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ABSTRACT

These lectures emphasize neutrino oscillation experiments using accelerators and

reactors.  We describe past, present, and proposed experiments.  A brief introduction to

neutrino oscillations is given at the beginning.  The technology of beams and detectors

for neutrino experiments is described briefly.
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1 Introduction

The existence of the neutrino was postulated in 1930 by W. Pauli1 to explain the

apparent energy nonconservation in nuclear weak decays.  It was another 23 years

before this bold theoretical proposal was verified experimentally in a reactor

experiment performed by C. Cowan and F. Reines.2  The most fundamental properties

of the neutrino were verified during the subsequent decade.  The neutrino was shown

to be left- handed in an ingenious experiment by Goldhaber, Grodzins, and Sunyar3 in

1957.  The distinct nature of νe and νµ was demonstrated in 1962 in a pioneering

accelerator neutrino experiment at BNL by Danby et al.4

The following years saw a remarkable progress in neutrino experiments,

especially those utilizing accelerators as their sources.  Increases in available

accelerator energies and intensities, advances in neutrino beam technology, and more

sophisticated and more massive neutrino detectors were all instrumental in our ability

to do ever more precise neutrino experiments.  The focus of those experiments,

however, was until very recently mainly on using neutrinos as a probe in two different

areas.  Together with experiments utilizing electrons and muons, the worldwide

neutrino program played a key role in measuring the nucleon structure functions.  And

together with a variety of other efforts (especially e+e- annihilations and deep inelastic

electron scattering) the neutrino experiments played a key role in establishing the

validity of the Standard Model (SM), through the discovery of neutral currents,5

measurements of the NC/CC ratio,6 and measurements of the neutrino lepton

scattering cross sections.7

I believe that we are now entering a new phase in experimental neutrino physics.

The main thrust in the future will probably be twofold:  better understanding of the

nature of the neutrino, i.e., a study of neutrino properties; and use of the neutrino in

astrophysics and cosmology as an alternative window on the universe, complementing

the information obtained from studies of the electromagnetic spectrum.  In these

lectures I shall deal with the subject of neutrino oscillations, i.e., a part of the first

program.

We believe that neutrinos are among the fundamental constituents in nature.  In

addition, the space around us is permeated with neutrinos which are relics of the Big

Bang, to the tune of about 110 ν’s/cc for every neutrino flavor.  But our knowledge of

the neutrino’s properties lags far behind our knowledge of other elementary

constituents, for example, the charged leptons.  A few examples may illustrate this



point. (We quote the lepton values from the latest compendium by the Particle Data

Group.8)

We do not know whether neutrinos have a mass; our current information gives us

only upper limits ranging from a few eV for νe to some 20 MeV for ντ.  We can

contrast that with a fractional mass error of about 3× 10-7 for the electron and muon

and about 2 x 10-4 for the tau.

We do not know if neutrinos are stable or decay, either into neutrinos of other

flavors or into some new, as yet undiscovered, particles.  In contrast, we know that

electron is stable, and know the µ lifetime with a fractional error of 2× 10-5 and the τ
lifetime at the level of 0.5%.

Finally, we do not know if the neutrinos have electromagnetic structure, like for

example, a magnetic moment.  The electron moment is known with a precision of

about one part in 1011; the magnetic moment of the muon to one part in 108.

The study of neutrino oscillations offers us what is potentially a most sensitive

investigation or measurement of neutrino masses (neutrino mass squared differences to

be precise).  Observation of a non-zero neutrino mass, which would follow directly

from observation of neutrino oscillations, would be a clear example of breakdown of

the SM and thus an indication of physics beyond it.  Many of the popular extensions of

the SM do indeed predict non-zero neutrino masses and existence of neutrino

oscillations.9  Furthermore, neutrino oscillations are not only an attractive theoretical

concept, but also a phenomenon hinted at by several experimental observations.

These observations are:

(a) An apparent need for dark (i.e., non-shining) matter.10 One example of this need

is the observed deficit of sufficient matter to account for the gravitational forces

needed to explain the rotation velocity of stars in spiral galaxies.  Neutrinos,

since they are present in abundance everywhere, could account for at least a part

of this deficit if they had a finite mass.

(b) The solar neutrino deficit, i.e., observation of fewer sun-originated neutrinos on

earth than expected from the known solar luminosity.11

(c) The atmospheric neutrino anomaly,12 i.e., a measured νµ/νe ratio for neutrinos

from cosmic ray interactions in our atmosphere which is significantly smaller

than predicted.

