < 0.01$ in *SM*.

• δ_{strong} (FSI) may allow enhanced A_{CP} (*New Physics*).

♦ QM c oherenc e: $1 \text{ ook } \psi \phi \delta 770 \rangle_{(CP=+1)} \rightarrow \overline{DD} \rightarrow K^+K^- \rangle_{(CP=+1)} (\pi^+\pi^-)_{(CP=-1)}$

August 22, 2001

C E SR $e^{\pm}e^{\pm}c^{+}$ collisions from Ψ to Υ

- If approved, CESR will be modified to provide high-luminosity colliding beams over an extended energy range.
- √s: 3.1 GeV 11.2 GeV, covering the Ψ & Υ resonances.
- Luminosities will be large enough to increase the world's data sample by an order of magnitude and more.

Accel erator I ssues at I ow energy

The energy range is usually limited by total synchrotron radiation (SR) power at the upper end (RF limit) & by too little radiation & damping at the lower end.

SR Power ~ E^4 for fixed bend radius.

- At low energy the horizontal beam emittance decreases
 (*ɛ_x* ~ *E*²) & space charge density limits the charge per bunch & thus the total beam current.
- The damping time increases significantly:

 $\tau_{\text{damping}}(1.88 \text{ GeV}) \approx 25 \times \tau_{\text{damping}}(5.3 \text{ GeV})$

and will inhibit the injection rate.

We have to increase radiation effects at low energies.

Accel erator I ssues: scal ing

- The beam-beam interaction may limit luminosity at lower beam energies (reduced damping between collisions).
- Overall, one can expect luminosity to scale as
 L ~ E⁴, but typically, one sees L ~ E⁴ to E⁷ in
 various colliders without special efforts to maintain radiation damping at low energies.
- CESR will use enhanced radiation effects by adding wigglers operating at 2.1 Tesla.
- When wiggler radiation dominates, the scaling with energy is modified.

C E SR - c Parameters

E₀ [GeV]	1.55	1.88	2.5	5.3
Luminosity [10 ³³ cm ⁻² s ⁻²]	0.15	0.30	0.50	1.25
Beam current [mA/beam]	130	180	230	360
β_{y}^{*} [cm]	1.0	1.0	1.0	1.8
ξ_y	0.035	0.04	0.04	0.06
ξx	0.028	0.036	0.034	0.028
σ_{E}/E_{0} [10 ⁻³]	0.75	0.81	0.79	0.67
$ au_{damp}$ [msec]	69	55	52	22
Wiggler Field [Tesla]	2.1	2.1	2.1	none
ε _x [nm-rad]	230	220	215	205

Planned Mod if ications to C E SR

- Install 18 m of wiggler magnets with B_{pk} = 2.1 Tesla.
 - "Superferric" magnet construction.
 - Modular magnet length 1.33 m, 40 cm period.
 - Modular cryostat length 1.7m.
 - ♦ 14 units in south part of CESR ring, near utilities.
 - Prototype wiggler module construction in progress now.
- Complete wiggler installation by end of 2002.
- Install SC Quads in IR to decrease β^* in progress.
- Upgrade RF to shorten bunch length in progress.

Sup erf erric Wiggl ers

3-pol e t est mod ul e

Such wigglers are needed in wiggler-dominated damping rings for Linear Colliders: we can study non-linearities in CESR-c.

August 22, 2001