
LEPTON UNIVERSALITY

Michel Davier

Laboratoire de l'Acc�el�erateur Lin�eaire

IN2P3-CNRS et Universit�e de Paris-Sud

91405 Orsay

France

ABSTRACT

The topic of lepton universality is directly related to the structure

of the fundamental fermion �elds and the dynamics generating it. It

can be investigated independently for the charged and the neutral

weak interactions. The precise measurements of the neutral couplings

achieved at LEP and SLC are the key ingredients for the investigation

of electroweak radiative corrections and the indirect investigation of

the Higgs sector. Since it is heavy enough to decay into hadrons, the

� lepton has turned into a nice source of QCD studies, including the

most precise determination of the strong coupling constant.

c 1997 by Michel Davier.



Introduction

During recent years, a great deal has been learned about leptons through the

experimental program at LEP and SLC. It is well-known that e+e� annihilation

is a democratic supplier of leptons and quarks. In addition, the large cross section

provided by the existence of the Z resonance enabled the experiments to register

important statistics of leptons, hence opening a �eld of precision measurements

unheard of before in high-energy physics.

These lectures emphasize the properties of the leptonic couplings to the gauge

bosons. In the Standard Model, a universal structure is assumed for the couplings

of leptons and quarks to the , W , and Z bosons. The new experimental data

can test this structure with great accuracy.

Nobody questions today the fascinating universality of the electric charge of

leptons which measures their coupling to the photon. This property is imbedded

in the universal QED theory which, however, tells us nothing about the existence

of quark and lepton families. The situation might be di�erent with the electroweak

interaction, whose structure could have some relation to the particle spectrum.

The driving force for investigating so aggressively the problem of universality rests

on the possibility that violations might be discovered, thereby unveiling some clue

about the puzzling family structure of matter.

The lectures are organized as follows:

(i) Leptonic W couplings: Universality of the couplings in the weak

charged current is investigated in order to con�rm the structure assumed in the

Standard Model or �nd departures.

(ii) Leptonic Z couplings: The same approach is applied to the elec-

troweak neutral current. In addition to testing universality, precise determination

of the leptonic couplings provides a fascinating tool to explore the electroweak

vacuum, with information on very massive fermions like the top quark and the

Higgs sector of the theory.

(iii) The � , a peculiar standard lepton: The � lepton has standard

electroweak properties, as discussed in the previous lectures. But, owing to its

relatively large mass, it can decay into hadrons as well as into leptons, opening a

�eld of study of the strong interactions (QCD) in a very clean and favorable en-

vironment. The recent results from these studies will be presented and discussed.



1 Leptonic W Couplings

1.1 Structure of Leptonic Charged-Current Interaction

The general four-fermion interaction is well-described theoretically1 under the

assumptions of locality, a derivative-free Lagrangian, and lepton number conser-

vation. The most general amplitude for the transition shown in Fig. 1(a) contains

a priori 12 complex coupling constants:

M =
4Gp
2

X
=S;V;T

�;�=R;L

g

�� [l���l] [� l0�

l0�]; (1)

where G is the Fermi constant,  describes the current type (scalar S, vector V ,

or tensor T ) and �, � are the chiralities of the charged fermions. It should be

remarked that the helicities of the neutrinos �l and �l0 are determined by the choice

of , �, and �. Of the 12 couplings, only ten are relevant since gTRR = gTLL = 0, so

that only(!) 19 independent real parameters are involved.

Let us introduce the probabilities Q�� for a lepton l� to yield a lepton l0� in

the transition. They can be simply expressed in terms of the couplings through

X
�;�

Q�� = 1 (2)

with

QRR =
1

4
jgSRRj2 + jgVRRj2; (3)

QRL =
1

4
jgSRLj2 + jgVRLj2 + 3jgTRLj2; (4)

QLR =
1

4
jgSLRj2 + jgVLRj2 + 3jgTLRj2; (5)

QLL =
1

4
jgSLLj2 + jgVLLj2: (6)

In the Standard Model, only V � A currents are involved and all the couplings

vanish, except gVLL = 1. Consequently, QLL = 1 and QRR = QRL = QLR = 0.

1.2 Leptonic Weak Decay

Consider the electronic decay of a charged lepton,

l �! �l e �e; (7)
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Fig. 1. Charged-current four-fermion transition: (a) local limit in the general case,

(b) Standard Model.

according to the phenomenology of Sec. 1.1 and ignoring for the moment radiative

corrections. To �rst order in the ratio me

ml
, the decay distribution of a polarized

lepton is given in its center of mass by

d�(l�)
d
dx

=
G2m5

l

192�4
x2f3(1�x)+2

3
�(4x�3)+6�me

ml

1� x

x
��Pl cos �[1�x+

2

3
�(4x�3)]g;

(8)

where � is the angle between the electron momentum and the lepton polarization

(Pl) and x = Ee
El
. The quantities �, �, �, and � are called Michel parameters and

they can be expressed in terms of the g

�� coupling constants. For example:

� =
3

4
f1� jgVLRj2 + jgVRLj2 + 2jgTLRj2 + 2jgTRLj2 +Re(gSLRg

T �

LR + gSRLg
T �

RL)g; (9)

� =
1

2
Ref6gVRLgT

�

LR + 6gVLRg
T �

RL + gSRRg
V �

LL + gSLLg
V �

RRg
S
RLg

V �

LR + gSLRg
V �

RLg: (10)

Thus, four parameters of the general matrix element can be determined. In the

Standard Model, one has � = � = 3
4
, � = 1, and � = 0. Notice that � is an

interesting quantity to study, as a small contribution from gS
�

RR could be detected

through the interference with the dominant coupling gV
�

LL.

The measurement of the x dependence of the electron polarization (through

M�oller scattering of the �nal state electron on a magnetized foil) allows the de-

termination of six more parameters, leaving, however, an ambiguity between gSLL

and gVLL.

To proceed further, one needs information about the �nal state neutrinos.

This is not possible on an event-by-event basis, but fortunately the inverse �-

decay process

�l e �! l �e (11)



is measurable in practice for l = �, thanks to the existence of intense muon

neutrino beams. Experiment tells us that such �� beams prepared from �+ !
�+�� have a well-de�ned helicity,2

j2���j = jh��j = jh�+j > 0:9959: (12)

The cross section for (11) receives no contribution from gSLL. Since the measure-

ment yields a nonzero value,3 the dominance of gVLL over gSLL is established, thus

breaking the degeneracy.

1.3 Experiments on Muon Decay

Beautiful experiments were carried out at TRIUMF and PSI in the '80s with

polarized muons from � decays.4 The shape of the electron energy spectrum

determines �, while the decay asymmetry (the correlation between the electron

momentum and the muon polarization) yields � and ��
�
at the end point (x ' 1).

After measurement of the electron polarization, one obtains QLL > 0:95 while

the other probabilities are consistent with zero. As explained in Sec. 1.2, the

degeneracy between gVLL and gSLL is lifted giving

gVLL > 0:96; gSLL < 0:55; (13)

at the 90% C.L. The full information on the couplings is given in Fig. 2, which

displays the allowed regions for the reduced quantities

g
0
�� =

g

��

max(g

��)

; (14)

where max(g

��) = 2; 1; 1p

3
for  = S; V; T , respectively.

1.4 Experiments on � Decays

1.4.1 The Process e�e+ ! ���+

Experimental information from � decays comes solely from e+e� data through the

process e+e� ! �+��. Two channels are kinematically open: �� ! ��e
��e and

�� ! ���
���. For both of them, Eq. (8) applies with the relevant label changes.

Data originate from two sets of experiments: (i) at
p
s ' 10 GeV (ARGUS,

CLEO) where P� ' 0 and (ii) at
p
s 'MZ (ALEPH, DELPHI, L3, OPAL, SLD)



Fig. 2. 90% C.L. limits for the reduced couplings g
0
�� in the decay �� ! ��e

��e
(Ref. 5).
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Fig. 3. Helicity correlation in e�e+ ! ���+: (a) the two contributing states at

high energy, (b) the tagging helicity scheme.

with P� ' �0:15 (at LEP). The fact that the � polarization is small, or even

vanishes, can be circumvented since the two back-to-back � 's are produced with

a very large correlation between their spins. This is the consequence of helicity

conservation for V, A interactions in the high-energy limit,
p
s

m�
!1.

As a consequence only Jz = �1 states are produced in e+e� annihilation

[Fig. 3(a)], corresponding to the two only nonzero transitions: e�Le
+
R ! ��L �

+
R and

e�Re
+
L ! ��R �

+
L . This provides an e�cient way to produce polarized � 's under the

scheme indicated in Fig. 3(b): The hadronic decay of one of the two � 's is used

as a spin analyzer (following the method described in the next section), thereby

tagging the helicity of the opposite � , whose decay properties can then be studied.

1.4.2 � Helicity Determination

Owing to the spin-zero pion, the simplest � decay mode to use to analyze the �

polarization is � ! ���. Assuming the same V �A structure as in � ! �� decay,

the � angular distribution in the center of mass is correlated with the � helicity

(Fig. 4).

The decay amplitude is proportional to cos ��

2
(resp. sin ��

2
) for ��R (resp. ��L ),

yielding a decay rate � 1 + cos �� (resp. � 1� cos ��). Thus, the decay rate for a

� with helicity �� is
1

�

d�

d cos ��
= 1 + 2�� cos �

�; (15)

yielding after a Lorentz boost

1

�

d�

dx
= 1 + 2��(2x� 1) (16)
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Fig. 4. Decay of a polarized � , ��R or ��L , into ���.

where x = E�
E�
. For a sample of � leptons, the polarization is given by P� = 2 h �� i.

The expected decay distributions for samples of ��R or ��L are given in Fig. 5.

The simplest case can be extended for any � decay mode6 � ! ��X, where X

decays into a �nal state described by a set of observables ~�. Assuming only V �A
structure, the decay rate (16) can be generalized to

1

�

d�

d~�
= f(~�) + P�g(~�): (17)

At every point in ~� space, one de�nes the variable ! through

! =
g(~�)

f(~�)
: (18)

The probability density distribution for !

1

�

d�

d cos �
= f̂(!)f1 + P�!g (19)

shows the same linear behavior as for the � case. Thus, with no loss in sensitivity,

a di�cult analysis in the multidimensional ~� space is reduced to a straightfor-

ward one-dimensional problem with the variable ! which analyzes optimally the

� polarization.

One can de�ne the sensitivity S of an observable for the determination of the

� polarization in a sample of N decay events through S�1 = �P�
p
N , where �P� is

the achieved statistical uncertainty on the measurement of P� . Table 1 gives the
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Fig. 5. Energy spectra for ��R and ��L decay into ���
�.

values for the sensitivity which can be achieved in the various � decay modes. It

should be emphasized that only decay channels with known dynamics [providing

the functions f(~�) and g(~�)] can be used, already accounting for 91% of all modes.

Except for the leptonic channels, where the missing neutrinos cause a large loss of

information, all the hadronic modes reach the maximal sensitivity when the full

decay information is used, including the knowledge of the � direction which can

be kinematically reconstructed.