(d) The apparent observation of  in an almost pure  beam in a Los Alamos

experiment13 (the LSND effect).
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As discussed in parallel lectures by K. Martens,14 the second and third effects

could be explained by neutrino oscillations:  νe oscillations into another flavor in the

case of the solar neutrino deficit and νµ oscillating into νe or (more likely) into ντ in

the case of the atmospheric neutrino anomaly.  The LSND effect will be discussed

later in these lectures (see Sec. 6.2.1).

These lectures start out with a very brief description of neutrino oscillation

phenomenology and of the customary method of classification of neutrino oscillation

experiments.  The next two chapters deal with the general experimental aspects of the

neutrino experiments: neutrino beams and neutrino detectors.  The following two

chapters discuss what is known today about neutrino oscillations from the accelerator

and reactor experiments and also describe the current experimental program in the

field.  The final chapter concludes those lectures by discussing the current plans

around the world for future accelerator and reactor experiments which could

investigate more fully the four categories of hints alluded to above.  The past, present,

and future efforts in the non-accelerator, non-reactor area are discussed in the parallel

Martens lectures.

2 Formalism of Neutrino Oscillations

2.1 Phenomenology

The underlying principle behind neutrino oscillations15 is the fact that if neutrinos

have mass, then a generalized neutrino state can be expressed either as a superposition

of different mass eigenstates or of different flavor eigenstates.  This is mainly a

restatement of a well-known quantum mechanics theorem that, in general, several

different basis vector representations are possible, these different representations being

connected by a unitary transformation.  Other well-known examples of this principle

in particle physics are the  system (strong interaction and weak interaction

eigenstates) and the quark system (weak interaction and flavor eigenstates connected

by the CKM matrix).

From the study of e+e- annihilations at the Z0 peak,16 we know that there are

only three neutrino flavor eigenstates if we limit the potential neutrino mass to less

than mz/2.  Accordingly, the most likely situation is that we have three mass

eigenstates and that the connecting unitary matrix is a 3× 3 matrix.  This is not
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rigorously required since we could have states with mν > mz/2, or flavor states that do

not couple17 to the Zo.  Even though such possibilities appear a priori unaesthetic,

there has been recently significant theoretical effort to see whether such mechanisms

could be possible explanations of some of the anomalous effects seen in neutrino

experiments.

Thus, for the three-flavor case, the weak eigenstates |να> = νe, νµ, ντ and the

mass eigenstates |νi> = ν1, ν2, ν3 are related by 

,

i.e., να = Uνi, where U is a unitary matrix that can be parameterized as (in analogy

with the CKM matrix):

.

where Cij = cosθij  and Sij = sinθij , and for simplicity, we have taken the phase δ = 0,

i.e., assumed CP conservation.

The probability, then, that a state which is pure να at t = 0 is transformed into

another flavor β at a time t later (or distance L further) is 

with E being the energy of the neutrino and 

.

Thus (assuming CP invariance) we have five independent parameters:  three angles,

θ12, θ23, and θ13 and two ∆m2
ij  (the third ∆m2

ij  must be linearly related to the first

two).  All of the neutrino oscillation data must then be capable of being described in

terms of these five parameters.

Clearly, the above expression is complicated and the relationship of experimental

results to the five basic parameters is somewhat obscure.  Partly due to a desire for
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simplicity and partly because of the possibility (likelihood to some) that the leptonic

mixing matrix U has a similar structure to the CKM matrix (i.e., is almost diagonal), it

has become customary to represent the results of a single experiment in terms of

oscillation between two flavors and involving only two mass eigenstates, hence only one

∆m2
ij .  These two basis representations are then related by 

.

Clearly, such a representation will be a good approximation if the pattern of the U matrix

is similar to the CKM matrix.

We can now consider a state which is a pure |να> at t = 0.  Decomposing it into

mass eigenstates, we have

.

At subsequent times t, we have 

.

Treating neutrinos as stable particles and assuming that E2>>m2, we obtain

We now transform back to the flavor basis, using 

,

,

and ignore the initial phase factor since eventually we shall be interested in the square of

the coefficient of .  We obtain

We now take the magnitude squared of the coefficient of  and use

trigonometric identities to simplify the equation.  This magnitude squared is then the

να

νβ

θcos θsin

θsin− θcos

ν1

ν2

=

να 〉 θ ν1 〉 θ ν2 〉sin+cos=

ν t( ) 〉 θe
iE 1t− ν1 〉 θ iE 2t− ν2 〉sin+cos=

ν t( ) 〉 e ipt− θe

1
2

− i
m1

2

p
t

ν1 〉cos θe
1
2

− i
m2

2

p
t

ν2 〉sin+= .

