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B. Gravitational Waves

Unfortunately, all gravitational waves will be weak when
they reach our detectors. The vacuum weak-field equations
Oh* = 0 and Lorentz gauge condition E#" o = 0 allow a
representation in terms of plane monochromatic waves

(a1

huw = Ape™ 1 Ak =0, k,k” =0,

with wave vector k. However, both the field equations and
Lorentz gauge condition are preserved under another infinites-
imal coordinate (gauge) transformation if the generator also
satisfies the wave equation 0§, = 0. One can then use the
four additional degrees of fréedom to set hg; = 0 and h = 0
(so now BW = h,,). In summary, we have constructed the
transverse-traceless (TT) gauge, in which the eight indepen-

dent conditions
huo = hjkk = h¥, =0

leave two independent polarization states, again in direct anal-
ogy with electrodynamics.

We can also include the possibility of a weak scalar wave
©1 = ¢ — o, since the tensor field equations (5) are unaffected

-t'Hr-ough first order in ¢ (except that h,, — ﬁ,_w in the above
equations). The scalar field equation (6) becomes O, = 0,
giving the same plane-wave representation. —

To understand the response of a gravitational-wave detec-
tor, consider slowly moving free test particles whose separation
is much less than the gravitational wavelengths involved. Now
employ a local Lorentz frame, in which physical (e. g., radar)
and coordinate distances are equal through first order in the
particle separation Ax. The equation of geodesic deviation be-
comes d?Az'/dr? = —R' Az’ as before, and involves only
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the matter coupling metric g = A%(p)g. In terms of our spin
representation,

Riojo = Rinjo + a1(9,ij — 6i;0.00) -
In the previous TT gauge, one obtains R—,-,o 0 =—4h U o How-
ever, the gauge (coordinate) invariance of the weak-field Rie-

mann tensor allows us to use this expression in the above equa-
tion of geodesic deviation, giving

d°Az’/dr? 2= [$hL 0 + a1(6i590,00 — 0,55)] A7 .
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In the figure above we show the resulting positions of an
initially circular ring of test particles (at phases m/2 and 37/2)
for each polarization state: (a) hTT = —ATT (b) RIT = hIT,
(c) 1. They remain in the plane transverse to the propagatlon
vector k shown.

For separations Az | k, the above equation also shows

that there is no response to any of the three wave components.
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Strong-Field Applications

A. Compact Objects

Throughout any spherically symmetric spacetime, we can
choose Schwarzschild coordinates, in which the interval as-
sumes the form

d82 — _62@(r,t)dt2 4 82)\(?“t)d,r‘2 + T2[d92 + SiI12 9d¢2J 1

so that the proper area (measured by local observers) of any
spherical surface is 47r2. We consider here isolated bodies, so
the metric potentials ®, A — 0 as 7 — oo. In addition, we shall
consider static (U* =0, 0/0t = 0) bodies.

Then the only non-trivial momemntum conservation equa-
tion 7,7, = 0 gives hydrostatic equilibrium:

dp - d®
- = ~(p+p)—,

also indicating that ®(r) is the generalized Newtonian poten-
tial. The only structural difference from the Newtonian equa-
tion is the addition of the pressure to the inertial mass-energy
density.

The {tt} component of the Einstein field equation gives,
after an integration,

—1 -
e’ = [1 g—%} . m(r) = 47r/ p(ry)ridr., .
0

r

Let »r = R be the radius of the star, defined by p(R) = 0.
Then m(r > R) = M, the total gravitational mass (defined by

applying Kepler's third law to distant orbits).
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The {rr} component of the Einstein field equation gives
the generalization of the Newtonian field equation:

de Gr(m + 4mr3p)
dr  r(r—2Gm)

We see that pressure also contributes to the gravitational mass-
energy density, and strong fields (2Gm/r — 1) also steepen the
potential (and pressure) gradient. The {#6} and {¢p¢} compo-
nents of the field equation are redundant.

Finally, if the equation of state assumes the form

p = p(p,s(p)) (specific entropy s determined separately)

we have four equations to determine ®, m(or A), p, and p.
(For the major applications, white dwarfs and neutron stars,
the entropy effectively vanishes.) Continuity of ®(r) and A(r)
at the stellar surface allows matching to the exterior (or black
hole) Schwarzschild solution

> 2GM
Q2% — o2\ ]

)

T

also obtained from the above equations. With the additional
boundary condition m o r3(r — 0), a set of stellar models is
then a one-parameter [p(0) or p(0)] family.
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Gravitational mass (in solar units) versus central density for a variety of equations
of state. The rising portions of the curves represent stable neutron stars.
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B. Orbits

One of the most powerful probes of the strong gravitational
fields near neutron stars and black holes is analysis of the orbits
of test particles (or those comprising gaseous accretion disks),
here taken to have rest mass m > 0. Within the Schwarzschild
geometry, we can define the orbital plane as § = 7/2. From
equation (1), with p* = mdz*/dr, we then see that both the
energy and angular momentum (per unit mass)

P | 2GM \ dt . d
I

m ro ) dr m dr
are conserved along each orbit. The relation g,,p"p" = —m?

then gives us the remaining (energy) equation

2 ) 72
-Edi) = E~‘2 e ‘72(111’ T') y V2 — 1 - QGM 1 "!" '{'J"— .
dr r r2

£

As in Newtonian theory, we can understand the orbits via plots
of the effective potential V', shown below for r > 2GM (black

hole horizon).
Note that a particle is captured by the black hole if its

specific angular momentum is low enough (L < 2v/3GM) or
its specific energy is high enough (F > V4z).
Correspondingly, stable circular orbits only exist for

L>2V3GM , atr > 6GM .
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Figure 1. The effective potential V is plotted for various choices
ot 1. Also shown are the three classes of orbits (constant F, L).
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For rotating (Kerr) black holes, the metric tensor is much
more complicated, but effective potentials can still be obtained
for orbits with angular momentum parallel (or anti-parallel) to
that (J) of the black hole. These are shown below.
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Figure 2. Plots of V(r) for various values of L/GM, for a
maximally rotating black hole (J = GM?). (From MTW.)
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COSMOLOGY
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