If �� is not assumed to be left-handed, the parameter

h� = 2��� (20)

can be left free to be determined by experiment. In this case, Eq. (19) can be

rewritten as
1

�

d�

d cos �
= f̂(!)f1� h�P�!g: (21)

1.4.3 Results on � Couplings

The most complete analysis of � decay parameters has been performed by ALEPH7

using all polarization-sensitive states in Table 1. A global �t of the helicity cor-

relation distributions renders values for �, �, �, ��, and h� . However, the most

precise results come from a very recent work by CLEO8 using only the l� l � �

and � � � correlated states, but with large statistics. In the �rst pair, the � side

is the polarization analyzer for the leptonic hemisphere, and �, h��, and h��� are



channel X observables ~� sensitivity S

l� l xl 0:22

�� x� 0:58

��(! ���0) x� 0:26

+ decay variables 0:49

+ � direction 0:58

a�1 (! ��) xa1 0:03

,! �� + decay variables 0:44

+ � direction 0:58

Table 1. Sensitivity to � polarization which can be achieved in the � decay channels

�� ! ��X with di�erent sets of observables ~�.

deduced for decays into an electron or a muon. The second pair of decays is used

for the measurement of h2� . The technique is illustrated in Fig. 6. The sign of

h� is known from previous experiments.9 The results of CLEO given in Table 2

improve the precision of the previous world-average values by factors of two to

three. When expressed in terms of the phenomenological g
0
�� couplings, they yield

the allowed regions indicated in Fig. 7.

The results from leptonic � decays are consistent with those from � decay,

although they are less precise by a factor of � 5 due to the much smaller available

statistics. However, they allow the investigation of a larger variety of lepton pairs:

e� � and �� � as compared to e�� in � decay. The ambiguity between gVLL and

gSLL cannot be resolved for the � because the process ��e! ��e has not yet been

measured|a situation unlikely to change for some time!

The charged weak � current is therefore dominantly left-handed. The proba-

bility for a transition involving a right-handed � is

P �
R = QRR +QLR < 0:44 (22)

at 90% C.L.

Since the � measurements are limited by statistics, a large potential for im-

provement can be obtained from high-luminosity machines, such as B factories

and a dedicated � -charm factory.
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Fig. 6. CLEO results8 on hemisphere helicity correlations. The top plots show the

electron energy distributions for di�erent ! values of the opposite decay into a �:

a clear correlation is seen. The bottom plots display the same behavior when the

two hemispheres contain � decays.

world average10 CLEO8

h� �1:011� 0:027 �0:995� 0:010� 0:003

� 0:742� 0:027 0:747� 0:010� 0:006

� 1:03� 0:12 1:007� 0:040� 0:015

�� 0:76� 0:11 0:745� 0:026� 0:009

�e 0:736� 0:028 0:747� 0:012� 0:004

�e 1:03� 0:25 0:979� 0:048� 0:016

�e�e 1:11� 0:18 0:720� 0:032� 0:010

�� 0:74� 0:04 0:750� 0:017� 0:045

�� 1:23� 0:24 1:054� 0:069� 0:047

���� 0:71� 0:15 0:786� 0:041� 0:032

Table 2. Measurements of Michel parameters in leptonic � decays and of the

parameter h� .
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1.5 Chirality of the Vector Current

Data on � and � decays have shown that scalar and tensor currents are below

experimental sensitivity and that the weak charged transitions involve a dominant

left-handed vector current. Assuming that only vector currents contribute, it is

possible to investigate more directly the chirality structure of the interaction. The

general vector current has the form

J� = �i glp
2
�l

�(
vl � al

5

2
)l: (23)

The chirality information can be derived from the parameter

hl = � 2alvl

a2l + v2l
; (24)

already introduced in the previous section on � decays. The parameter hl is often

referred to as the \�l helicity." In the Standard Model, one has: vl = al = 1 and

hl = �1.
The Michel parameters can be expressed as functions of hl given below for

muon decay

� =
3

8
(1 + heh�); (25)

� = 2he � h�; (26)

�� =
3

8
(he + h�): (27)

Similar expressions hold for the two � leptonic decays with the proper replacement

of labels.

The experimental results on the Michel parameters can be summarized in the

(he; h�), (he; h� ), and (h�; h� ) planes, as shown in Fig. 8, displaying very nicely

the chiral nature of the weak current.

1.6 Placing Constraints on New Physics

The physics of the weak charged current may (and probably will) require an

extension of the Standard Model (SM). In that case, some deviation will occur

between a given observable and its SM prediction. Two possibilities are briey

examined here.
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Fig. 8. The experimental results on Michel parameters in � and � leptonic decays

are consistent with a left-handed vector current. Also shown is the direct measure-

ment of h� in hadronic � decays. In the Standard Model, he = h� = h� = �1.

1.6.1 New Vector Currents

The simplest and most natural extension of the maximally parity-violating theory

based on the SU(2)L � U(1) gauge group is provided by the group SU(2)L �
SU(2)R�U(1) where parity invariance is restored at some high mass scale.11 The

two SU(2) groups generate WL and WR bosons which mix into the physical states

W1 (observed so far) and W2 of higher mass.

Constraints on the mixing angle � and theW2 mass expressed through the mass

ratio � = M1

M2
can be obtained from the measurements. The most signi�cant limits

come from CLEO8 and are displayed in Fig. 9 in the (�; tan �) plane. Integrating

over � the 90% C.L. limit reached is

M2 > 260 GeV=c
2
: (28)

The corresponding limit from muon decay10 is

M2 > 406 GeV=c
2
; (29)

but it is valid only for a much less massive �eR (less than 1 MeV/c2).
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angle � for SU(2)L � SU(2)R � U(1).

1.6.2 Scalar Currents

Charged Higgs bosons can contribute to weak scalar currents which could be

detected through a nonzero value for the � parameter. From Eq. (10) to �rst

order, one expects

� � 1

2
Re gSRR: (30)

The experimental result from � decay,10

� = �0:007� 0:013; (31)

is precise, but unfortunately not sensitive to a Higgs coupling (which is propor-

tional to mass). The situation is just the reverse in � decays: the direct measure-

ment7;12�14 from � decays to muons [remember that in the decay rate (8) the �

term is proportional to ml

m�
];

� = �0:014� 0:076; (32)

does not allow a signi�cant limit to be drawn on the Higgs contribution. However,

assuming lepton universality for the dominant vector LL coupling, an indirect

determination of � can be obtained by comparing the leptonic widths for � !
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��e�e and � ! �����. The actual value, three times more precise than Eq. (32),

will be discussed in Sec. 2.8.4.

1.7 Strength of the Left-Handed Vector Coupling

Having established the dominance of V {A currents, it remains to investigate the

strength of the Wl�l coupling,
glp
2
. From � decay the product geg� is related to

the Fermi constant G in the local limit,

geg�

8M2
W

=
Gp
2
; (33)

and G is experimentally determined from the muon lifetime ��.

It is important to distinguish between couplings with W 's of di�erent helic-

ities, as departures from the SM could a�ect them di�erently. The two cases|

transverse (�W = �1) and longitudinal (�W = 0)|are illustrated in Figs. 10 and

11. Transverse W 's occur in leptonic decays, while only longitudinal W 's are in-

volved in decays with pseudoscalar mesons, such as �+ ! �+�� or � ! ���
�.

The total rate for leptonic decay can be obtained from Eq. (8) taking into account
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QED radiative corrections and deviation from locality through the W propaga-

tor15:

�(� ! �� l�l()) =
G�Glm

5
�

192�3
f� (xl)�W � ; (34)

where

Gl =
g2l

4
p
2M2

W

; (35)

�W = 1 +
3

5

m2
�

M2
W

; (36)

� = 1 +
�(m� )

2�

�
25

4
� �2

�
; (37)

f� = 1� 8x+ 8x3 � x4 � 12x2 lnx; (38)

xl = (
ml

m�

)2: (39)

Similar expressions hold for � decay with the proper label changes. The occurrence

of the m5
� factor in Eq. (34) on purely dimensional grounds bears an important

consequence on the practical value for the � lifetime.

Measurements of the leptonic widths provide a very direct test of universality

of the gl couplings. Through

�(� ! ��e�e) =
Be

��
; (40)



�(� ! �����) =
B�

��
; (41)

�(�! ��e�e) =
1

��
; (42)

where Be and B� are the respective branching fractions for � decay into the

electron and muon �nal states, ratios of couplings can be obtained:

 
g�

ge

!2
T

=
B�

Be

f� (xe)

f� (x�)
; (43)

 
g�

g�

!2
T

= Be

��

��

f�(xe)

f� (xe)

�
m�

m�

�5
�cor: (44)

The correction �cor can be derived from Eqs. (36) and (37). It is very close to one:

�cor � 1 = �2:1�10�4. All the phase space factors are practically equal to unity,

except f� (x�) = 0:9726.

Longitudinal couplings are investigated in � decays and � decay to ���. The

rate for �+ ! e+�e is suppressed by helicity compared to �+ ! �+�� by a factor

(me

m�
)2, giving

 
ge

g�

!2
L

=
�(� ! e�e)

�(� ! ���)

�
m�

me

�2  m2
� �m2

�

m2
� �m2

e

!2
��: (45)

Similarly, � � � universality can be tested comparing the rates for � ! ���
� and

�� ! ��� through the relation

 
g�

g�

!2
L

=
B�!���

B�!���

��

��

2m�m
2
�

m3
�

 
m2

� �m2
�

m2
� �m2

�

!2
��;�: (46)

The radiative corrections included in the factors �� and ��;� have been computed.
16

They are rather involved, including not very well-known contributions depending

on the pion structure. They yield ��;� � 1 = �(1:6 +0:9
�1:4) 10

�3.

1.8 Testing Universality in �, � , and � Decays

1.8.1 The Measurement of m�

To test lepton universality through the relations given in the previous section, it

is necessary to know precisely the � mass. This is particularly true in Eq. (44)

because of the �fth power involved. Fortunately, recent measurements of m� are



available from the BEPC storage ring in Beijing from a �ne-step scan around the

�+�� threshold.

In 1992, a �rst determination was achieved using only 14 e�� events yielding

m� = (1776:9 +0:4
�0:5�0:2calib) MeV=c

2
. More recently, in 1994, a more precise value

was published17 based on 64 events,

m� = (1776:96 +0:18 +0:20
�0:19 �0:16calib) MeV=c

2
: (47)

The cross section measured is shown in Fig. 12. The non-� background is

very small and the threshold behavior is well reproduced after convolving the

theoretical yield with the energy resolution of the beams (�ps = 1:4 MeV). The

value (47) is a considerable improvement over the older result from DELCO18

of (1783 +3
�4) MeV/c2. In the meantime, other determinations became available19

from the study of hadronic � decays, using the so-called pseudomass assuming

m�� = 0; although they are much less precise than (47), they con�rm a lower

mass value as compared to the DELCO value.

1.8.2 Measurements of the � Lifetime

LEP and SLC are the best places to measure �� with precision. Produced � 's are

nearly monoenergetic (small radiation loss) and �+�� events can be reconstructed

with high e�ciency (� 80 to 90%) and low background (< 1%). Despite the large

energy, the decay length is rather small, �c� ' 2:2 mm, much smaller than the

radius of the beampipe. To measure this length from outside the vacuum at a

precision level of 1% or less appears to be a formidable task!

Fortunately, several factors play very favorably to reverse the trend:

(i) e+e� storage rings have small beam spots in the transverse plane

(perpendicular to the beam axis), especially in the vertical direction y along the

magnetic �eld. At LEP, �y � 10 �m and �x � 150 �m. The situation is even

better with the small emittance beams of SLC, with �x � �y � 2:5 �m.

