Brookhaven Muon g-2 Experiment

 A Virtual Accelerator to Probe the Standard Model

Professor Priscilla Cushman
University of Minnesota
SLAC Summer School Topical Conference Aug 22-24, 2001

Goals of E821

-20-fold improvement in Muon Anomalous Magnetic Moment

- Test of Electroweak Renormalizability
- Search for "new physics"
-Improved limit on Muon Electric Dipole Moment
$-d_{\mu}<5 \times 10^{-21} \quad \mathrm{e}-\mathrm{cm}$
-Dilated Muon Lifetime in accelerated frame of reference
-Tests of CPT
- Compare $\tau\left(\mu^{+}\right)$vs $\tau\left(\mu^{-}\right)$
- Compare a($\left.\mu^{+}\right)$vs $a\left(\mu^{-}\right)$

The g-2 Collaboration

R.M. Carey, W. Earle, E. Efstathiadis, M. Hare, E.S. Hazen, F. Krienen, J.P. Miller, J. Paley, O. Rind, B.L. Roberts, L.R. Sulak, A. Trofimov
Boston University

H.N. Brown, G. Bunce, G.T. Danby, R. Larsen, Y.Y. Lee,W. Meng, J.-L. Mi, W.M. Morse, C. Ozben, C. Pai, R. Prigl, R. Sanders,Y.K. Semertzidis, M. Tanaka, D. Warburton

Brookhaven National Laboratory
A. Grossmann, K. Jungmann, P. Neumayer, G. zu Putlitz
University of Heidelberg

U. Haeberlen
Max Planck Institute

P.T. Debevec, W. Deninger, F. Gray, D.W. Hertzog, C.J.G. Onderwater, C. Polly, S. Sedykh, M. Sossong, D. Urner University of Illinois
P. Cushman, L. Duong, S. Giron, J. Kindem, I. Kronkvist, R. McNabb, D. Miller, C. Timmermans, D. Zimmerman University of Minnesota
V.P. Druzhinin, G.V. Fedotovich, B.I. Khazin, I.Logashenko, N.M. Ryskulov, S. Serednyakov, Yu.M. Shatunov, E. Solodov Budker Institute
H. Deng, S.K. Dhawan, F.J.M. Farley, M. Grosse-Perdekamp, V.W. Hughes, D. Kawall, W. Liu, J. Pretz, S.I. Redin, A. Steinmetz Yale University
A. Yamamoto
KEK
M. Iwasaki, M. Kawamura
Tokyo Institute of Technology
Y. Orlov
Cornell University

D. Winn
Fairfield University

Why Study Magnetic Moments Anyway?

$$
\mu=g \frac{e K}{2 m c} \frac{\sigma}{2}
$$

Where g is the gyromagnetic ratio which relates the angular momentum to the intrinsic spin
$g=2$ for charged, point-like, spin 1/2 particles.

Hadrons
Large deviations => quark substructure

\square Leptons

Small deviations => coupling to virtual fields

$$
\begin{aligned}
& \mathrm{g}(\text { neutron })=-3.82 \neq 0 \\
& \mathrm{~g}(\text { proton })=+5.58 \neq 2
\end{aligned}
$$

Deviations from $g=2$ are characterized by the Anomaly: $\quad a_{\mu}=\underline{g}-2 \quad\left(a_{\mu} \sim .001\right.$ for a muon $)$

THEORY (Standard Model) says:

$$
\begin{aligned}
& \mathbf{a}_{\mu}=\mathbf{a}_{\mu}(\text { QED }) \quad+\mathbf{a}_{\mu}(\text { weak }) \quad+\mathbf{a}_{\mu}(\text { hadron }) \\
& \sim 10{ }^{-3} \\
& \sim 10-9 \\
& 67 \times 10^{-9} \\
& \mathbf{a}_{\mu}=.001165847056(29)+.00000000151(04)+.00000006739(67) \Rightarrow 0.57 \mathrm{ppm}
\end{aligned}
$$

Compare to Experiment:

a_{μ} (CERN combined)	.001165923*	(8*)	\Rightarrow	7.3 ppm
$\mathbf{a}_{\mu+}$ (BNL'97)	.001165925*	(15*)	\Rightarrow	13 ppm
$\mathbf{a}_{\mu+}$ (BNL'98)	.001165919*	(6*)	\Rightarrow	5 ppm
$\mathrm{a}_{\mu+}$ (BNL'99)	. 0011659202	(16)	\Rightarrow	1.3 ppm
$\mathbf{a}_{\mu+}\left(\mathbf{B N L}{ }^{\text {00) }}\right.$ (by Dec ${ }^{\text {'01) }}$.00116592**	(8)	\Rightarrow	0.7 ppm