ν1 〉 θ να 〉 θ νβ 〉sin−cos=

ν2 〉 θsin να 〉 θcos νβ 〉+=

νβ 〉

ν t( ) 〉 cos2θe
1
2

− i
m1

2

p
t

sin2θe
1
2

− i
m2

2

p
t

+ να 〉= + e

1
2

− i
m2

2

p
t

e

1
2

− i
m1

2

p
t

− θ θ νβ 〉cossin .

νβ 〉



probability P(α → β), the probability of transition of a neutrino of flavor α into a

neutrino of flavor β.  If L is expressed in Km (m) and E in GeV (MeV) then the

expression reduces to 

  ,

where  and is expressed in eV2.  This expression is obviously much

simpler than the one for the three flavor case, and the results of an experiment

analyzed in this formalism can be easily displayed in a two-dimensional plot since

only two parameters, θ and ∆m2, are involved.

2.2 Classification of Oscillation Experiments

As can be seen from the last equation, results of any neutrino oscillation experiment

can be displayed graphically on a two dimensional plot, the two axes traditionally

being sin22θ (abscissa) and ∆m2 (ordinate).  It is customary to use log-log

representation, but sometimes sin22θ is expressed on a linear scale.  An experiment

claiming a positive result delineates a contour in this space (1σ, 90% C.L., etc.) within

which the true answer must lie if the experiment is correct.  A negative result can be

represented by a curve delineating the region (again at 1σ, 90% C.L., etc.) excluded by

that particular experiment.

It is clear that if one wants to probe a region of small sin22θ, one needs good

statistics since the effect will be small.  Since the neutrino flux, and hence the event

rate, falls off with source-detector distance L like 

,

we need to be relatively close to the source to have a large event rate.  In addition, we

need to keep the second factor large, i.e., the argument—  —has to be of

the order of unity.  Hence, we need

,

and thus for large E/L, such an experiment will be limited to probing large values of

∆m2.  This basically defines a short baseline experiment, one where the source-

detector distance is relatively small and where the region probed extends to small

values of sin22θ but is limited to large values of ∆m2.

P να νβ→( ) sin22θ= sin2 1.27 m2L
E

∆( )

m2∆ m1
2 m2

2−=

φν 1 L⁄( ) 2∝

1.27 ∆m2 L
E

⋅ ⋅

∆m2 E/L≈



On the opposite end of the spectrum are the long baseline experiments which try

to focus on investigation of low values of ∆m2.  Again, to keep the argument of the

second factor close to unity, L/E has to be large, i.e., the detector has to be far away.

But that results in a flux penalty and hence the region covered in sin22θ is smaller.

Clearly, it is the value of the ratio L/E that provides the factor determining the category

of the experiment.

Thus, long baseline experiments are able to probe low values of ∆m2 but their

reach in sin22θ is more limited.  Solar neutrino studies are clearly long baseline

experiments; the initial reactor and accelerator oscillation searches would be classified

as short baseline experiments.  We illustrate the regions covered by each kind of

experiment graphically in Fig. 1.

FIG. 1.   A rough illustration of the regions in oscillation parameter space that might be covered by a

long baseline experiment (solid line) and a short baseline experiment (dashed line).

An alternative classification of experiments is between appearance and

disappearance experiments.  Considering a search for the possible oscillation

να → νβ, the latter kind of experiment would measure the να interaction rate at one or

more locations and compare it with the expected signal, based on the knowledge of the

neutrino flux at (or near) the source.  Use of two detectors, one near and one far from
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the source, can reduce systematic errors in this kind of an experiment.  Such

experiments cannot see very small signals because their observation would involve

subtraction of two large numbers from each other; they also cannot tell the mode of

oscillation, i.e., whether we see να → νβ or να → νγ, since only the να interaction rate

is measured.  Study of solar neutrinos is clearly via disappearance experiments.

