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Relativistic Gravity
and Some Astrophysical Applications

Robert V. Wagoner

Gravitation is the most fundamental interaction, affecting
all forms of mass-energy. This allows its geometrical descrip-
tion, at least within the classical (nonquantum) regime that
we shall consider. The structure of metric theories of gravity
is based upon a few key concepts and principles:

1) Universality of Free—Fall (UFF)

If a test particle is placed at an initial event in spacetime
and is given an initial velocity there, its subsequent worldline
will be independent of its structure (i. e., all forms of energy
‘fall’ at the same rate). Test particle: Charge, mass, and size
reduced until experimental results are unchanged.
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2} Coordinate Frame

A continuous set of spatially labeled ‘clocks' filling space-
tirne  Distances best measured by radar method (round trip
ptioton travel time).
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3) Inertial Reference Frame

A coordinate frame in which any free test particle is un-
accelerated (to a specified accuracy) within a small specified
region of spacetime. It can always be constructed at any point
(event) in spacetime (if UFF is valid). Realization: a nonrotat-
ing lab in free-fall, small enough that tidal gravitational forces
are negligible.

4) Einstein Equivalence Principle (EEP)
In all inertial frames, the nongravitational laws of physics
are those formulated within special relativity.

EEP plus covariance under general coordinate transfor-
mations will then allow us to determine how matter couples
to gravity: via a metric tensor. This metric tensor has com-
T s TSI S - i N . .
ponents g, (z*) which can be put in the Minkowski form 7,
in every mertlal frame (which is then called a local Loréentz

frame) S,W " O)

At equation is generally covariant if it preserves its form
. ' '
under s general coordinate transformation z# = z# (z%).

e All tensor equations (T = 0) are generally covariant.

e Such an equation will thus be true in all coordinate systems
if it 1¢ known to be true in any one (such as a local Lorentz
frame)
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Tensor Algebra in Metric Spacetimes

Study of geometrical objects (scalars, curves, vectors, ten-
sors, ...) at any fixed point Py. They exist independent of any
coordinates, so form the proper description of physical reality.

Vector
In curved spacetime, we require a local definition. A fa-
miliar one is the tangent vector

A
dpP )

V:("&"X’)p@ &

to some curve P(\) at the point Py where the vector exists
(e. g., the four-velocity U = dP/dr). dP is the displacement.

Tangent Space

The vectors at any point Py form this abstract four di-
mensional vector space. All geometrical objects at this point
reside in this tangent space (not in spacetime).

Basis

A basis is a set of four linearly independent vectors e,
(@ = 0.1.2,3) at a point Py. Representation of any vector v
at Py in terms of its components v*:

v = 1%, (summation convention) .

Consider some coordinate system: four functions z®(P). A
. . . S R
(global) coordinate basis is then

e, = OP/0x™ .

We shall onlv emplov such bases.
] Plo;
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Other aspects of tensor algebra are direct generalizations
from special relativity in each tangent space:

Tensor
Can be thought of in various ways:

e Direct product: T =T "e, ez ® - -

e Linear operator on vectors, giving a scalar (number):
— - Bos: i e o

T(ur V, O'C °) = T(ea,eﬁj 5 e ,)’u_a’Uﬁ RPN

—_ aﬁ.uavﬁ e

Metric Tensor [generalization of 7, = diag.(—1,1,1,1)]
Produces the scalar product of vectors:

g(ea:eﬁ) =€y e = Jap — g(eﬁsea) = 9B«

e Interval: ds? = g(dP,dP) = gopdz*dz’ (dP = dz7e,)
e [nverse: g"?¢g,, = O¥,

e ‘Raising and lowering indices’:

— o 12 — v
v, =v-e, =ge, e,) = g,v",

P = g,uorgavvu — QNU’UQ .
This generalizes to give
TP = gapgnw T = ¢°7Tyon...

and the generalized scalar product TV, NP7, for instance.

4
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e Contraction produces a new tensor of rank two lower: for

instance
- D
Q,uu =M =4 M‘rp,ou )

pov
independent of choice of basis.