QED Contributions to the Muon Anomaly

$$
\left(\frac{\alpha}{\pi}\right)
$$

Structure of QED is identical for e and μ, but with different values due to asymmetry in $\left(\frac{\alpha}{\pi}\right)^{2}$
 the vacuum polarization terms, i.e. Muons are heavier!

$$
\left(\frac{\alpha}{\pi}\right)^{3}
$$

$$
\left(\frac{\alpha}{\pi}\right)^{4} \quad \text { Over } 700 \text { Feynman diagrams, whew! }
$$

Weak Contribution

(corrections go as

$$
\left.\mathrm{m}_{\mathrm{L}}^{2} / \mathrm{m}_{\mathrm{w}}^{2}\right)
$$

\longrightarrow 1st Order Diagrams (Higgs contribution is negligible)

$$
\begin{equation*}
a_{\mu}^{w}=\frac{10}{3} \frac{G_{\mathrm{F}} \mathrm{~m}_{\mu}^{2}}{8 \sqrt{2} \pi^{2}}+\vartheta\left(\frac{m_{\mu}}{m_{w}}\right)^{4} \tag{+3.3ppm}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{a}_{\mu}^{2}=-\left(\frac{5}{3}-\frac{\left(3-4 \cos ^{2} \theta_{\mathrm{w}}\right)^{2}}{3}\right) \frac{\mathrm{G}_{\mathrm{F}} \mathrm{~m}_{\mu}^{2}}{8 \sqrt{2} \pi^{2}}+\vartheta\left(\frac{\mathrm{m}_{\mu}}{\mathrm{m}_{\mathrm{w}}}\right)^{4} \tag{-1.6ppm}
\end{equation*}
$$

2-loop Diagrams (Reduces electroweak by $22.6 \%)$ (both boson and fermion loops)

Total $E W=+1.30 \pm 0.03 \mathrm{ppm}$

Electron Anomalous Magnetic Moment

Experiment (Dehmelt, Van Dyck, etc. at Univ. of Washington)

$$
\begin{aligned}
& \mathrm{a}\left(\mathrm{e}^{-}\right)=1159652188.4(4.3) \times 10^{-12}(3.7 \mathrm{ppb}) \\
& \mathrm{a}\left(\mathrm{e}^{+}\right)=1159652187.9(4.3) \times 10^{-12}(3.7 \mathrm{ppb})
\end{aligned}
$$

Turn it around: Best value for fine structure constant comes from the Electron Anomaly

Experimental Results vs Theory

A Sampler of "New Physics"

Allowed Regions of SUSY (direct searches) in \mathbf{a}_{μ} space

(courtesy of Toru Goto)
What if $\Delta a_{\mu}=a^{S U S Y} ?$

At $95 \% \mathrm{CL}$, the left-handed scalar muon mass must by smaller than 600,900 and $1500 \mathrm{GeV} / \mathrm{c}^{2}$ for $\tan \beta 10,20$ and 40 , respectively.

Hadronic Contributions

Data required

\Rightarrow 1st order thru
$\mathrm{a}_{\mu}^{\text {had }} \mathrm{VP}^{2}=\left(\frac{1}{4 \pi^{3}}\right) \int_{4 \mathrm{~m}^{3}}^{\infty} \sigma_{\mathrm{H}}(\mathrm{s}) \mathrm{K}(\mathrm{s}) \mathrm{ds}$
$(69.24 \pm 0.53 \mathrm{ppm}$, Davier + Hocker '98)

\Rightarrow higher order
($-1.00 \pm 0.05 \mathrm{ppm}$, Alemany, Davier, Hocker '98)

\longrightarrow Light-by-light (model dependent)
$(-0.85 \pm 0.21 \mathrm{ppm}$, Average of Hayakawa, Kinoshita '98 and Bijnens, Pallante, Prades '96)

Comparison of First Order Hadronic Evaluations

$$
\begin{aligned}
& <a_{\mu}>_{\exp }=(116592023 \pm 151) \times 10^{-11} \\
& a_{\mu}(\mathrm{QED})=116584705.7(2.9) \times 10^{-11} \\
& a_{\mu}(\text { Weak })=152(4) \times 10^{-11} \\
& a_{\mu} \text { (Higher order hadronic) }=-185 \pm 26 \times 10^{-11} \\
& \text { Subtracting these from }\left\langle a_{\mu}\right\rangle_{\exp } \text { gives } \\
& a_{\mu}(\operatorname{Had} ; 1)+a_{\mu}(\text { New? })=7350(153) \times 10^{-11}
\end{aligned}
$$

How to Measure a Magnetic Moment

Store your particle in a magnetic bottle (uniform B and quadrupole E) and watch it precess