Appearance experiments try to detect the potentially created new flavor, i.e., νβ
in our case.  Their sensitivity for small signals is much better and is generally limited

by the knowledge of the amount of νβ in the initial beam and the ability of the detector

to distinguish clearly νβ from να.  Searches for ντ, identified by τ production and

decay in emulsion with essentially no background in a predominantly νµ beam are

examples of appearance experiments.

2.3 Sensitivities

In this section we discuss how the reach of a given experiment depends on the

experimental parameters, i.e., L, E, and N, the number of events.  We distinguish

between two qualitatively different situations:  a background-free experiment (e.g.,

search for ντ in emulsion), and an experiment relying on a statistical subtraction, e.g.,

a disappearance experiment or a measurement of the NC/CC ratio.  The reach can be

parametrized by the lowest value of ∆m2 accessible and by the lowest value of sin22θ
that can be explored.

The number of signal events, Nβ, is given by

 ,

where Nα is the expected number of events of the original flavor in the absence of

oscillations at a given location L and varies as 

 ,

with  being the number of να interactions at the source (L = 0).  We may write 

,

where I is the total proton intensity on target, and f(E) is a function describing energy

dependence of the neutrino flux which is determined by the initial hadronic production

spectrum, details of the focusing system, length of the decay volume, and energy

N β N αsin22θ= sin2 1.27 ∆m2 L
E

⋅⋅( )

N α N α
o 1

L
( )

2
∝

N α
o

N α
o I f E( )=



dependence of the neutrino cross section (which is proportional to E in the GeV

region).

To investigate sensitivity at low ∆m2 (∆m2 << 1 eV2), i.e., the lowest value of

∆m2 that can be detected, we can write  

,

where Nβ is the number of β flavor events detected necessary to establish presence of a

signal.  For the truly background-free case, Nβ = 1 (or 2 or 3 for very small

background case).  Thus the sensitivity for background-free case is ,

i.e, independent of L.  

For the statistical case, the figure of merit for determination of sensitivity is the

quantity δ defined by

,

i.e., the number of standard deviations away from zero, namely from no effect.  For

low ∆m2 we have 

Thus, the sensitivity in ∆m2 in this case goes as .   (Note that in

this definition of sensitivity a lower number means further reach, and that   has

very likely a strong dependence on E as discussed above).  The above arguments

illustrate the importance of choosing as small a value of E/L as feasible for good low

∆m2 sensitivity; because of fourth root dependence on , it is laborious and

expensive to gain more sensitivity by increasing the running time (or the neutrino flux

or the tonnage of the detector).

We turn now to the question of sensitivity in sin22θ.  Maximum sensitivity is

generally taken as one that will occur at values of ∆m2 high enough so that we shall

have

,

where the average is over the energy spectrum.  Hence we have

.

N β N αsin22θ 1.27 ∆m2 L
E

⋅⋅( )
2

N α
o 1.27 ∆m2⋅

E
( )

2

⋅∝⋅=

∆m2 1 Nα
o⁄∝

δ N β N α⁄=

δ N α
o 1.27 ∆m2⋅

E
( )

2

N α⁄⋅∝ N α
o 1.27 ∆m2⋅

E
( )

2

N α
o⁄ 1

L
N α

o ∆m2

E
( )

2

L.= =

N α
o( )

1 4⁄− E

L
( )

N α
o

N α
o

sin2 1.27 ∆m2 L E⁄⋅ ⋅( ) 1
2

=

N β
1
2

N αsin22θ N α
o 1

L
( )

2
sin22θ∝=

.



For the background-free case the sensitivity in sin22θ will vary inversely with 

(i.e., ) and as L2.  For statistical analyses

.

The sensitivity will be proportional to  and L.  Thus, clearly a mistake in the

proper choice of E/L is less costly in the reach for sin22θ than for ∆m2.

Knowing now the dependence of the intercepts of our sensitivity contour, it

remains to ask about the shape of the contour in the intermediate region.  Taking the

log of our probability equation for low ∆m2 we have

.

Thus the slope of the sensitivity curve on a log-log plot will be 1/2.  The general

shape of a typical sensitivity plot is shown in Fig. 2.  The turnaround point

corresponds roughly to 

,

and the sharpness of the wiggles near that region increases for a relatively narrow

beam energy spectrum and is washed out for a broad spectrum.

FIG. 2.  A typical shape of a sensitivity plot for an oscillation experiment.  We note the dependence of

the limiting points on initial flux and the values of L and E.  One must remember, of course, the

additional, implicit dependence of N0 on E as discussed in the text.
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