The Standard Model Higgs Searches at LEP

Second Lecture Outline:

- 1. Brief Theory Reminder: Mass, Decays, Production
- 2. The Situation before LEP
- 3. Higgs Boson Searches at LEP 1
- 4. Higgs Boson Searches at LEP 2
- 5. 2001, A Spoilt Odyssey

SLAC Summer Institute August 13-24, 2001

"Theory": SM Higgs Boson Mass and Couplings

August 13-24, 2001

"Theory": SM Higgs Boson Mass

The mass m_H is mostly unknown, but ...

H $\lambda = m_{\rm H}^2 / v^2$

As for any other coupling constant, the particle content of the standard model determines the running of λ up to a scale Λ , at which the model is no longer valid.

The following conditions must be realized:

$$m_{\rm Higgs}^{\rm EW} = 108_{-38}^{+57} \, {\rm GeV}/c^2$$

SLAC Summer Institute August 13-24, 2001

"Theory": SM Higgs Boson Decays

The decay branching ratios depend only on m_H:

SLAC Summer Institute August 13-24, 2001

"Theory": SM Higgs Boson Production at LEP

Dominant at LEP: The Higgs-strahlung process (The production cross section depends only on m_H)

(Large coupling to the $Z \Rightarrow$ Only sizeable cross section)

SLAC Summer Institute August 13-24, 2001

The situation before LEP (I)

Quite a few searches in hadron decays:

The situation before LEP (II)

Only one unambiguous limit:

M. Davier and H. Nguyen Ngoc, 1990

August 13-24, 2001

Probes of Electroweak Symmetry Breaking at LEP and SLC

7

Direct Searches at LEP 1

August 13-24, 2001

Search for acoplanar jets ($e^+e^- \rightarrow Hv\bar{v}$)

SLAC Summer Institute August 13-24, 2001

Search for acoplanar jets ($e^+e^- \rightarrow Hv\bar{v}$)

SLAC Summer Institute August 13-24, 2001

Energy Losses in the Beam Pipe

SLAC Summer Institute August 13-24, 2001

Energy Losses in Semi-Leptonic b decays

SLAC Summer Institute August 13-24, 2001

Energy Losses due to I.S.R.

(Initial State Radiation)

SLAC Summer Institute August 13-24, 2001

Energy Losses due to I.S.R. + Semi-Leptonic b decay

A Semi-Leptonic decay in bbg (3-jet) events

SLAC Summer Institute August 13-24, 2001

Two Semi-Leptonic decays in bbg (3-jet) events

August 13-24, 2001

Two Semi-Leptonic decays + Three Jets + I.S.R. (!!)

August 13-24, 2001

Probes of Electroweak Symmetry Breaking at LEP and SLC

Higgs Boson Searches at LEP 1: Result

With the 4 LEP expts combined, 4.0 signal events were expected. None were observed.

Saturation was being reached:

SLAC Summer Institute August 13-24, 2001

Ηνν

Direct Searches at LEP 2

He+e-

SLAC Summer Institute August 13-24, 2001

Signal vs Background (I)

August 13-24, 2001

Elements of b tagging (I)

August 13-24, 2001

Elements of b tagging (II)

August 13-24, 2001

Elements of b tagging (III)

Separation of HZ, W⁺W⁻ and qq events at LEP 2 energies

(b tagging only)

(Jets 1 and 2 are chosen to be the jet-pairing most compatible with originating from a Z decay, according to the di-jet invariant mass, the decay angle, ... etc.)

SLAC Summer Institute August 13-24, 2001

Signal vs Background (II)

Combine b-tagging and kinematics in a single Neural Network / Likelihood / ... :

GLOBAL NEURAL NETWORK OUTPUT

SLAC Summer Institute August 13-24, 2001

Signal vs Background (III)

- Overall Likelihood of a given event sample: $Q = \prod_{i=1}^{n} (s_i + b_i)/b_i$;
- Larger in presence of signal;
- Negative Log-Likelihood L = -2 Log Q (Smaller in presence of signal).

LEP Optimization: Luminosity or Energy ?

A typical (and realistic) example:

□ Beam Energy: 102 GeV;

□ 200 pb⁻¹ / experiment.

The 3σ sensitivity of the Higgs boson search is about 112 GeV/c², i.e., only 1 GeV/c² away from the "kinematic threshold" m_H = $\sqrt{s} - m_Z$.

To gain 2 GeV/c² of sensitivity, two possibilities :

- I ncrease the beam energy by 1 GeV;
- Multiply the luminosity by 4.

1 GeV of beam energy (feasible) ⇔ A factor of 4 in luminosity (just a dream)

SLAC Summer Institute August 13-24, 2001

Beam Energy increases in LEP

Energy Loss per Turn $\propto E^4 / \rho$ (Synchrotron Radiation)

Maximum Beam Energy ∝ [<u>RF Voltage</u> × Bending Radius]^{1/4}

	Year	√s (GeV)	# Cu Cavities	# SC Cavities	RF (MV)
RF Voltage;	1989-95	mz	128	None	180
(130 MV for E = 45.6 GeV;	1996	161	128	144	1600
		172		176	2000
≥ 3 GV for E = 100 GeV;	1997	183	52	240	2500
	1998	189	52	272	2850
\rightarrow Go for SC RF Cavities)	1999	192	48	288	3000
		196			\downarrow
× .		200			\downarrow
Increase Bending Radius!		202			3550
3		205		288	3650
Or increase both.	2000	\downarrow	56		
		209.2			