(ii) Experiments have installed very precise vertex detectors just around

the beampipe. These solid-state devices are read out with strips (LEP) or pixels

as for the CCD detector of SLD. The precision on the impact parameter � depends

on the intrinsic precision of the detector and the distance of extrapolation to the

interaction point. Typical values are �� � 10{25 �m.

(iii) Finally, the availability of large samples, � 2 � 105 �� pairs for

each LEP experiment, allows a large reduction of the statistical error. Even more
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Fig. 13. Measurement of the � lifetime through the impact parameter (left) and

the decay length (right) approaches.

importantly, it enables detailed systematic studies to be performed in order to

learn about possible biases in the measurement.

Many methods are available to measure the � lifetime. Initially, only three-

prong vertexing was used, with its direct access to the ight distance from the

interaction point. Later, it became useful to consider the more numerous one-

prong decays through the impact parameter approach (Fig. 13). Several schemes

were then developed combining opposite one-prong decays in order to reduce the

systematic uncertainties arising from the imperfect knowledge of the true event

annihilation point and the true �+�� line of ight usually approximated by the

event thrust axis.

The impact parameter sum (IPS) method20 for one-prong events was designed

to be independent of the production point, which can only be known statisti-

cally from averaging many non-� events. However, the method introduces some

dependence on the � direction with systematics for the Monte Carlo simulation.

Conversely, the impact parameter di�erence (IPD) method21 is sensitive to the

beam spot position, but has no dependence on decay angles, nor on the resolution

function. Finally, a new approach combining the advantages of both methods was

introduced for events where both � 's decay hadronically. This three-dimensional

impact parameter (3D-IP) method22 takes advantage of double-sided vertex de-
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tectors with readout of two orthogonal coordinates. In these events, where only

two neutrinos are missing, it is possible to reconstruct the �+�� direction up to a

two-fold ambiguity.23

All these approaches involve a delicate trade-o� between beam size uncertainty,

approximation of the true � line of ight, and sensitivity to detector resolution.

The resulting compromise depends obviously on the detector design, but also on

the accelerator properties. It may also be time-dependent; as with the increase in

statistics, a given method may surpass its competitors because of smaller system-

atic uncertainties. A priori, the best conditions are met with the SLD detector

at SLC. However, the data accumulated so far does not yet o�set the advantage

o�ered by the large statistics available to the LEP detectors.

Illustrative examples of some of the methods are given in Figs. 14 and 15.

The most recent �� measurements are given in Table 3 (Ref. 25). The combined

values of the di�erent methods taking into account the correlations are shown in

Fig. 16. Good agreement is observed between the di�erent experiments, leading

to a world-average value

�� = (290:2� 1:2) fs: (48)
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experiment/data set method lifetime (fs)

SLD '94-'95 IP 293:7� 8:2� 4:6

DL 280� 11� 2

IPD 287:8� 7:7� 3:5

ALEPH '94 IPD 290:4� 3:2� 1:7

DL 288:5� 3:1� 2:6

MIPS 290:2� 1:8� 3:9

3D-IP 289:0� 2:7� 1:3

DELPHI '92{'93 IPD 293:9� 4:8� 1:5

IPS 290:1� 3:5� 3:1

DL 286:7� 4:9� 3:3

L3 '94 IP 287:5� 3:8� 3:9

DL 293:0� 5:3� 2:5

OPAL '94 IP 290:4� 3:5� 2:2

DL 289:0� 3:6� 1:8

CLEO 2 DL 1-3 287:6� 2:9� 4:0

DL 3-3 309� 11� 9

Table 3. Measurements of the � lifetime with di�erent methods (described in the

text).25

1.8.3 Measurements of the � Leptonic Branching Fractions

We now turn to the last input to universality tests, the leptonic branching ratios

Be = B(� ! ��e�e) and B� = B(� ! �����). A new generation of results

appeared in the last few years26 taking advantage of large statistics and small

background.



Fig. 16. Measurements of the � lifetime.25



Fig. 17. Measurements of the � electronic branching fraction Be (Ref. 25).

An important experimental aspect is the control of the particle identi�cation

used in the analysis in order to separate the di�erent � decay channels. At the

level of precision required, it is not realistic to rely on Monte Carlo simulation

to compute the identi�cation e�ciencies and feedthrough backgrounds. The e�-

ciency matrix for electrons, muons, and hadrons has to be measured with data.

Fortunately, this is possible by selecting test samples of known particle types,

using the processes ee! ee(), ee! ��(),  ! ee,  ! ��, and � ! ��h�
0.

The idea is to isolate such samples with negligible background, to tag one particle

(a lepton or a �0), and to study the identi�cation of the recoil particle.

The recent results are given in Figs. 17 and 18. The progress achieved in the

last two years is clearly seen. The combined world values are

Be = (17:786� 0:072)%; (49)

B� = (17:317� 0:078)%: (50)



Fig. 18. Measurements of the � muonic branching fraction B� (Ref. 25).

1.8.4 Results and Discussion

From the results of Eqs. (49) and (50), and relation (43), one obtains a test of

e� � universality:  
g�

ge

!
T

= 1:0008� 0:0028: (51)

This value can be compared to the corresponding result from � leptonic decays27 ;28

using relation (45),  
g�

ge

!
L

= 1:0012� 0:0015: (52)

Testing universality of the � and � couplings involves the full set of measure-

ments we have discussed. Relation (44) yields with the experimental input (47),

(48), and (49)  
g�

g�

!
T

= 1:0003� 0:0029; (53)

where the total uncertainty receives contributions from �� (0.0020), Be (0.0020),

and m� (0.004).

A test of � �� universality for longitudinalW 's is possible using relation (46)

and the measured branching fraction for � ! �� (�;K) Bh = (11:77 � 0:14)%
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(Ref. 10) with the result

 
g�

g�

!
L

= 1:0067� 0:0064: (54)

So all the tests for lepton universality in the charged current are positive at a

precision level of 0:3%, except for � � � for longitudinal W 's where the precision

reaches only 1:3%. This is the culmination of a ten-year-long story, in which a hint

of a discrepancy was observed for � � � universality, but was later cancelled by

better lifetime measurements and the new determination of the � mass (Fig. 19).

A relevant question at this point is the sensitivity of these tests to new physics

beyond the SM. A popular candidate is supersymmetry with two Higgs doublets

in the minimal scenario, generating three neutral and two charged Higgs bosons.

The latter can contribute to leptonic � decays giving29

Bl � BSM(1� 2m2
l

M2
H�

tan2 �); (55)



where � is related to the vacuum expectation values of the two Higgs �elds through

tan � = v2
v1
. As expected, Eq. (55) introduces a correction for B�, leaving Be

practically unchanged. From the measurements (49) and (50), one obtains a limit

for the H� mass

MH� > 1:5 tan� (GeV=c
2
); (56)

which is only interesting for large tan� values, and is comparable to other limits

given by studies of B ! ��X decays, and from a recent investigation by CDF30

in top decays through t! H+b and H+ ! �+�� .

2 Leptonic Z Couplings

2.1 The Electroweak Standard Model

2.1.1 Phenomenology at Lowest Order

The electroweak Standard Model31 is based on gauge invariance with respect to

transformations of the symmetry group SU(2)L � U(1). Each group generates

an interaction, the intensity of which is determined by the couplings g and g0,

respectively, with exchanged bosons W+, W 0, W� for SU(2)L and B0 for U(1).

Gauge symmetry is spontaneously broken through the Higgs mechanism in order

to give masses to the originally massless gauge bosons. In this process the �elds

of the bosons W 0
� and B0

� are mixed, giving rise to the electromagnetic �eld A�

and to the Z boson �eld Z� as follows,

A� = B� cos �W +W 3
� sin �W

Z� = �B� sin �W +W 3
� cos �W ;

(57)

where �W is the electroweak mixing angle. Thus, the constants g, g0, �W , and e

are linked by the \uni�cation" conditions:

g sin �W = g0 cos �W = e: (58)

The phenomenology of the weak interaction charged current, with maximal

parity violation, requires placing left-handed fermions (fL) in weak isospin dou-

blets, while right-handed fermions (fR) are not speci�ed (as they do not participate

in the charged current). From the point of view of SU(2)L, simplicity and experi-

mental results point to a structure with universal fL families interacting with the

same constants g and �W .
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The fundamental couplings between gauge bosons and fermions (Fig. 20) are

expressed through the fermion currents in the charged sector

J
�
CC = �i gp

2
�f 0�

 
1� 5

2

!
f; (59)

and in the neutral sector

J
�
NC = � ig

cos �W
�f�

 
vf � af

5

2

!
f; (60)

with 8<
: vf = I3(fL) + I3(fR)� 2 Qf sin2 �W ;

af = I3(fL)� I3(fR):
(61)

In the simplest case where right-handed fermions are isospin singlets, one has

I3(fR) = 0.

After symmetry breaking, the masses of the W and Z bosons are completely

speci�ed at lowest order

M2
W =

��p
2 G sin2 �W ;

(62)

� =
M2

W

M2
Z cos2 �W

= 1; (63)



with the Fermi constant G de�ned in the local limit as

G =

p
2 g2

8 M2
W

: (64)

Relation (63) stems from the choice of a doublet of complex scalar Higgs �elds

for the symmetry breaking. It remains true for any number of doublets (for

example, two doublets in the MSSM), but it would be di�erent in the case of

di�erent Higgs multiplets.

The electroweak theory at lowest order is therefore set in a very constrained

frame: Once one is given the constants e and G (the latter from the muon lifetime,

for example), the knowledge of the only remaining parameter �W allows one to

deduce the masses of the W and Z bosons, and all the couplings in the neutral

sector as given in Table 4. Equation (63) provides sin2 �W directly through the

relation

sin2 �W = 1� M2
W

M2
Z

=
e2

g2
: (65)

f af vf vf for s
2 = sin2 �W = 0:231

�e
1
2

1
2

0:5

e �1
2

�1
2
+ 2s2 �0:038

u 1
2

1
2
�4

3
s2 0:192

d �1
2

�1
2
+ 2

3
s2 �0:346

Table 4. Fermionic couplings in universal neutral currents.

2.1.2 The Need for Higher Orders

Already before LEP and SLC, the overall consistency between the fermionic cou-

plings and the boson masses was not respected. On the one hand, from the

measurement ofMW (Ref. 32),MW = (80:35�0:33�0:17) GeV=c
2
, and Eq. (62),

the value

(sin2 �W )masses = 0:215� 0:002 (66)
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was obtained. On the other hand, neutrino scattering on nucleons33 allowed the

measurement of the quark couplings, providing with the help of Table 4

(sin2 �W )couplages = 0:233� 0:003 (exp:)� 0:005 (theo:): (67)

Comparison of the results (66) and (67) shows a clear discrepancy

� sin2 �W = 0:018� 0:006: (68)

However, it is important at this point to consider higher-order corrections to

the theory. In particular, computing the second-order radiative corrections to the

muon decay rate34 (Fig. 21) leads to the modi�cation �r to relation (62)

G =
��p
2

1

M2
W sin2 �W

(1 + �r): (69)

Some higher-order loop corrections can be resummed through

1 + �r + (�r)2 + : : : =
1

1��r
: (70)

The correction �r can be split into two terms with quite di�erent physics:

�r = �rEM +�rEW : (71)

� �rEM takes into account the evolution of � from Q2 = 0 to Q2 =M2
W from

fermionic loops in the photon propagator.35
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� �rEW is given by the contribution of loops with heavy particles (t quark,

Higgs boson) as shown in Figs. 22 and 23 with the following behavior36,37:

8<
: �rEW;t � m2

t ;

�rEW;H � `nMH

MW
:

(72)

Figure 24 shows the variation of �r with mt for di�erent values of MH ; the e�ect

is quite sizable, about 4% for mt � 150 GeV/c2.

