Brookhaven Muon g-2 Experiment A Virtual Accelerator to Probe the Standard Model

Professor Priscilla Cushman University of Minnesota

SLAC Summer School Topical Conference Aug 22-24, 2001

Goals of E821

•20-fold improvement in Muon Anomalous Magnetic Moment

- Test of Electroweak Renormalizability
- Search for "new physics"

•Improved limit on Muon Electric Dipole Moment

 $-d_m < 5 \times 10^{-21} e-cm$

•Dilated Muon Lifetime in accelerated frame of reference

•Tests of CPT

- Compare t(mt) vs t(m)
- Compare $a(\mathbf{m})$ vs $a(\mathbf{m})$

The g-2 Collaboration

R.M. Carey, W. Earle, E. Efstathiadis, M. Hare, E.S. Hazen, F. Krienen, J.P. Miller, J. Paley, O. Rind, B.L. Roberts, L.R. Sulak, A. Trofimov Boston University

H.N. Brown, G. Bunce, G.T. Danby, R. Larsen, Y.Y. Lee, W. Meng, J.-L. Mi, W.M. Morse, C. Ozben, C. Pai, R. Prigl, R. Sanders, Y.K. Semertzidis, M. Tanaka, D. Warburton Brookhaven National Laboratory

A. Grossmann, K. Jungmann, P. Neumayer, G. zu Putlitz U. Haeberlen University of Heidelberg Max Planck Institute

P.T. Debevec, W. Deninger, F. Gray, D.W. Hertzog, C.J.G. Onderwater, C. Polly, S. Sedykh, M. Sossong, D. Urner University of Illinois

P. Cushman, L. Duong, S. Giron, J. Kindem, I. Kronkvist, R. McNabb, D. Miller, C. Timmermans, D. Zimmerman University of Minnesota

V.P. Druzhinin, G.V. Fedotovich, B.I. Khazin, I.Logashenko, N.M. Ryskulov, S. Serednyakov, Yu.M. Shatunov, E. Solodov Budker Institute

H. Deng, S.K. Dhawan, F.J.M. Farley, M. Grosse-Perdekamp, V.W. Hughes, D. Kawall, W. Liu, J. Pretz, S.I. Redin, A. Steinmetz Yale University

A. Yamamoto	M. Iwasaki, M. Kawamura	Y. Orlov	D. Winn
KEK	Tokyo Institute of Technology	Cornell University	Fairfield University

Why Study Magnetic Moments Anyway?

Where g is the gyromagnetic ratio which relates the angular momentum to the intrinsic spin

g=2 for charged, point-like, spin 1/2 particles.

Hadrons

Large deviations => quark substructure

 $g(neutron) = -3.82 \pm 0$ $g(proton) = +5.58 \pm 2$

Leptons Small deviations => coupling to virtual fields

Deviations from g=2 are characterized by the Anomaly: $a_m = \underline{g-2}$ ($a_m \sim .001$ for a muon) 2

THEORY (Standard Model) says:

 $a_{m} = a_{m}(QED) + a_{m}(weak) + a_{m}(hadron)$ ~ 10⁻³ ~ 10⁻⁹ 67 x 10⁻⁹ $a_{m} = .001165847056(29) + .0000000151(04) + .0000006739(67) \Rightarrow 0.57 ppm$

Compare to Experiment:

a _m (CERN combined)	.001165923* (8*	*)	7.3 ppm
a _{m+} (BNL'97)	.001165925* (15	5*) (13 ppm
a _{m+} (BNL'98)	.001165919* (6*	*)	5 ppm
a _{m+} (BNL'99)	.0011659202 (10	6)	1.3 ppm
a _{m+} (BNL'00) (by Dec '01)	.00116592** (8	B) 🔿	0.7 ppm

QED Contributions to the Muon Anomaly

Over 700 Feynman diagrams, whew!

Weak Contribution

(corrections go as

 m_L^2/m_W^2) 1st Order Diagrams (Higgs contribution is negligible)

$$a_{\mu}^{W} = \frac{10}{3} \frac{G_{F} m_{\mu}^{2}}{8\sqrt{2}\pi^{2}} + \vartheta \left(\frac{m_{\mu}}{m_{W}}\right)^{4}$$
(+3.3 ppm)

$$a_{\mu}^{Z^{\circ}} = -\left(\frac{5}{3} - \frac{(3 - 4\cos^{2}\theta_{W})^{2}}{3}\right) \frac{G_{F}m_{\mu}^{2}}{8\sqrt{2}\pi^{2}} + \vartheta\left(\frac{m_{\mu}}{m_{W}}\right)^{4} \quad (-1.6 \text{ ppm})$$

2-loop Diagrams (Reduces electroweak by 22.6 %) (both boson and fermion loops)