SLAC Summer Institute August 13-24, 2001

LEP I mprovements in 1999/2000

1) <u>Increase RF Gradient</u> & <u>Upgrade Cryogenics</u>

- 272 Nb/Cu cavities in 1998; 2850 MV available, 189 GeV
- 288 Nb/Cu cavities in 1999;
 3000 MV available, 192 GeV
- Condition all cavities, damp the oscillations, install part of LHC cryogenics, improve the phasing...
 3500 MV available (end 1999)
 3650 MV available (2000)

E:
$$192 \rightarrow 200 \rightarrow 204 \text{ GeV};$$

m_H: $100 \rightarrow 108 \rightarrow 112 \text{ GeV/c}^2$

SLAC Summer Institute August 13-24, 2001

Improvements in 1999/2000 (Cont'd)

- 2) <u>I mprove stability &</u> <u>Decrease security margin</u>
- Two- to one-klystron margin (Fill duration $2h30 \rightarrow 1h30$):

E: 204 \rightarrow 205.5 GeV; m_H: 112 \rightarrow 113 GeV/c²

- Mini-ramp to no margin at all (Fill duration 15 minutes!)
- Turnaround time reduced to 45 mins:

E: 205.5 \rightarrow 207 GeV; m_H: 113 \rightarrow 114 GeV/c²

SLAC Summer Institute August 13-24, 2001

Improvements in 1999/2000: Results

220 pb⁻¹ delivered in 2000:

- starting at 204-205 GeV (April-May)
- Regularly above 206 GeV (from June onwards)
- Only above 206.5 GeV (September to November)

SLAC Summer Institute August 13-24, 2001

First pb⁻¹'s above 206 GeV: First thrills at 115 GeV/c²

b-tagging

(0 = light quarks, 1 = b quarks)

- Higgs jets: 0.99 and 0.99;
- Z jets: 0.14 and 0.01.

SLAC Summer Institute August 13-24, 2001

Probes of Electroweak Symmetry Breaking at LEP and SLC

μ

A few candidate events at 115 GeV/c²

The 14 Most Significant Events

s/b > 0.3: Expected si	s/b	Rec. mass (GeV/c ²)	Channel	Expt	
			114	Hqq	ALEPH
Expected: 7	Number of events	2.3	112	Нqq	ALEPH
Observed: 14	compatible with s+b	2.0	7 114 115	Ηνν	L3
		0.90	110	Нqq	ALEPH
Number of events	In ALEPH: 6	0.60	118	Hee	ALEPH
in each experiment	In 13:3	0.52	<mark>,</mark> 113	Нqq	OPAL
compatible with being	In OPAL: 3	0.50	111	Нqq	OPAL
(~1.6 bkg expected)		0.50	115	Ηττ	ALEPH
		0.50	115	Нqq	ALEPH
			114	Ηνν	L3
In Haā: 9 (70%)	Number of events	0.47	115	Нqq	L3
	in each Z decay	0.45	97	Нqq	DELPHI
	compatible with	0.40	114	Нqq	DELPHI
In HI⁺I⁻: 2 (10%)	HZ predictions	0.32	104	Ηνν	OPAL

SLAC Summer Institute August 13-24, 2001

A Few Consistency Checks (I)

Good consistency with s+b distribution; Not an "ALEPH excess", but a LEP excess

Comparison of the four channels:

Good consistency with s+b according to expected separation; Not a "4-jet excess", but a Higgs excess

10

-20

-10

SLAC Summer Institute August 13-24, 2001

Probes of Electroweak Symmetry Breaking at LEP and SLC

-20

-10

0

10

0

10

A Few Consistency Checks (II)

Distribution of s/b for the whole data sample:

Excess visible all the way down to ~ 0.1

Cutting tighter or looser on s/b:

Good Consistency with Signal+Background Hypothesis For Any Purity Cut

Not a "cut-around-the data" effect

SLAC Summer Institute August 13-24, 2001

A Few Consistency Checks (III)

- Regular increase of the significance;
- Overall compatibility with $m_{H} = 115 \text{ GeV/c}^2$.

Minimum of the log-likelihood as deep as could have been a priori expected

August 13-24, 2001

A Few Consistency Checks (IV)

Question: Is the background understood at the kinematic limit (115+91 = 206 GeV)?

Answer: Let's have a look at lower energy data (500 pb⁻¹ between 183 and 205 GeV)

<u>Question</u>: Why is there a 2σ excess all the way down to 100-105 GeV

Answer: It is as expected for a 115 GeV/c² Higgs signal because of mass resolution.

2001: A Spoilt Odyssey

SLAC Summer Institute August 13-24, 2001

Ongoing Combination (still preliminary)

SLAC Summer Institute August 13-24, 2001

Probes of Electroweak Symmetry Breaking at LEP and SLC

-2 In Q

Conclusions of the 2nd Lecture

After 12 years of outstanding Physics at LEP and SLC:

• Precision electroweak measurements:

$$m_{H} = 108 \frac{+57}{-38} GeV/c^{2}$$

Direct Searches (~2-3σ effect)

$$m_{H} = 115.6 {}^{+0.8}_{-0.7} GeV/c^{2}$$

±15 GeV/c² with 5 more years (two at the Z pole, three at high energy)

Impressive Consistency!

Could have been confirmed in 2001 $\Delta m_{\rm H} = 100 \text{ MeV/c}^2$ with three years

About 5-10 years needed for a confirmation

- Lots of upgrades still to be done to reach 15 fb⁻¹ in 2007 at the Tevatron;
- Lots of things still to be done to make LHC start in 2007;
- The end of the decade might be hot.

SLAC Summer Institute August 13-24, 2001