Calculations of higher-order contributions allow us to re-write the expressions

for the masses and the couplings in terms of renormalized quantities, as is usually

done in QED. Among the parameters �, G, and sin2 �W , the �rst two are deter-

mined with precision from the quantum Hall e�ect and (g�2) of the electron, and
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the muon lifetime from Eq. (34), while the last one depends on the electroweak

renormalization scheme. Several schemes have been proposed; here we will only

consider an e�ective sin2 �W , noted s2, essentially de�ned through renormalized

couplings at s =M2
Z . To a very good approximation, higher-order corrections are

e�ectively absorbed in a renormalization of the couplings, leaving the relations

(61), (62), and (63) unchanged up to an overall factor:

8<
: �v =

p
�� (I3 � 2Q�s2);

�a =
p
�� I3;

(73)

M2
W =

� ��p
2 G �s2

; (74)

M2
Z =

M2
W

�� �c2
: (75)

The dominant correction term in � originates from loops involving the t quark,

which introduce an SU(2) violation because of the large mass splitting between

the b and t quarks36 (Fig. 22), yielding

�� = 1 +
3
p
2 G

16�2
m2

t + : : : : (76)



2.2 Observables in e�e+ ! ff

Calculations of the transition amplitude can be done at lowest order according to

the diagrams of Fig. 25, while renormalization is taken into account through the

relations (73). Cross sections are expressed in the center-of-mass frame where � is

the angle of the outgoing fermion with respect to the incident electron (Fig. 26).

e+

γ,z

f

fe-

Fig. 25. e�e+ annihilation into a fermion pair through  and Z exchange.

e+θ

f

f

e-

Fig. 26. e�e+ annihilation in a fermion pair in the center-of-mass frame.



2.2.1 e� Unpolarized and f Polarization Not Observed

Exchanges of  and Z lead to

d�f

d cos �
= 3

8
Cf �pt

n
Q2
f (1 + cos2 �)

�8Qf Re� [ve vf (1 + cos2 �) + 2ae af cos �]

+16j�j2
h
(v2e + a2e)(v

2
f + a2f )(1 + cos2 �) + 8ve vf ae af cos �

io
(77)

with

� =
G

8 �
p
2 �

s M2
Z

s�M2
Z + i MZ �Z

: (78)

Equation (77) displays the jj2 term from QED alone, the  � Z interference

proportional to the real part of the Z propagator which vanishes at s =M2
Z , and

the jZj2 term which dominates at the pole s =M2
Z .

Near the pole (s �M2
Z), Eq. (77) can be integrated over � to yield

�f =
G2 M6

Z (v2e + a2e)(v
2
f + a2f )

6� [(s�M2
Z)

2 +M2
Z�

2
Z];

(79)

=
12� �ee �ff

(s�M2
Z)

2 +M2
Z�

2
Z ;

(80)

displaying the partial widths �ff for the decay Z ! ff (consider the vertical cut

in the Feynman diagram in Fig. 25) given by

�ff =
G M3

Z

6
p
2�

(v2f + a2f ): (81)

Equation (77) induces a forward-backward asymmetry in the angular distri-

bution. For cos � > 0, one de�nes

A
f
FB (cos �) =

d�f (cos �)� d�f(� cos �)

d�f (cos �) + d�f (� cos �)
: (82)

Integrating over the hemispheres, the mean asymmetry is obtained,

A
f
FB =

R 1
0 d�f �

R 0
�1 d�fR 1

�1 d�f
=
F � B

F +B
: (83)

For s =M2
Z ,

A
f
FB(M

2
Z) =

3

4
AeAf ; (84)



where we have introduced the parity-violating observable Af ,

Af =
2vfaf

v2f + a2f
: (85)

However, since it only involves the product AeAf , the observable A
f
FB does not

violate parity.

2.2.2 e� Unpolarized and f Polarization Observed

Helicity is conserved at high energy for vector (�) or axial-vector (�5) inter-

actions. It leads to the production of Jz = �1 states, i.e., fLfR and fRfL. The

polarizations of the fermion and of the antifermion are thus opposite:

Pf = 2h�fi = �Pf : (86)

The cross section for producing a fermion with helicity �f is given by

 
d�

d cos �

!
�f

= F + 2�fG; (87)

where F and G are functions of cos � and depend on the couplings ve; vf ; ae; af .

Hence, the polarization can be calculated as a function of cos �,

Pf(cos �) = � Af + Aef(cos �)

1 + AeAff(cos �);
(88)

with f(x) = 2x
1 + x2

. The polarization Pf is a parity-violating observable and its

average over the angular distribution is proportional to Af :

hPfi = �Af : (89)

2.2.3 e� Polarized

The annihilation cross section for an initial e�e+ state with respective helicities

�� and �+ is given by

��
�
�+ =

Z  
d�

d cos �

!
�
�
�+

d cos �

= (1� 4�+��)�1 + 2(�+ � ��)�2;

(90)

where it can be readily veri�ed that only e�Le
+
R and e�Re

+
L states contribute, i.e.,

�+ = ���.



A very practical consequence follows: it is not necessary to polarize both elec-

trons and positrons. Only electrons need to be polarized, as an e�L can only

annihilate with an e+R, which constitutes on the average half of the unpolarized

positrons (and similarly for an e�R).

A polarization asymmetry can be de�ned with the two nonvanishing cross

sections,

ALR =
�LR � �RL

�LR + �RL
=
�2

�1
: (91)

It is a parity-violating observable and it is given simply by

ALR = Ae: (92)

2.3 Results on the Leptonic Widths

The measurement of the peak cross sections for the di�erent leptons provides

the values for the corresponding leptonic widths. Averaging over the four LEP

experiments38 gives

�ee = (83:94 � 0:14) MeV=c
2
; (93)

��� = (83:84 � 0:20) MeV=c
2
; (94)

��� = (83:68 � 0:24) MeV=c
2
; (95)

in good agreement with the universality hypothesis introduced in the standard

theory. It should be remarked that in this test only the axial coupling is probed,

because

�`` � v2` + a2` (96)

with v` � 0, since sin2 �W is close to 1
4
.

If universality is imposed, it is possible to compute the value of the universal

leptonic width for a massless lepton (ml �MZ)

�`` = (83:91� 0:10) MeV=c
2
: (97)

It is amusing to notice that, at the level of the experimental precision achieved,

the mass of the � lepton cannot be neglected against MZ . On the one hand, the

width for a vector coupling is



�V� =
�(3� �2)

2
�V� (m� = 0); (98)

where the threshold factor (depending on the velocity � of the �) is familiar from

the process e+e� ! �+�� with photon exchange only. On the other hand, the

width for an axial coupling increases with energy much more slowly:

�A� = �3 �A� (m� = 0): (99)

The threshold factor di�ers from unity by 9 � 10�7 for the vector part and by

2:3 � 10�3 for the dominant axial part, a value comparable to the experimental

accuracy.

2.4 Z Invisible Width and the Number of Neutrino Types

2.4.1 Standard Model with Universal Families and Situation before

SLC/LEP

Since for each lepton family we have

8<
: a�` = v�` =

1
2

a` = �1
2
; v` � 0;

(100)

the total rate for the Z to decay into neutrino pairs (an \invisible" width) can be

predicted to be

�inv = N���� ' 2N��``; (101)

where N� is the number of neutrino types with masses m� � MZ

2
.

Indeed, it is known that neutrinos have very small masses, less than 15 eV/c2

for �e (Ref. 10), 170 keV/c2 for �� (Ref. 39), and 18 MeV/c2 for �� (Ref. 40).

Moreover, cosmological considerations on the energy density of the universe lead

to mass limits on the order of 100 eV (Ref. 41). The experimental investigation

of the neutrino mass spectrum is therefore a very e�cient way to explore the

possibility of other higher-mass families of leptons and quarks.

Information on N� was scarce before SLC and LEP. From the ratio of W and

Z production rates in hadronic collisions, a limit N� < 6:1 (90% C:L:) was ob-

tained.42 The search for the process e+e� ! ��� with PEP and PETRA43 was

a more direct method, yielding N� < 4:9 (95% C:L:). A completely di�erent



approach was based on the primordial synthesis of light elements in the cosmolog-

ical model, giving the limit44 N� � 4. Even though no de�nite determination was

available, the exibility remained limited: since two neutrino types were already

experimentally known,45 the only possibilities left were N� = 3; 4.

2.4.2 Measurement of the Invisible Z Width

Formally, the invisible width is obtained by comparing the total width (measured

from the lineshape �t of the Z resonance) and the sum of all \visible" partial

widths (obtained from the corresponding rates),

�inv = �Z �
X

f visible

�ff = N��
SM
�� ; (102)

where �SM�� is the Standard Model prediction.

The total width is very precisely known (Fig. 27), and subtracting the mea-

sured leptonic and hadronic widths yields

�inv = (500:1� 1:8) MeV=c
2
: (103)

Using the SM prediction

�
�``

���

�
SM

= 0:5022� 0:0001; (104)

the value N� = 2:99 is obtained.

This is not the optimal method, however. It is preferable not to use directly

the measurement of the total width, and rather involve only quantities measured

precisely at the Z peak. Indeed, in the Standard Model, the peak cross section is

directly linked to N�: If N� increases, �Z increases too, and the peak cross section

for visible channels decreases (Fig. 28). Concretely,

�inv
���

= �``
���

�inv
�``

=

�
�``
���

�
SM

8<
:
s

12�RZ

M2
Z�

�
had; peak

� R` � 3

9=
; ;

(105)

where

RZ =
�had

�``
=

P
q �q�q

�``
: (106)
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Fig. 27. Measurements of �Z at LEP.



Fig. 28. Cross section for e�e+ ! Z ! hadrons and predictions for the Standard

Model for di�erent numbers of neutrino types N�.

This method is advantageous since it only depends on the measurement of RZ

(involving only the separation of leptonic and hadronic channels) and of ��had; peak
(depending on the luminosity determination and the radiative corrections).

The measured values of ��had; peak and RZ are given in Figs. 29 and 30, respec-

tively. The extracted value for N� is then:

N� = 2:993� 0:011: (107)

2.4.3 Discussion

The result (107) is a very important milestone in particle physics. It is the achieve-

ment of more than ten years of research (Fig. 31). Let us now proceed to discuss

the many consequences.



