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Geodesic Deviation <= Riemann Tensor
Consider two freely falling test particles with infinitesimal
separation Az“e,. Subtracting their (geodesic) equations of
motion (2) gives AQ*: |

=0.

d?Az® { o } dz# dz”

a | dz* dAx”
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Now, since DAz®/DA (but not dAz®/d)) are the components
of a vector, so is the result of applying the operator D /DA
'defined by equation (3)] again. Employing the above equation,
this operation produces the equation of geodesic deviation

DAz o, dotda
D2 HoV AN dA

Az° =0, (4)

Since both terms in this equation are the components of vec-
tors, the quantities

A AR AT I W Es 0

must be the components of a (rank 4) tensor, called the Rie-
mann (curvature) tensor. It plays a role similar to that of the
electromagnetic field tensor F},, in the extension of the equa-
tion of motion (2) to charged (m > 0) test particles:

D_(dﬂf“ _ 4 po 427
Dt dr /] m  7dr’

the ggnerahzed Lorentz force eﬂuamon: We see, however} t'hat
the Riemann tensor represents the physical field radients (tidal

10



R. Wagoner, 3S1 1998

forces), and only relative gravitational acceleration has physical
X ol ARG VRO Py

meaning.
The symmetry properties of the Riemann tensor (analo-

gous to F),, = Fj,,|) are

Rr_xﬁ,u,v = R([czﬁ][uv]) ) R[aﬁ,u,vj =0,

the first giving 6 - 7/2 independent components and the second
giving one less, for a total of 20 independent components. Its
(unique) contractions are

R,uu = ga'gRﬁuav ; R = g#U-R,uv )

the components of the (symmetnc) RICCI tensor and the Ricci

S TR T TR

ogous to the Maxwell equations Fj,,,.¢] = 0) and thelr (umque)
double contraction

G, =0 (G™ = R — }g"R) ,

v

which involves the components of the Einstein tensor G.
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Gravitational Field Equations

We now complete the implementation of the extremal ac-
tion principle by adding to the matter Lagrangian density £y,
(specified above) a Lagrangian density L which depends solely
on the gravitational field(s). Adopting the principle of simplic-
ity that has worked so well in deriving the laws of physics, we
are tempted to include nature’s simplest (scalar spin 0) field
£ in addition to the metric tensor field g. ~Tn analyzing the
field equations, more insight is gained by employing the ‘spin
representation’, in which g denotes the metric tensor which cor-
responds to pure spin 2, while g = A?()g is the metric tensor
discussed above through which gravity couples to matter.

If we require only that the field equations be of at most
second differential order, the most general Lagrangian density
1s then

Lo = (167G) "R - 26" ¢ w0 — 2A(p)]

where GG is the bare gravitational constant. Thus there are
two free functions in this theory: the matter coupling function
A(p) and the ‘cosmological function’ A(p). Extremizing the
R . . . . TS .

action with respect to variations in g, and ¢ then gives the
field equations

G = 87GT 0 — GuA(®) + 20 400 — 31§’ 0 a5 (5)

" o uw = ——471'G'Oz( )T + 1dA/dy | | ” (6)
[ronge s (2 K9]

where the related coupling function

a(np) =dln A/dcp = a; + (IQ(QO - @0) +
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if one expands about the present cosmological value g of the
scalar field. The stress-energy tensor T is defined with respect
to variations of g, and obeys the modified conservation laws

T

-

Tp,u;v - a(SO)T(P,M ’

If the coupling function A(y) has a minimum, Damour &
Nordtvedt (1993) and Santiago, Kalligas, & Wagoner (1998)
have shown that in many cases the theory is attracted toward
that minimum during the expansion of the universe, so it ap-
proaches general relativity (¢ = constant, A(¢) = constant).
This is in accord with the small experimental limits a? < 1073.
(The Brans-Dicke theory is the special case a(y) = constant,

2 :0')M'ﬂ‘_x Peod=-(dn(H) -

L“so

Kz
Although there is local interest in this broad class of theo-

ries, we shall concentrate on general relativity for the remainder
of these lectures (except for gravitational waves).