ELECTRONS

$$
\begin{aligned}
& \text { Penning Trap }\left(\mathrm{N}_{\mathrm{e}}=1\right) \\
& \mathrm{E}=\mathrm{meV} \quad\left(\mathrm{~T}=4.2^{\circ} \mathrm{K}\right) \\
& \omega_{\mathrm{s}}=\frac{\mathrm{g}}{2} \frac{\mathrm{eB}}{\mathrm{mc}}
\end{aligned}
$$

MUONS oops!, they decay! So dilate them...

$$
\begin{aligned}
& \text { Storage Ring }\left(\mathrm{N}_{\mu}=1600-17000\right) \\
& \mathbf{E}=3 \mathrm{GeV} \\
& \omega_{\mathrm{s}}=1+\gamma\left(\frac{\mathrm{g}-2}{2}\right) \frac{\mathrm{eB}}{\mathrm{mc}} \gamma \\
& \omega_{\mathrm{a}}=\omega_{\mathrm{s}}-\omega_{\mathrm{c}}=\left(\frac{(\mathrm{g}-2}{2}\right) \frac{\mathrm{eB}}{\mathrm{mc}}
\end{aligned}
$$

Quadrupole E field gives additional term in $\omega_{\mathrm{a}}: \quad+\frac{\mathrm{e}}{\mathrm{mc}}\left(\mathbf{a}_{\mu} \frac{-1}{\gamma^{2}-1}\right) \beta \times \mathbf{E}$
Which vanishes at the "magic momentum" of $3.094 \mathrm{GeV} / \mathrm{c}$

THE g-2 EXPERIMENT

The g-2 Muon Storage Ring is a Technological Wonder! Some Fun Factoids

- The World's Largest Diameter Superconducting Coil
- Powered by a 5 Volt, 5200 Amp Power Supply

Regulated to < 0.3 ppm

- Held by straps: Shrinks by $\Delta \mathrm{r}=30 \mathrm{~cm}$ when cooled, Expands by $\Delta \mathrm{r}=3 \mathrm{~mm}$ when powered
- 680 Tonne, 14 m diameter C-shaped Magnet

Yoke machined to $\Delta \mathrm{r}=130 \mu \mathrm{~m}$ over 7 m
Pole tips (vacuum cast $.004 \%$ carbon steel) machined flat to $0.8 \mu \mathrm{~m}$

- Field at $\mathrm{B}=1.45$ Tesla

Uniform to 1 ppm with current feedback
Measured to 0.3 ppm using NMR (375 fixed probes \& 17 trolley probes)

- Quench resistor is a $40 \mathrm{~m} \Omega$ iron grid resistor weighing 100 lbs .
to dissipate 6.1 M joules in 30 seconds. $\left(\Delta \mathrm{T}=700^{\circ} \mathrm{C}\right)$

Blind Analysis

where $R=\omega_{a} / \omega_{p} \quad$ is measured by E821 and $\quad \lambda=\mu_{\mu} / \mu_{\mathrm{p}} \quad$ from muonium hyperfine structure

Offline Team (4 + analyses)
ω_{a}

Magnet Team (2 analyses)
ω_{p}

- Both ω 's and all analyses have computer-generated secret offsets.
- Study stability of R under all conditions
- Finish all studies and assign all uncertainties BEFORE revealing offset.

Beam Tube Trolley

 Maps the Magnetic Field once every couple days (NMMR probes)

Magnetic field integrated over azimuth. 2 ppm contours (3μ T)

Goal: 1 ppm homogeneity, measured to 0.1 ppm

BNL integrated field contour plots

NMR Proton Frequency

$$
\omega_{\mathbf{p}} / 2 \pi=61,791,256 \pm 25 \mathbf{H z}
$$

B_{0}	Calibrated Spherical $\mathrm{H}_{2} \mathrm{O}$ Probe	0.05 ppm
$\mathrm{B}\left(\mathrm{r}, \mathrm{t}_{0}\right)$	Trolley NMR calibration and B_{0}	0.22
$\mathrm{~B}(\mathrm{r}, \mathrm{t})$	Interpolation with fixed probes	0.15
$\mathrm{~B}(\mathrm{r}, \mathrm{t})$	Inflector fringe field (gone in 2000)	0.20
$\langle\mathrm{~B}\rangle=>\omega_{\mathrm{p}}$	Average over muon distribution	0.12
Others	(Trolley voltage; kicker eddy currents; higher multipoles)	0.15

Total Systematic Uncertainty on $\omega_{\mathrm{p}} \quad 0.4 \mathrm{ppm}$

ω_{α} Analysis: Finding the Positron Arrival Time

Complete waveform from calorimeter is digitized with 2.5 ns sampling
-Find pulses from 24 detectors around ring
-Parameterize pulse shape for each detector and run condition
-Energy and time cuts to remove background, understand pileup
-Fill Histogram: Number of decay e's vs fitted pulse time

ω_{a} Analysis = Fitting the wiggle

 MMMMMMMM

The Challenge

1999: $0.9 \times 10^{9} \mathrm{e}^{+}(\mathrm{E}>2 \mathrm{GeV})$
Obtain an acceptable χ^{2} /dof with 10^{9} events in one histogram of 4000 bins!
$\mathrm{N}_{\mathrm{o}} \mathrm{e}^{-\mathrm{t} / \tau}\left(1+\mathrm{A} \cos \left(\omega_{\alpha} \mathrm{t}+\varphi\right)\right)$
is no longer good enough.