10 2

10 3

41.4 41.6 41.8

Hadronic Pole Cross Section [nb]

σ0
had  [nb]

m
H
  [

G
eV

]

χ2/DoF: 3.7 / 3

Lumi. Theory: ± 0.046

ALEPH 41.520 ± 0.068

DELPHI 41.557 ± 0.079

L3 41.411 ± 0.074

OPAL 41.456 ± 0.071

LEP 41.486 ± 0.053

1/α= 128.896 ± 0.090
αs= 0.118 ± 0.003
mt= 175.6 ± 5.5 GeV

State: j97

Fig. 29. Measurements of the peak cross section at LEP for e�e+ ! Z ! hadrons

after correcting for radiation.38
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(1) The measurement of N� is indeed consistent with an integer value! Further-

more, it is consistent with previous limits and the solution

N� = 3 (108)

is clearly chosen.

(2) Conversely, in the context of the standard scenario with three universal fam-

ilies of quarks and leptons, the measurement (107) can be reinterpreted as a

determination of the width ���. The result

�``

���
= 0:5010� 0:0020 (109)

is consistent with the theoretical value (104) with a precision of 4 � 10�3.

This is a nice result for an undetectable �nal state!

(3) It is, of course, impossible to separate the three neutrino avors: : : : How-

ever, the pre-LEP neutral current phenomenology was established with ex-

periments using �� and �e beams whose results can be formulated in terms of

the widths ��e�e and ����� which are in agreement with the universal Stan-

dard Model. As a consequence, the third neutrino coupled to the Z is also

standard and it is compatible with the �� neutrino associated with the �

lepton. The �� has not yet been detected experimentally, but its existence is

attested to by the phenomenology of � decays (see next lecture).

(4) The result (107) is only applicable to neutrinos with masses much smaller

than MZ

2
. Nevertheless, the intrinsic accuracy of the measurement allows

one to in fact exclude the production of a fourth neutrino up to a mass of

45 GeV/c2. As an example, a 40 GeV/c2 neutrino would have a width equal

to 40% of the massless value, therefore well in excess of the experimental

uncertainty in (107).

(5) The LEP measurement agrees with the estimates of the primordial nucle-

osynthesis of light elements. This can be turned around as a new powerful

test of the standard Big Bang cosmology.

(6) The result N� = 3 strongly suggests that the number N of quark-lepton

families is also equal to three. This statement is strongly supported by the

following three observations:



(a) The neutrino mass spectrum is experimentally con�ned to rather small

masses, most probably smaller than 100 eV/c2. It would be strange if

the mass of the fourth (universal) neutrino were larger than 45 GeV/c2,

i.e., a factor larger than 109.

(b) No new charged lepton or new quark has been observed with LEP with

a mass larger than 46 GeV/c2.

(c) The experimental determination of the electroweak radiative corrections

(76) shows that they are saturated by the known fermions, including of

course the heavy top quark. Still higher-mass fermions would have a

very large e�ect on these corrections if their masses violate the SU(2)

symmetry, as observed for the \chiral" fermions: m` � m�` and mt �
mb. It is not possible to exclude in this way super-heavy mass-degenerate

fermions.

(7) A last remark deals with the connection between the number of quark fam-

ilies and the observed CP violation in the weak interactions. The standard

interpretation of this violation rests on the existence of at least three quark

families. In this case, the weak mixing matrix for the charged current is

complex, thus providing the necessary ingredient to describe CP violation.

The determination N� = 3 and its extension N = 3 represents therefore the

minimal situation for this explanation.

2.5 Results on the Leptonic Asymmetries

2.5.1 Forward-Backward Asymmetries

The experiments determine the asymmetries at the Z pole A
` (0)
FB , corrected for

 exchange, �Z interference (for s 6=M2
Z), and vacuum polarization for photon

exchange. For s �M2
Z and since vl is quite small (Table 4), the measured values

38

are tiny (Fig. 32):

A
e (0)
FB = 0:0160� 0:0024; � (110)

A
� (0)
FB = 0:0163� 0:0014; (111)

A
� (0)
FB = 0:0192� 0:0018: (112)

�The determination of A
e (0)
FB requires the subtraction of the t-channel -exchange contribution

which is computed using QED. This explains the larger error.



Fig. 32. Forward-backward asymmetry in the process e�e+ ! ff . The value at

s =M2
Z is proportional to vevf .

These values are consistent with universality, where this time the vector cou-

plings are mainly investigated, according to Eqs. (84) and (85). Assuming univer-

sality, the combined value is

A
` (0)
FB = 0:0171� 0:0010: (113)

It is used in conjunction with Eq. (97) for �``, in order to separate the couplings

vl and al up to some ambiguities. A di�erent version of this is given in Fig. 33,

where universality is shown to be satis�ed.

2.5.2 � Polarization

The principle of the measurement of � polarization has been exposed in Sec. 1.4.2.

At LEP the channels �� ! ��X
� with X� � e� �e; �

� ��; �
�; ��, and a�1 are

used, where the secondary decays �� ! ���0 and a�1 ! ���+�� or ���0�0 have

been measured.

The quantities Ae and A� are then separated from the cos � dependence of the

� polarization, according to Eq. (88), as outlined in Fig. (34). This provides a

powerful way to test e{� universality for the vector couplings.
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The current results (most experiments have not yet analyzed the full LEP1

statistics) from LEP,38

Ae = 0:1399� 0:0073; (114)

A� = 0:1410� 0:0064; (115)

are in agreement with universality. The combined universal value is

A` = 0:1406� 0:0048: (116)

2.5.3 LR Electron Asymmetry

The relative measurement at SLC of the cross sections �(e�Le
+) and �(e�Re

+) on

the Z peak for any �nal state f �f can be achieved with a small systematic un-

certainty.46 In particular, the electron polarization can be ipped from bunch to

bunch in a random way, thus minimizing the e�ect of drifts in the performance

of the detector and in the behavior of the beams. The statistical error is also

minimal as all Z decays are used. The measured asymmetry A
exp
LR is given by



A
exp
LR =

1

Pe

NL �NR

NL +NR

; (117)

where Pe is the actual electron polarization at the collision point and NL;R are

the numbers of events produced with the electron polarization L;R for the same

integrated luminosity.

The data taken in 1992{95 correspond to about 1:5 � 105 produced Z's with

a mean polarization Pe of 74%. After corrections taking into account  exchange,

o�-pole e�ects including  � Z interference, and initial state radiation, the result

obtained47 is

A
(0)

LR = Ae = 0:1547� 0:0032: (118)

2.5.4 Discussion

The independent determinations of Al from the FB lepton asymmetries at LEP,

� polarization at LEP, and LR electron asymmetry at SLC are not in very good

agreement:

Al (from AFB) = 0:1510� 0:0044; (119)

Al (from P� ) = 0:1406� 0:0048; (120)

Al (from ALR) = 0:1547� 0:0032: (121)

The average yields Al = 0:1505 � 0:0023 with a �2 of 6.0 for 2 DF . The

disagreement could be the result of bad luck or it could point to systematic e�ects

not corrected for in some of the analyses. More data are welcome. On one hand,

when all LEP1 results are available, the �nal accuracy on Al from � polarization

should be around 0:0034. On the other hand, SLD continues to take data, as

their method is statistically dominated: indeed, an updated value of A
(0)

LR =

0:15245 � 0:00286 was given48 taking advantage of additional data in 1996{97.

It will be interesting to watch the outcome of this critical test as its accuracy

improves.

Another piece of information on Al comes from the measurement of the FB

asymmetry for b�b pairs, obtained with good statistical accuracy at LEP. Since

Ab
FB(M

2
Z) =

3

4
AeAb; (122)



and taking the expected value Ab = 0:9355� 0:0003 in the Standard Model with

sin2 �W = 0:2315 � 0:0004, the measurement38 corrected to the pole, Ab
FB =

0:0984� 0:0024, yields the result

Ae (from Ab
FB) = 0:1402� 0:0034; (123)

not in good agreement with the values from the purely leptonic asymmetries

discussed above. The reasons for this discrepancy are not clear at this point:

SM input for Ab, systematic e�ects in the measurements of Ab
FB? Here again,

new analyses with more data are welcome. Indeed, a more recent analysis from

ALEPH49 yields a signi�cantly larger value for Ab
FB, increasing the LEP average

to 0.0997. Time will tell!

2.5.5 Determination of the Neutral-Current Leptonic Couplings

Summarizing the previous sections, the leptonic couplings al and vl are determined

from the following measurements:

�`` ! v2` + a2`

A`
FB ! v`a`veae

Ae ! veae

A� ! v�a� :

(124)

The only solution retained satis�es al < 0, as imposed by pre-LEP results

from neutrino-electron scattering. The values are given in Table 5 and in Fig. 35.

Universality is satis�ed with a precision of 0.2{0.3 % for al and 6{12 % for vl. The

fact that the latter value is poorer follows from the smallness of vl, about 14 times

smaller than al, itself a consequence of the particular value of sin2 �W . In fact,

a better perception of the accuracy reached in the vector sector is given by the

corresponding determinations of sin2 �W , given in Fig. 36 following the de�nition

stemming from Eq. (73),

�s2 =
1

4

�
1� �v`

�a`

�
: (125)

Finally, it is rewarding to look back at the recent progress achieved at LEP

and SLC in the knowledge of the neutral current leptonic couplings. The previous

situation, illustrated in Fig. 37, was dominated by ��, ���, �e, ��e scattering on

electrons, e+e� annihilation into lepton pairs at PETRA and PEP, and polarized



couplings without universality

ve �0:03844� 0:00071

v� �0:0358� 0:0032

v� �0:0365� 0:0015

ae �0:50111� 0:00043

a� �0:50098� 0:00065

a� �0:50103� 0:00074

ratios of couplings

v�=ve 0:932� 0:087

v�=ve 0:949� 0:044

a�=ae 0:9997� 0:0016

a�=ae 0:9998� 0:0018

couplings with universality

vl �0:03793� 0:00058

al �0:50103� 0:00031

Table 5. Results for the e�ective vector and axial-vector couplings derived from

LEP and SLC.38
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lepton scattering on nucleons. This is already a spectacular plot, pointing to a

unique solution near al � �0:5 and vl � 0. Zooming in twice on this spot with

a magni�cation of ten each time, as pictured in Fig. 38, allows one to visualize

the recent leap in precision which has been attained. This 100-fold increase in

accuracy is the basis for precision tests of the Standard Theory, which we are

going to discuss next.

2.6 Precision Tests of the Standard Model

2.6.1 Strategies

Calculations of observables in the Standard Model depend on the couplings e,

g, and g0. It is, however, a more convenient choice to start with better known

quantities, such as

��1(0) = 137:0359895 (61); (126)

G = 1:166389 (22) 10�5 GeV�2; (127)

MZ = 91186:7 (2:0) MeV=c
2
: (128)

QCD corrections depend on �s(M
2
Z), which is precisely known from hadronic

� decays (see next lecture) or directly obtained through the global electroweak �t

involving the Z width. The two determinations are in agreement and they are

also well consistent with the other less precise values from lepton scattering and

analyses of event shapes,50 giving

�s(M
2
Z) = 0:1192� 0:0020: (129)

The basic test strategy is then to compare the measurement Oexp of an ob-

servable O for which the theoretical value depends on the input parameters

(�;G;MZ; �s) as well as on unknown quantities involved in the computation of

radiative corrections (mt;MH):

Oexp = Oth = f(�;G;MZ; �s ; mt;MH): (130)

The rule of the game is to �nd the range for mt and MH so that Eq. (130) is

satis�ed. This procedure should be repeated for all the electroweak observables

in order to check the consistency.
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2.6.2 The Mass of the Top Quark

The leading e�ect in the radiative corrections is proportional to m2
t [see Eqs. (72)

and (76)]. Fixing the Higgs mass at 300 GeV/c2 within a total range from

70 GeV/c2 to 1 TeV/c2, one derives

mt = (177� 7 +16
�19) GeV=c2; (131)

where the second error accounts for the assumed Higgs range. This indirect de-

termination of mt is in very good agreement with the direct measurement at

FNAL51:

m
p�p
t = (175:6� 5:5) GeV=c2: (132)

The consistency between the results (131) and (132) is another triumph of the

Standard Model and the happy conclusion of more than a decade of top quark

searches (Fig. 39).