Change of Basis: e, = L%, e,
With the inverse transformation matrix constructed from

L-“U,L"; = 6" , one obtains
o = L LT T
. ! /. p
Between coordinate bases, Xd s X‘ X )
LO‘{; = 9z* /9" Lﬁa, = 927 |9z .
Four-volume element (scalar)
dViy = /=g dx’dztdr?ds’® = V=gd'z, g= det||g.. | -

Gradient of a Function F()(")

df = f%eqa = g*°fpea =g 55;5-ea

The directional derivative of a function f(z%) along a curve
P(A) (at Py) is then

df  da® Of
- dx oge -V e = v-df
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Extremal Action Principles

e

The fundamental special-relativistic laws of physics may
obtained by extremizing the (scalar) action 7 = [ Ld'z, 67 =
0. Within metric theories, the effects of gravity on a classical
material system may be obtained by the replacements

f /ﬁ\/ dz , L — Lrr(Muv = Guvs Aps Afu,), ‘matter®)

Variation with respect to A, giveb Maxwell’s equations in an
arbitrary metric field. ([a3---] and (a8---) will denote com-
plete antlbymmetrlzatlom symmetrization of indices.) We
will add the contribution of the gravitational field(s) to Z later.

Stress-Energy Tensor
Under the variation g,, — g + 09, the stress-energy
tensor T is defined by

Iy = (1/2) / T+ 69, v—gd'z

Energy-Momentum Conservation

Since Z,; is a scalar, it will be unchanged under a co-
ordinate transformation z# — zH = zH 4+ et(z%) (here in-
finitesimal). It will also be unchanged by a subsequent change
* — zM in the integration variable. This induces the net

change
69ur = —(9ov€’ 4 + Guo€’y + Guv,0€’) ,

the Lie derivative of g,,,. Under this variation, one obtains
6Ty = /T‘;;ue"\/—g d*z
1/\1 )[V Tu] 1/2)9,&3/0"11“1’ 2

6
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Note that the divergence 77 e, must be a vector. Since
6y = 0 for arbitrary €7 (z%), we obtain the four components

T" =0  (or T, =0),

representing conservation of energy (¢ = 0) and momentum
(0 =1=1,2,3; continuum feguatlons 2.]:.' motion).

Test-Particle Equation of Motion
Our prescription gives the action

dzt dzv \ V2
IM = _/ (—---g‘u‘uH d)\ ) d/\

for a test particle, where the tangent vector to the particle’s
world line z%()\) is dP/d\ = (dz"/d))e, = z'e,. Vary the
worldline, and choose A (after the variation) so that g,,2#z" =
—m? (we take ¢ = 1). The particle’s four-momentuth (compo-
nent) is then p* = ##. Then 67y = —m™! [ Qab2%dA = 0,
SO

Qo = dpa/dX — (1/2)guv,eP*p” = 0. (1)

Thus if the metric components g,,, are independent of any co-
ordinate %, the corresponding four-momentum component p,,

_z_: conseryed.

We also find that the vector components X
e

d?x® o | dzt dx¥ D [dxz*
. : = =0, (2
= *{W} ax dr D,\(dA) - @
where the Christoffel symbol (connection coefficient in a coor-
dinate basis, not the components of a tensor) is

(8’ a 1 o )
— = ""g (ggu,p, _+ g(T,u,U - g;U-VgC") ’
pv vp) 2
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For rest masses m > 0, equations (1) and (2) govern the par-
ticle’s four-momentum p*. For m > 0 they also govern its
four—velocity_ U® = p*/m = dz*/dr, where the proper time
interval dr = md\. I

[t can be shown that in the neighborhood of a freely-falling
observer, coordinates can be chosen so that g,, = Muv and
9uv.o. = 0 along his/her worldline. It then follows from equa-
tion (2) that all test particles in that neighborhood are indeed
unaccelerated, dz®/dr = constant = dz'/dz® = constant, ver-

ifving that it is an inertial frame.

Gradient of a Tensor
Since Q® are the components of a vector [given by equation
(2);. it follows that that for a vector field with components

L..'(x ( :L.p.) ’

Dve  qve { a }V“da:"

DX d\ Y d\
— (o4 & H dxv: a_d_a.:.i
(v {afv)m =R o

are also the components of a vector. It thus also follows that
V", must be the components of a (rank 2) tensor: the gener-
alization of the gradient to operate on vectors. The general-
wzation of the directional derivative is the covariant derivative.
with the above components DV*/DA.

Denoting the directional derivative operator D/DA along
a basis vector e, by V,, its effect on a vector V can also be

described as

Vo(Voe,) = (V,V7)e, + V°(Vye,) = Ve, .

8
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Comparing with equation (3), we see that the connection coef-
ficients describe how the basis vectors vary with position:

Vvepv = {uay}éa .

The application to tensors of any rank follows straightforwardly
to give

Qe e Qe a a--- s a — 0 Qe — s &
RN o) PO TR ) PR

Note that it then follows that the gradient of the metric van-

ishes: g,3., = 0.
—ﬂw

£X¢m£/¢« d [/‘7 ﬁe/c/ /cn.sar-

/Q/u‘;y = 4‘1,;/ - /:;}”1’