Main Disturbances

- Pileup of real pulses <5 ns apart
1% at earliest times: model and subtract
- Muon Losses
bump beam high and scrape edges (first $11 \mu \mathrm{~s}$)
triple coincidences of scintillator paddles measure what's left
- Rate dependent calorimeter response
changes the effective energy threshold
in situ laser calibration system
- Coherent Betatron Oscillations
image of the inflector exit moves around the ring as a beat frequency of w_{c} and w_{b} fiber harp and traceback chamber measure stored muon profile vs time
- Bunched beam
randomize time spectrum in bins of cyclotron period

Strategy: Put additional terms in fitting function

Find an insensitive method and
Establish the magnitude of all unaccounted uncertainties

Multi-parameter fits

Modify 5-par fit: $\mathrm{N}(\mathrm{t})=\mathrm{N}_{0} \mathrm{e}^{-\mathrm{t} \tau}\left(1-\mathrm{A}(\mathrm{E}) \cos \left(\omega_{\mathrm{a}} \mathrm{t}+\varphi(\mathrm{E})\right)\right)$ as follows
$\mathrm{n}(\mathrm{t})=[\mathrm{N}(\mathrm{t})+\mathrm{PU}(\mathrm{t})+\mathrm{B}(\mathrm{t})] \times[1+\mathrm{CBO}(\mathrm{t})] \times[1+\operatorname{MuLoss}(\mathrm{t})]$
$10^{-2} \quad 10^{-5}$
10^{-4}
10^{-2}

Ratio Method

Split data into histograms J,K, L and form ratio

$$
\begin{aligned}
& \frac{\mathrm{J}(+1 / 2 \text { wiggle })+\mathrm{K}(-1 / 2 \text { wiggle })-2 \mathrm{~L}(+0)}{\mathrm{J}(+1 / 2 \text { wiggle })+\mathrm{K}(-1 / 2 \text { wiggle })+2 \mathrm{~L}(+0)} \\
& =\mathrm{A}(\mathrm{E}) \cos \left(\omega_{\mathrm{a}} \mathrm{t}+\varphi(\mathrm{E})\right) \times[1+\mathrm{PU}(\mathrm{t})] \\
& \text { where the frequency is isolated from the } \\
& \text { "exponentially" falling background distribution }
\end{aligned}
$$

Fiber Harp measures beam dynamics (destructively)

"Fast Rotation" - Cyclotron Frequency of muon bunches

For ω_{a} analysis, randomize across a bin width of 149.185 ns

Rate of muon debunching => Muon radial distribution

Systematic Uncertainties

Total $\delta \omega_{\mathrm{a}}$ systematics $=0.25 \mathrm{ppm}$

Pileup	0.13 ppm
AGS background mis-tunes	0.10 ppm
Muon Losses	0.10 ppm
Timing Shifts	0.10 ppm
E-Field and Pitch correction	0.08 ppm
Binning and Fitting procedure	0.07 ppm
Coherent Betatron	0.05 ppm
Bin randomization (debunching)	0.04 ppm
Gain Instability	0.02 ppm

Total $\delta \omega_{\mathrm{p}}$ systematics $=0.40 \mathrm{ppm}$
Total statistical $=1.25 \mathrm{ppm}$
Total Uncertainty $=1.3 \mathrm{ppm}$

4 Independent Analyses and 2 Production Streams

$$
143.17 \pm 1.24 \pm 0.5
$$

Conclusions

- Most precise a_{μ} in a single experiment
$\Rightarrow 1.3 \mathrm{ppm}$ on the anomaly (2.6 ppb on g)
\Rightarrow World Average is now at 1.3 ppm
- Experimental value differs from SM by 2.6σ
\Longrightarrow provide new limits on speculative theories
\Longrightarrow encourages better determination of a_{u} (hadronic)
- Data for 0.7 ppm is being analyzed now
- Data-taking for μ^{-}is completed
\Rightarrow CPT limit
\Longrightarrow Combined $\mu^{+} \mu^{-}$statistics will reach 0.4 ppm
- Further experiments planned for the $\mathrm{g}-2$ storage ring
\Rightarrow direct mass limit on v_{μ}
\Longrightarrow electric dipole moment of muon