2.6.3 The Mass of the Higgs Boson

With mt now determined independently, the only unknown parameter remaining

is MH and it is clear from (131) and (132) that information can be extracted

from the global electroweak �t. Before doing that, it is interesting to examine the

most relevant observables in order to understand their respective sensitivities to

MH . They are MW (or �r), �Z , �l (or ��), and �s2. Their present sensitivities are

illustrated in Figs. 40, 41, 42, and 43.

At the present level of precision, the most signi�cant constraint on MH comes

from asymmetries (providing �s2). It is to be remarked that further progress here

awaits improvements in the knowledge of �(M2
Z), a point we shall return to in the

next lecture. More experimental information is expected soon with the completion

of the LEP1 analyses, the continuation of the ALR measurement at SLAC, and

the growing importance of the MW determinations at FNAL and LEP2.

Figure 44 summarizes the results of the global electroweak �t: The allowed

region for mt andMH shows a preference for a relatively light Higgs boson. When

second-order EW corrections are taken into account52 and new estimates of �(M2
Z)

are used,50,53,54 the following determination is obtained55

MH = (83 +61
�38) GeV=c2: (133)
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Fig. 40. The sensitivity of �r to MH. The two curves are given for MH = 65 and

1000 GeV/c2. The vertical and horizontal bands correspond to the measurements,

in particular MW = (80:356� 0:125) GeV/c2.

Fig. 41. The sensitivity of �Z to MH . The dashed curves correspond to �s(M
2
Z) =

0:112 and 0.124.



Fig. 42. The sensitivity of � to MH .
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LEP
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Fig. 43. The sensitivity of sin2 �W to MH . The dashed curves correspond to

��1 = 128:78 and 128:96.
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The result (133) is an important product of the precision electroweak tests.

This �rst experimental information about the Higgs mass complements the �nd-

ings from the � parameter, which is in agreement with Higgs �eld doublets. Both

results come from indirect methods, thus requiring con�rmation through a direct

Higgs boson(s) search. The result (133) is consistent with the 95% C.L. limit of

65 GeV/c2 found at LEP1 and with the current limit of about 89 GeV/c2 from

LEP2. It makes the continuation of LEP2 running at the maximum energy par-

ticularly important. Masses up to about 105 GeV/c2 will be explored with the

foreseen LEP energies.



3 The � , a Peculiar Standard Lepton

3.1 Introduction

In the �rst two lectures, we examined the weak leptonic couplings and concluded

that they were universal to a precision of a few per mille. Thus, the Standard

Electroweak Theory really involves three lepton (�l; l) doublets coupled universally

to the gauge bosons. However, owing to their speci�c mass spectrum, the charged

leptons show some quite distinct properties: The electron is stable, while the

muon and the � lepton are unstable. Moreover, the latter is heavy enough to

decay into hadrons, hence opening a wide range of opportunities for studies which

are not available with the lower-mass leptons. This peculiarity of the � lepton is

the subject of the last part of these lectures.

Hadronic decays of the � are generated through the Feynman graph shown in

Fig. 45(a). Since the involved exchange (W�) is charged, the produced hadrons

are in an I = 1 state. Because the weak transitions have �S = 1, both S = 0 and

S = 1 �nal states are present. Finally, since the current is V �A, both vector-like
(V) and axial-vector-like (A) hadronic systems are produced, where V implies the

spin-parities JP = 0+; 1� and JP = 0�; 1+ for A.

It is instructive to compare hadronic � decays to the process of e+e� annihila-

tion into hadrons through the electromagnetic current, as depicted in Fig. 45(b).

Here, only V (1�) with S = 0 states are produced. However, both I = 0 and

I = 1 �nal states are involved.

In the Standard Model, the \" and \W" vector currents with S = 0 are

related through an isospin rotation. Thus, in the limit of massless u and d quarks

(rather well satis�ed in practice), the vector current is conserved (CVC) and the

hadronic physics should factorize and be the same in the two processes.

3.2 Spectral Functions

In either � decay or e+e� annihilation, hadrons can be seen as produced from the

vacuum, as the initial state is purely leptonic. The corresponding transition is

described by a spectral function.

In e+e� annihilation, it is essentially proportional to the cross section. For the

I = 1 part, for example, one has
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Fig. 45. Hadronic production through weak and electromagnetic currents: (a) � de-

cay, and (b) e+e� annihilation.

�I=1e+e�!X0(s) =
4��2

s
v1; X�(s); (134)

where v1(s) is the nonstrange vector (isovector) spectral function.

In � decay, the spectral functions are directly related to the invariant mass

spectra of the hadronic �nal states, normalized to their respective branching ratios

and corrected for the � decay kinematics. The spectral function v1 (a1, a0), where

the subscript refers to the spin J of the hadronic system, is here defined for a

nonstrange vector (axial-vector) hadronic � decay channel V � �� (A� �� ). The

spectral function is obtained by dividing the normalized invariant mass-squared

distribution (1=NV=A)(dNV=A=ds) for a given hadronic mass
p
s by the appropriate

kinematic factor,

v1(s) � M2
�

6 jVudj2 SEW
B(�� ! V � �� )
B(�� ! e� ��e�� )

� dNV

NV ds

2
4
 
1� s

m2
�

!2  
1 +

2s

M2
�

!3
5
�1

; (135)

a1(s) � M2
�

6 jVudj2 SEW
B(�� ! A� �� )
B(�� ! e� ��e�� )

� dNA

NA ds

2
4
 
1� s

M2
�

!2  
1 +

2s

M2
�

!3
5
�1

; (136)

a0(s) � M2
�

6 jVudj2 SEW
B(�� ! �� �� )
B(�� ! e� ��e�� )

dNA

NA ds

 
1� s

M2
�

!�2
; (137)



where jVudj = 0:9752� 0:0007 (Ref. 10) denotes the CKM weak mixing matrix el-

ement and SEW = 1:0194�0:0040 accounts for electroweak radiative corrections15

(see also the discussion in Ref. 56). Due to the conserved vector current, there is

no J = 0 contribution to the vector spectral function, while the only contribution

to a0 is assumed to be from the pion pole. It is connected via PCAC to the pion

decay constant, a0; �(s) = 4�2f 2� �(s�m2
�). The spectral functions are normalized

by the ratio of the vector/axial-vector branching fraction B(�� ! V �=A� �� ) to

the branching fraction of the massless leptonic, i.e., electron, channel

B(�� ! e� ��e�� ) = (17:794� 0:045)%; (138)

where the value includes the improvement in accuracy provided by the universal-

ity assumption of leptonic currents together with the measurements of B(�� !
e� ��e�� ), B(�

� ! �� ����� ), and the � lifetime.

Using unitarity and analyticity, the spectral functions of hadronic � decays

are connected to the imaginary part of the two-point correlation (or hadronic

vacuum polarization) functions57,58 �
��
ij;U(q) � i

R
d4x eiqxh0jT (U�

ij(x)U
�
ij(0)

y)j0i =
(�g��q2 + q�q�) �

(1)
ij;U(q

2) +q�q� �
(0)
ij;U(q

2) of vector (U
�
ij � V

�
ij = �qj

�qi) or axial-

vector (U
�
ij � A

�
ij = �qj

�5qi) color-singlet quark currents in corresponding quan-

tum states and for time-like momenta-squared q2 > 0. A Lorentz decomposition

is used to separate the correlation function into its J = 1 and J = 0 parts. Thus,

using the definitions (135){(137), one identifies for nonstrange quark currents

Im�
(1)

�ud;V=A(s) =
1

2�
v1=a1(s); Im�

(0)
�ud;A(s) =

1

2�
a0(s); (139)

which provide the basis for comparing theory with data.

3.3 Determination of the Spectral Functions in � Decays

The V=A separation is in principle easy because it only involves pion counting

in every event. This is a consequence of isospin invariance, expressed through

the G parity. For an eigenstate of particle-antiparticle symmetry, one has G =

(�1)n = C(�1)I , where n is the number of pions (charged or neutral). In e+e�

annihilation, C = �1 and n is even (odd) for I = 1 (I = 0) states, respectively.

The same applies to � decays because of CVC and therefore n is even (odd) for

V (A) states. Since a K �K pair is not an eigenstate of G parity, some additional



information must be used for �nal states involving such pairs. Fortunately, they

do not occur frequently in � decays.

The measurement of the � spectral functions defined in Eq. (135) requires the

determination of the physical invariant mass-squared distribution. To extract it

from the measured one, it needs to be unfolded from the effects of measurement

distortion. A complete determination of the V and A spectral functions has been

published by the ALEPH Collaboration.59,60 We now proceed to discuss these

results and extract the relevant hadron physics.

The exclusive vector and axial-vector � decay channels are listed in Table 6.

Unless otherwise specified, their branching ratios are taken from ALEPH publica-

tions,61,62 applying small corrections taking into account new ALEPH results on

branching fractions of � decay modes involving kaons.63 In some cases, additional

information is taken from the Particle Data Group10 as described in Ref. 59. The

individual fractions have been refitted so that the sum of all hadronic and leptonic

branching ratios adds up to 100%, where the latter are derived from Eq. (138) as-

suming universality of the lepton couplings. This normalization slightly modifies

the values given in the above references. The branching ratios of the subsequent

meson decays are taken from Ref. 10. The two-, four-, and, in part, the six-pion

modes are exclusively reconstructed. Special care is taken with isospin-violating

! and � decays, and with kaon pair production.

The spectral functions of the dominant two- and four-pion vector modes are

shown in the �rst three plots of Fig. 46. The errors shown are the diagonal ele-

ments of the covariance matrix (some systematic e�ects and the unfolding proce-

dure do correlate the uncertainties in di�erent bins). They include both statistical

and systematic uncertainties. The 2���+�0 �� decay mode is compared to data

of the ARGUS Collaboration.64

Among many tests of the unfolding, including the method itself and the under-

standing of the detector performance, Fig. 47 shows the unfolded 2���+ �� and

��2�0 �� mass spectra with reasonable agreement in shape and normalization.

The complete inclusive � vector spectral function and its contributions are

shown in Fig. 48. The dashed line depicts the naive parton model prediction while

the massless QCD prediction65 using �s(M
2
Z) = 0:120 (solid line) lies roughly 14%

higher atm2
� . One observes that at s � m2

� the inclusive � vector spectral function

is larger than the QCD prediction, i.e., it is not yet in the asymptotic region.
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Fig. 46. Spectral functions of the � decay channels ���0 �� , ��3�0 �� , 2���+�0 �� ,

and the total � vector spectral function. The error bars are the diagonal elements

of the covariance matrices. They contain both statistical and systematic contri-

butions. The ARGUS data64 in the ��! 2���+�0 �� channels contain statistical

errors only.