Total EW = +1.30 ± 0.03 ppm

Electron Anomalous Magnetic Moment

Turn it around: Best value for fine structure constant comes from the Electron Anomaly

Experimental Results vs Theory

A Sampler of "New Physics"

Compositeness

g-2 reach for Standard Model answer

muon (m^2/Λ^2)	$\Lambda > 5 \text{ TeV}$
muon (m_{μ}^2/Λ^2)	
W^+, W^-	$\Lambda > 400 \text{ GeV}$
μ form factors (1-k ² / Λ^2)	$(W^+) \Lambda > 450 \text{ GeV}$
	$(Z^0) \Lambda > 64 \text{ GeV}$
	$(\gamma) \Lambda > 180 \text{ GeV}$
excited bosons	$m_w^*, m_z^* > 70-140 G$

 \bigstar

W magnetic moment

 $m_W^*, m_Z^* > 70-140 \text{ GeV}$ $(g_W^-2)/2 < 0.02$

Extensions to Standard Model

Light Higgs	$m_{\rm H} > 300 { m MeV}$
Super-heavy Higgs	$m_{\rm H} > 500 { m ~GeV}$
Z-prime (E6, LR)	$m_{Z} > 30-130 \text{ GeV}$
W_{R}^{+}, W_{R}^{-}	$m_{W} > 250 \text{ GeV}$
leptoquarks	$m_{\Phi L}$ > 186 GeV
large extra dimensions	$M_s > 1.5 \text{ TeV}$
Supersymmetry	$m_{LS} > 130 \text{ GeV}$
Sugra (large tan β)	$a_m \sim (1.3 \text{ ppm}) \tan \beta (100 \text{ GeV/m})^2$

Allowed Regions of SUSY (direct searches) in a_mspace

(courtesy of Toru Goto)

What if $\Delta a_{\mu} = a^{SUSY}$?

At 95% CL, the left-handed scalar muon mass must by smaller than 600, 900 and 1500 GeV/c² for $\tan \beta$ 10, 20 and 40, respectively.

Hadronic Contributions

Comparison of First Order Hadronic Evaluations

 $< a_{\mu} >_{\exp} = (116\ 592\ 023 \pm 151) \times 10^{-11}$ $a_{\mu} (\text{QED}) = 116\ 584\ 705.7\ (2.9) \times 10^{-11}$ $a_{\mu} (\text{Weak}) = 152\ (4) \times 10^{-11}$ $a_{\mu} (\text{Higher order hadronic}) = -185 \pm 26 \times 10^{-11}$ Subtracting these from $< a_{\mu} >_{\exp}$ gives $a_{\mu} (\text{Had}; 1) + a_{\mu} (\text{New}?) = 7350\ (153) \times 10^{-11}$

How to Measure a Magnetic Moment

Store your particle in a magnetic bottle (uniform B and quadrupole E) and watch it precess

ELECTRONS

Penning Trap (N_e = 1) E = meV (T=4.2 °K) $w_s = g eB / 2 mc$

MUONS oops!, they decay! So dilate them...

Storage Ring (N_m = 1600 - 17000) E = 3 GeV $w_s = 1+g(\underline{g-2}) \underbrace{eB}_{2 \ mcg}$ and $w_c = \underbrace{eB}_{mcg}$ $w_a = w_s - w_c = (\underline{g-2}) \underbrace{eB}_{2 \ mc}$

Quadrupole E field gives additional term in \mathbf{w}_{a} : $+\frac{\mathbf{e}_{mc}}{\mathbf{mc}}(\mathbf{a}_{m}-\frac{1}{\mathbf{g}^{2}-1})\mathbf{b} \times \mathbf{E}$ Which vanishes at the "magic momentum" of 3.094 GeV/c

The BNL g-2 Experiment from a muon's point of view

LIFE OF A MUON: THE g-2 EXPERIMENT

The g-2 Muon Storage Ring is a Technological Wonder! Some Fun Factoids

- The World's Largest Diameter Superconducting Coil
- Powered by a 5 Volt, 5200 Amp Power Supply Regulated to < 0.3 ppm
- Held by straps: Shrinks by $\Delta r = 30$ cm when cooled, Expands by $\Delta r = 3$ mm when powered
- 680 Tonne, 14 m diameter C-shaped Magnet Yoke machined to Δr =130µm over 7 m Pole tips (vacuum cast .004% carbon steel) machined flat to 0.8 µm
- Field at B = 1.45 Tesla Uniform to 1 ppm with current feedback Measured to 0.3 ppm using NMR (375 fixed probes & 17 trolley probes)
- Quench resistor is a 40 m Ω iron grid resistor weighing 100 lbs. to dissipate 6.1 M joules in 30 seconds. ($\Delta T=700^{\circ}C$)

- Both ω 's and all analyses have computer-generated secret offsets.
- Study stability of **R** under all conditions
- Finish all studies and assign all uncertainties BEFORE revealing offset.