In addition, we will employ the fact that most matter in
the universe is well approximated as a perfect fluid, described
by the stress-energy tensor (obtained from the EEP)

’THV - (p + p)U,u.Uv + pg,u,v 3 (7)

where p is the mass-energy density, p is the pressure, and U is
the four-velocity of the fluid.
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Weak-Field Equations

Throughout almost the entirety of all regions much smaller
than that of the observable universe, gravitational fields can be
considered weak. This means that (except near black holes and
neutron stars) one can choose coordinates such that the metric
assumes the nearly Minkowski form

G = Mo+ R (3%) ] <1

For instance, within the solar system, |hy,| < GMg/Rpc® =
2.12 x 10-%. We shall consider isolated sources T},,, and can
neglect the cosmological constant A(¢g) within such regions.

We work to first order in h,,, and utilize our freedom
of general infinitesimal coordinate transformations z® (P) =
z*(P) + £*(P), which produces

huv = huw = & — v -

This is directly analogous to the gauge transformation of Apﬁ.ﬁ’f» }; »
in electrodynamics; and leaves R,g,., like Fug, invariant. We

can then use our freedom in choosing the four functions £*(P)

to impose the coordinate condition

Emfo =0, hw=hw —Mwh (b= naﬁhaﬁ) :

T "
analogous to the Lorentz gauge condition in electrodynamics. ( At 9
The Einstein field equations (5)(with ¢ = ¢g) then pro-
duce the weak field equations

ﬂa'ﬁﬁpygaﬂ =0 E,LLU = —-1.671'071“1, .

identical in structure with those in electrodynamics. (With
the Lorentz gauge, this is consistent with the conservation laws
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", = 0, analogous to J* , = 0 in electrodynamics.) Thus the
501111:1011 is of the same forrn

A (%) = tl(}’/fl",u,y(m0 — |zt — zt|, %) |z* — =¥ |7 Pzt . (8)

A Newtonian system is one in which all (macroscopic and mi-
croscopic) velocities are nonrelativistic (so that the above re-
tardation is neghglble) in addition to having a weak field. In
such systems the dominant component of the stress—energy ten-
sor (7) is seen to be Tyg =2 p. Therefore the dominant compo-
nent of the (trace-reversed) metric perturbation is hoo = —4®,
where ® is the Newtonian gravitational potential. Thus the
spacetime interval becomes

ds? = gopdz®dz® = —(1+2®)dt* + (1 - 29)(dz® + dy* +d=*) .

(9)
Incidentaly, the result hgg = —2® can be obtained more gen-
erally by comparing Newton’s second law with the geodesic
equation of motion (2) for slowly-moving test particles. In the
same limit (in which dz®/dr = 6%,), the spatial components of
the equation of geodesic deviation (4) become

d? Azt - - 0%®
~ __ 2 J o~
dr? R gjoBa = 283:‘83:3

Az |

showing how the tidal gravitational forces affect the separation
) , T | e J
of nearby particles.
Finally, the gravitational coupling constant is identified
with (G by examining the field equations (8) in the Newtonian
limit
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Weak-Field Applications
A. Index of Refraction of Gravity

Consider a photon passing through a Newtonian gravita-
tional potential (for which [0®/0t| < |[V®|) produced by some
localized distribution of mass, a good approximation for all
observed systems. In the geometrical optics limit, we follow
a photon initially traveiling in the direction e, far from the
masses, so subsequently p* = dz/d\ = p* = p. It will be de-
flected by a very small angle &, with components o™ = p" /p,
where the index N =y, 2. T

The equation of motion (2) then gives

R MRS PR B

when the weak-field metric (9) is inserted in the Christoffel
symbols. With d¢ = dz = pd\ and doN /dz = p~tdp" /dx, we
obtain

p? = 20 yp?

&:—Q/Viq)dﬁz /VL-ndf,

where we have identified the gravitational indezx of 7'6{7'act?lon
n(z') z 1 - 20. (; 1)
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t 4
Zgapell #Gunolx
Using the fact that ds? = 0 for the photon, we obtain its
coordinate velocity

/2
dz —gtt)l . Py
el >1420=1/n,
dt <gm " n

as expected. The time delay relative to a photon traveling( §poie
between the same initial and final values of z, far from the
masses where t is proper (clock) time 7, is then

At:@/@dﬂ—_—. /}(I)ldﬁ:/(n_ 1)de .

Thus in both respects, empty space acts as if it had this index
of refraction.

/i F/af)
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