Vector BR (in %) Axial-Vector BR (in %)

���0 �� 25.34� 0.19 �� �� 11.23� 0.16

��3�0 �� 1.18� 0.14 ��2�0 �� 9.23� 0.17

2���+�0 �� 2.42� 0.09 2���+ �� 9.15� 0.15

��5�0 �� ��4�0 �� 0.03� 0.03
2���+3�0 ��

)
0.04 � 0.02 2���+2�0 �� 0.10� 0.02

3��2�+�0 �� 3��2�+ �� 0.07� 0.01

! �� �� 1.93� 0.10 ! ���0 �� 0.39� 0.11

� ���0 �� 0.17� 0.03 � 2���+ �� 0.04� 0.01

{ { � ��2�0 �� 0.02� 0.01

K�K0 �� 0.19� 0.04 { {

K�K+�� �� 0.08� 0.08 K�K+�� �� 0.08� 0.08

K0 �K0�� �� 0.08� 0.08 K0 �K0�� �� 0.08� 0.08

K�K0�0 �� 0.05� 0.05 KK0�0 �� 0.05� 0.05

K�K�� �� 0.08� 0.08 K�K�� �� 0.08� 0.08

Total Vector 31.58� 0.29 Total Axial-Vector 30.56� 0.30

Table 6. Vector and axial-vector hadronic � decay modes with their contributing

branching fractions. The branching ratios shown are re�tted so that the compila-

tion of all � decay channels sums up to one.

The total inclusive axial-vector spectral function and its contributions are plot-

ted in Fig. 49 together with the naive parton model and the massless, perturbative

QCD prediction. One again notices that the asymptotic regime has apparently

not been reached at the � mass scale.

3.4 Comparison to e+e�

3.4.1 Tests of CVC

The most precise spectral function measurements of the � vector current final

states ���0, ��3�0, and 2���+�0 can be compared to the cross sections of the cor-

responding e+e� annihilation isovector states �+��, �+���+��, and �+���0�0.

If for the ���0 state the comparison is straightforward, some care should be

exercised for the four-pion modes. In the classification developed by Pais,66 pion
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Fig. 47. Unfolded (physical) invariant mass-squared spectra of the � �nal states

2���+ �� and ��2�0 �� , and their weighted average.

isospin states are organized in symmetry classes with orthogonal wave functions.

To each isospin class fijkg corresponds a partial width �ijk in � decays and a

cross section �ijk in e+e� annihilation. In these terms, the four-pion isovector

states are linear combinations of the classes f310g and f211g:

���3�0 =
2

5
�310;

�3���0 = �211 +
3

5
�310;

��+���+�� =
4

5
�310;

��+���0�0 = �211 +
1

5
�310:

Using Eq. (135) and isospin rotation, the following relations hold:

�
I=1;0
e+e�!�+�� � �I�! =

4��2

s
v1; ���0 �� ; (140)

�I=1e+e�!�+���+�� = 2 � 4��
2

s
v1; �� 3�0 �� ; (141)

�I=1e+e�!�+���0�0 =
4��2

s
[v1; 2���+�0 �� � v1; �� 3�0 �� ] : (142)

In Eq. (140) the small isospin-violating, isoscalar, electromagnetic contribution

!(782) ! �+�� is taken into account through its interference with the main
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less perturbative QCD using �s(M
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isovector contribution yielding the (s-dependent) correction �I�! obtained from

a fit of the total e+e�!�+�� cross section.67

The comparison is shown in Fig. 50 for the two-pion channel and in Fig. 51

for the four-pion modes. Satisfactory agreement is found in both cases, although

the quality of the e+e�! �+���0�0 data is poor.

Finally, the total e+e� isovector cross section is compared to the � vector

current spectral function in Fig. 52. This comparison provides a good global test

of CVC.

3.4.2 Fit of the Pion Form Factor

The two-pion spectral function is closely related to the pion form factor:

j ~F I=1
� (s)j2 =

12

�3�(s)
v1; ���0(s); (143)

where ��(s) = (1� 4m2
�=s)

1=2 is the pion velocity in the hadronic center of mass.

The weak pion form factor can be identified with the isovector electromagnetic

form factor, given by

jF I=1
� (s)j2 =

3

�

s

�2 �3�(s)
�I=1e+e�!�+��; (144)

using isospin invariance (CVC).

In the time-like region, the pion form factor is given by contributions from

the known isovector meson resonances �(770), �(1450), and �(1700), taking into

account � {! interference67:

F I=1;0
� (s) =

BW�(770)(s)
1+� BW!(783)(s)

1+�
+ � BW�(1450)(s) +  BW�(1700)(s)

1 + � + 
;

(145)

with the Breit-Wigner propagators

BWKS
�(M�)

(s) =
M2

�

M2
� � s � i

p
s��(s)

(146)

and the energy-dependent width

��(s) = ��(M
2
� )

 
M2

�

s

! 
k(s)

k(M2
� )

!3
; (147)

where k(s) = 1
2

p
s ��(s) and k(M

2
� ) is the pion momentum in the � rest frame.
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A more re�ned description of the broad � resonance line shape is provided

by the Gounaris-Sakurai parametrization69 which satis�es analyticity, contrary to

the previous one.

The �ts to the ALEPH � data establish the need for the �(1450) contribution to

the weak pion form factor in the KS and GS parametrizations (� = �0:087�0:012)
with a fitted mass M�(1450) = (1380 � 24) MeV/c2 when fixing the width at

��(1450) = 310 MeV/c2 (Ref. 10). No significant evidence of a �(1700) contribution

is found ( = �0:008 � 0:008). The previous values are the weighted averages

between the results of both fit types. Their errors account for statistical and

systematic uncertainties coming from model dependence. Figure 53 shows the

fits using one and three Breit-Wigner amplitudes.

It is interesting to perform a combined �t of the pion form factor using both

e+e� and � data in order to explore with the same resonance parametrization

isospin invariance for the dominant � contribution (the statistics of the data at

larger masses does not allow us to check this for the other resonances, which are

assumed to be isospin invariant).

Although the absolute values of the �(770) masses and widths depend sig-

nificantly on the resonance parametrization, their respective differences, i.e.,

�M�(770) = M��(770) �M�0(770) and ���(770) = ���(770) � ��0(770) are stable. Av-

eraging the two types of �t, the following results are obtained:

�M�(770) = (0:0 � 1:0 � 0:1) MeV=c
2
;

���(770) = (0:1 � 1:8 � 0:5) MeV=c
2
:

The first errors are due to statistical and systematic uncertainties (including cor-

relations between the fit parameters), while the second ones account for differences

from the resonance parametrizations. Figure 54 shows the results with its 39% C.L.

error ellipse taking into account correlations.

A difference between ��� and ��0 could occur on one hand through electro-

magnetic isospin-violating decay modes such as �! ��, which is observed at the

1% level for the �0 (Ref. 10). On the other hand, the dominant � ! �� channel

could also manifest some isospin violation. An obvious contribution comes from

the observed ��{�0 and potential ��{ �0 mass differences which are reected in

different values for the width according to Eq. (147). The � mass dependence is
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not completely clear: one could consider a variation given by

�� � k3(M2
� )=M

2
� ; (148)

or, as argued in Chiral Perturbation Theory,72

�� � k3(M2
� ): (149)

According to the charge of the �, the pion momentum in the � rest system is given

by 2k(M2
�0) = (M2

�0�4m2
��)

1=2 for the neutral �0 and 2k(M2
��) = [M2

���2(m2
��+

m2
�0) + (m2

�� �m2
�0)

2=M2
�� ]

1=2 for the charged ��. The dashed and solid lines in

Fig. 54 give the functional dependence of the width difference ��� on �M� in

the approximations of Eqs. (148) and (149), respectively, normalized to the fitted

value of ��.

It is interesting to observe that the measured �M� is significantly smaller

than the mass difference between charged and neutral pions �M� =M�� �M�0

= (4.5936 � 0.0007) MeV/c2 (Ref. 10), where the dominant effect is under-

stood to be of electromagnetic origin (�M em
� ' 4:5 MeV/c2, Ref. 73). The

�M� measurement can be compared, however, to the (model dependent) result

of �M� = (�0:3 � 2:2) MeV/c2 (Ref. 10) obtained in hadronic production, and

is in good agreement with this determination. The Mark III Collaboration ex-

ploited data on J= ! �+���0 decays, dominated by J= ! ��, to measure

the mass difference of the charged and neutral �'s (Ref. 74). Their preliminary

result is found to be in good agreement with the result presented here. Note

that the value deduced from the difference in the mean values taken from Ref. 10,

hM��i � hM�0i = (�1:8� 1:4) MeV/c2, is potentially unreliable as they both rep-

resent the weighted mean of independent measurements which did not necessarily

use the same parametrizations. A theoretical electromagnetic � mass difference

of �0.7 MeV/c2 < �M� < 0.4 MeV/c2, in agreement with the measurement, has

recently been evaluated in Ref. 75. The measured difference ��� is found to be

consistent with the expected isospin violation from the ��{�0 and ��{ �0 mass

differences.

3.5 V � A Spectral Functions and Chiral Sum Rules

The application of chiral symmetry leads to low-energy sum rules involving the

difference of vector and axial-vector spectral functions by virtue of the optical
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theorem. These sum rules are dispersion relations between real and absorptive

parts of a two-point correlation function that transforms symmetrically under

SU(2)L�SU(2)R in the case of nonstrange currents. The corresponding integrals

are:

1

4�2

s0!1Z
0

ds
1

s
[v1(s)� a1(s)] = f 2�

hr2�i
3

� FA; (150)

1

4�2

s0!1Z
0

ds [v1(s)� a1(s)] = f 2� ; (151)

1

4�2

s0!1Z
0

ds s [v1(s)� a1(s)] = 0; (152)

1

4�2

s0!1Z
0

ds s ln
s

�2
[v1(s)� a1(s)] = �4�f 2�

3�
(m2

�� �m2
�0): (153)

Equation (150) is known as the Das-Mathur-Okubo (DMO) sum rule.76 It relates

the given integral to the square of the pion decay constant f� = (92:4� 0:3) MeV

(Ref. 10) obtained from the decays �� ! ����� and �� ! �����, to the pion

axial-vector form factor FA for radiative decays �� ! `���`, and to the pion

charge radius-squared hr2�i = (0:439� 0:008) fm2 obtained from a one-parameter

fit to space-like data.77 Equations (151) and (152) are the first and the second

Weinberg sum rules (WSR).78 When switching quark masses on, only the first

WSR remains valid while the second WSR breaks down due to contributions from

the difference of nonconserved vector and axial-vector currents of order m2
q=s,

leading to a quadratic divergence of the integral. Equation (153) represents the

electromagnetic splitting of the pion masses.79 Although apparently containing

an arbitrary renormalization scale �, the sum rule is actually independent of � by

virtue of the second WSR (152). Only for s0 values for which Eq. (152) has not

reached convergence does Eq. (153) maintains its � dependence.

The (v1 � a1) spectral function is shown in Fig. 55. The oscillating behavior

of the respective v1 and a1 spectral functions is emphasized and the asymptotic

behavior is clearly not attained at m2
� .