Beam Tube Trolley Maps the Magnetic Field once every couple days (NMR probes)

Magnetic field integrated over azimuth. 2 ppm contours (3 mT)

Goal: 1 ppm homogeneity, measured to 0.1 ppm

NMR Proton Frequency $w_p / 2p = 61,791,256 \pm 25 Hz$

\mathbf{B}_0	Calibrated Spherical H ₂ O Probe	0.05 ppm
$\mathbf{B}\left(\mathbf{r},\mathbf{t}_{0}\right)$	Trolley NMR calibration and B_0	0.22
B (r, t)	Interpolation with fixed probes	0.15
B (r, t)	Inflector fringe field (gone in 2000)	0.20
$\langle B \rangle = \rangle \omega_p$	Average over muon distribution	0.12
·	Trolley voltage; kicker eddy currents; ther multipoles)	0.15

Total Systematic Uncertainty on ω_p

0.4 ppm

w_a Analysis: Finding the Positron Arrival Time

Complete waveform from calorimeter is digitized with 2.5 ns sampling

- •Find pulses from 24 detectors around ring
- Parameterize pulse shape for each detector and run condition
 Energy and time cuts to remove background, understand pileup
 Fill Histogram: Number of decay e's vs fitted pulse time

ω_a Analysis = Fitting the wiggle

Main Disturbances

- Pileup of real pulses <5 ns apart 1% at earliest times: model and subtract
- Muon Losses

000 60 40 20 10 20 30 40 50 60 70 88 Time (ns)

bump beam high and scrape edges (first 11 μ s) triple coincidences of scintillator paddles measure what's left

• Rate dependent calorimeter response

changes the effective energy threshold in situ laser calibration system

Coherent Betatron Oscillations

image of the inflector exit moves around the ring as a beat frequency of w_c and w_b fiber harp and traceback chamber measure stored muon profile vs time

• Bunched beam

randomize time spectrum in bins of cyclotron period

Strategy: Put additional terms in fitting function or

Find an insensitive method and Establish the magnitude of all unaccounted uncertainties

Multi-parameter fits

Modify 5-par fit: N(t) = N₀ e^{-t/ τ} (1 - A(E) cos ($\omega_a t + \varphi(E)$)) as follows

n(t) = [N(t) + PU(t) + B(t)] x [1 + CBO(t)] x [1 + MuLoss(t)]

10⁻² 10⁻⁵ 10⁻⁴ 10⁻²

Ratio Method

Split data into histograms J,K, L and form ratio

- J (+ 1/2 wiggle) + K (- 1/2 wiggle) 2L (+ 0)
- J (+ 1/2 wiggle) + K (- 1/2 wiggle) + 2L (+ 0)
- = $A(E) \cos (\omega_a t + \varphi(E)) x [1 + PU(t)]$

where the frequency is isolated from the "exponentially" falling background distribution

Fiber Harp measures beam dynamics (destructively)

Time (µs)

"Fast Rotation" - Cyclotron Frequency of muon bunches

For ω_a analysis, randomize across a bin width of 149.185 ns

Rate of muon debunching => Muon radial distribution

Systematic Uncertainties

Total $\delta \omega_a$ systematics = 0.25 ppm

Pileup	0.13 ppm
AGS background mis-tunes	0.10 ppm
Muon Losses	0.10 ppm
Timing Shifts	0.10 ppm
E-Field and Pitch correction	0.08 ppm
Binning and Fitting procedure	0.07 ppm
Coherent Betatron	0.05 ppm
Bin randomization (debunching)	0.04 ppm
Gain Instability	0.02 ppm

Total $\delta \omega_p$ systematics = 0.40 ppm Total statistical = 1.25 ppm

Total Uncertainty = 1.3 ppm

4 Independent Analyses and 2 Production Streams

143.17 <u>+</u> 1.24 <u>+</u> 0.5

Conclusions

- Most precise a_{μ} in a single experiment
 - \implies 1.3 ppm on the anomaly (2.6 ppb on g)
 - \implies World Average is now at 1.3 ppm
- \bullet Experimental value differs from SM by 2.6 σ
 - \implies provide new limits on speculative theories
 - \implies encourages better determination of a_{μ} (hadronic)
- Data for 0.7 ppm is being analyzed now
- Data-taking for μ^{-} is completed
 - \implies CPT limit
 - \implies Combined $\mu^+ \mu^-$ statistics will reach 0.4 ppm
- Further experiments planned for the g-2 storage ring
 - \implies direct mass limit on v_{μ}
 - \implies electric dipole moment of muon