The above integrals are calculated with variable upper integration bounds

s0 � m2
� using the spectral functions and their respective covariance matrices in

order to provide a straightforward Gaussian error propagation taking into account

the strong bin-to-bin correlations of the spectral functions. Also considered are
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Fig. 55. Inclusively measured vector minus axial-vector (v1�a1) spectral function.
In the parton model as well as in perturbative QCD, the vector and axial-vector

contributions are degenerate.



the anticorrelations between v1 and a1;0 due to the estimates of the vector/axial-

vector parts of the final states K�K� and K�K��, and the � hadronic branching

ratios.

The sum rules (150){(153) are plotted versus the upper integration bound

s0 � m2
� in Figs. 56(a){(d). The horizontal band depicts the corresponding chiral

predictions of the integrals taken from Ref. 80. One observes that only for the

DMO sum rule [Fig. 56(a)], for which contributions from higher mass-squared

values are suppressed, does the saturation within the one sigma error seem to

occur at the � mass scale. The other sum rules [Figs. 56(b){(c)] are apparently

not saturated at m2
� (nonzero slope) as indicated by the nonvanishing (v1 � a1)

spectral function at the end of the � phase space (Fig. 55) and its oscillatory

behavior.

3.6 QCD Analysis of Hadronic � Decays

3.6.1 Motivation

The total hadronic � width, properly normalized to the known leptonic width,

R� =
�(�� ! hadrons� �� )
�(�� ! e� ��e�� )

; (154)

should be well predicted by QCD as it is an inclusive observable. Compared to the

similar quantity de�ned in e+e� annihilation, it is even doubly inclusive: not only

are all produced hadronic states at a given mass summed over, but an integration

is performed over all the possible masses from m� to m� .

This favorable situation could be spoiled by the fact that the Q2 scale is rather

small, so that questions about the validity of a perturbative approach can be

raised. At least two levels are to be considered: the convergence of the pertur-

bative expansion and the control of the nonperturbative contributions. Happy

circumstances discussed below make these contributions indeed very small.81,82

3.6.2 Theoretical Prediction for R�

According to Eq. (139), the imaginary parts of the vector and axial-vector two-

point correlation functions �
(J)

�ud;V=A(s), with the spin J of the hadronic system, are

proportional to the � hadronic spectral functions with corresponding quantum

numbers. The nonstrange ratio R� can be written as an integral of these spectral
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Fig. 57. Integration contour in the complex s plane for R� (s0).

functions over the invariant mass-squared s of the final state hadrons57:

R� (s0) = 12�SEW

s0Z
0

ds

s0

�
1� s

s0

�2 ��
1 + 2

s

s0

�
Im�(1)(s+ i�) + Im�(0)(s+ i�)

�
;

(155)

where �(J) can be decomposed as �(J) = jVudj2
�
�
(J)
ud;V +�

(J)
ud;A

�
. The correlation

function �(J) is analytic in the complex s plane everywhere except on the positive

real axis where singularities exist. Hence by Cauchy's theorem, the imaginary part

of �(J) is proportional to the discontinuity across the positive real axis (Fig. 57).

The energy scale s0 for s0 = m2
� is large enough that contributions from nonper-

turbative effects are small. It is therefore assumed that one can use the Operator

Product Expansion (OPE) to organize perturbative and nonperturbative contri-

butions to R� (s0). The factor (1 � s=s0)
2 suppresses the contribution from the

region near the positive real axis where �(J)(s) has a branch cut and OPE validity

is restricted.81



The theoretical prediction for the vector and axial-vector ratio R�;V=A can thus

be written as:

R�;V=A =
3

2
jVudj2SEW

0
@1 + �(0) + �0EW + �

(2�mass)

ud;V=A +
X

D=4;6;:::

�
(D)

ud;V=A

1
A ; (156)

with the residual nonlogarithmic electroweak correction �0EW = 0:0010 (Ref. 83),

neglected in the following, and the dimension D = 2 contribution �
(2�mass)

ud;V=A from

quark masses which is lower than 0:1% for u; d quarks. The term �(0) is the purely

perturbative contribution, while the �(D) are the OPE terms in powers of s
�D=2
0 :

�
(D)

ud;V=A =
X

dimO=D
Cud;V=A(S0�)

hOud(�)iV=A
(�s0)D=2

; (157)

where the parameter � separates the long-distance nonperturbative effects, ab-

sorbed into the vacuum expectation elements hOud(�)i, from the short-distance

effects which are included in the Wilson coefficients Cud;V=A(s; �) (Ref. 84).

3.6.3 Perturbative Prediction

The perturbative prediction adopted in this analysis follows in detail Ref. 85. The

perturbative contribution is given in the chiral limit. Effects from quark masses

have been calculated in Ref. 86 and are found to be well below 1% for the light

quarks. Thus, the contributions from vector and axial-vector currents coincide to

any given order of perturbation theory and the results are flavor independent.

The perturbative contribution in Eq. (156) is then given by Ref. 85,

1 + �(0) =
3X

n=0

KnA
(n)(�s); (158)

with K0 = K1 = 1, K2 = 1:63982, and K3 = 6:37101 for three active flavors in

the MS scheme.65 The coefficients Kn are known up to three-loop order (�3s) and

for n � 2 they depend on the renormalization scheme employed. The functions

A(n)(�s) in Eq. (158) are the contour integrals y

A(n)(�s) =
1

2�i

I
jsj=s0

ds

s

"
1� 2

s

s0
+ 2

�
s

s0

�3
�
�
s

s0

�4# �s(�s)
�

!n
; (159)

yThe negative energy-squared in �s(�s) is introduced when going from the spacelike Euclidean

space, where the correlators are defined, to the timelike Minkowski space by virtue of analyticity.



where the contour runs counter-clockwise around the circle from s0+ i� to s0� i�
(Fig. 57). The strong coupling constant in the vicinity of s0 can be expanded

in powers of �s(s0), with coefficients that are polynomials in ln(s=s0) (Ref. 57).

The perturbative prediction then becomes a function of the Kn coefficients and

elementary integrals. Up to fourth order the fixed-order perturbation theory

(FOPT) expansion reads

1 + �
(0)
E = 1 +

�s(s0)

�
+ 5:2023

 
�s(s0)

�

!2
+ 26:366

 
�s(s0)

�

!3

+(K4 + 78:00)

 
�s(s0)

�

!4
(160)

with the unknown K4 coefficient.

Another approach to the solution of the contour integral (159) is to perform

a direct numerical evaluation using the solution of the renormalization group

equation (RGE) to four loops87 as input for the running �s(�s) (Refs. 85 and

88). It provides a resummation of all known higher-order logarithmic integrals

and improves the convergence of the perturbative series. While, for instance, the

third-order term in the expansion (160) contributes with 17% to the total (trun-

cated) perturbative prediction, the corresponding term of the numerical solution

amounts only to 6:6% [assuming �s(m
2
� ) = 0:35]. This numerical solution of

Eq. (158) will be referred to as contour-improved fixed-order perturbation theory

(FOPTCI) in the following.

Despite a number of arguments expressed in Ref. 85, the intrinsic ambiguity

between FOPT and FOPTCI is unresolvable at present. This is due to the trunca-

tion of the perturbative approximation of �(0) at finite order in �s. A conservative

measure of this ambiguity is obtained from the deviation in R� found when cut-

ting all additional orders in �s (which is FOPT) and keeping them (FOPTCI),

respectively. Both methods are likewise considered in this analysis.

3.6.4 Nonperturbative Contributions

Following SVZ,89 the first contribution to R� (s0) beyond the D = 0 perturbative

expansion is the nondynamical quark mass correction of dimension D = 2, i.e.,

corrections in powers of 1=s0. They have been calculated up to next-to-leading

order �s (Ref. 90).



The dimension D = 4 operators have dynamical contributions from the gluon

condensate h(�s=�)GGi and quark condensates muh0j�uuj0i, mdh0j �ddj0i of the

light u; d quarks. The remaining D = 4 operators are the running quark masses

to the fourth power. The contribution of the gluon condensate to R�;V=A vanishes

in first order, �s(s0). However, there appear second-order terms in the Wilson

coefficients due to the logarithmic s dependence of �s(s), which after performing

the integral (155) becomes �2s(s0).

The contributions from dimension D = 6 operators are rather complex. The

large number of independent operators of the four-quark type occurring can be

reduced by means of the vacuum saturation approximation57,89 to leading order

(�s). The operators are then expressed as products of scale-dependent two-quark

condensates of the type �s(�)h�qiqi(�)ih�qjqj(�)i. Since the vacuum saturation ap-

proximation is a simplifying assumption, possible deviations are accounted for by

introducing an effective scale-independent operator of the form ��sh�qqi2 that is
fit to the data.

The dimension D = 8 contribution has a structure of nontrivial quark-quark,

quark-gluon, and four-gluon condensates, the explicit form of which is given for

the vector case in Ref. 91. For the theoretical prediction of R� (s0) used here,

the complete long- and short-distance part is absorbed into the scale invariant

phenomenological D = 8 operator hO8i.
Higher order contributions from D � 10 operators are expected to be small

because, as with the gluon condensate, constant terms and terms in leading order

(�s) vanish in Eq. (155) after integration.

3.6.5 Spectral Moments

It was shown in Ref. 92 that it is possible to benefit from the information provided

by the explicit shape of the spectral functions in order to obtain additional con-

straints on �s(s0) and|more importantly|on the nonperturbative condensates.

The spectral moments at m2
� are defined as:

Rkl
�;V=A �

m2
�Z

0

ds

 
1� s

m2
�

!k  
s

m2
�

!l
dR�;V=A

ds
(161)

with R00
�;V=A = R�;V=A. The factor (1 � s=m2

� )
k suppresses the integrand at the

crossing of the positive real axis where the validity of the OPE is less certain



and the experimental accuracy is statistically limited. Its counterpart (s=m2
� )

l

projects out higher energies. The new spectral information is used to fit simul-

taneously �s(m
2
� ) and the phenomenological operators h(�s=�)GGD=4i, hOD=6i,

and hOD=8i. Due to the intrinsic strong correlations, only five moments are used
as input to the fits.

In analogy to R� the contributions to the moments originating from pertur-

bative and nonperturbative QCD are separated via the OPE. The prediction of

the perturbative contribution takes then the form

�(0;kl) =
3X

n=1

KnA
(n;kl)(�s); (162)

where the contour integrals A(n;kl)(�s) (Ref. 92) are expanded up to �
3
s(s) (FOPT)

or are numerically evaluated for the running �s(�s) obtained from the RGE

(FOPTCI).

In the chiral limit and neglecting the logarithmic s dependence of the Wil-

son coefficients, the dimension D = 2; 4; 6; 8 nonperturbative contributions to the

moments read

�
(D;kl)

ud;V=A = 8�2

0
BBBBBBBBB@

(D = 2) (D = 4) (D = 6) (D = 8) (k; l)

1 0 �3 �2 (0; 0)

1 1 �3 �5 (1; 0)

0 �1 �1 3 (1; 1)

0 0 1 1 (1; 2)

0 0 0 �1 (1; 3)

1
CCCCCCCCCA

X
dimO=D

C(�)
hO(�)i
mD

�

;

(163)

where the matrix is defined by the choice of the coefficients for the moments

k = 1, l = 0; 1; 2; 3. It can be seen that with increasing weight l, the low dimen-

sion operators give no contributions.

For practical purposes, it is more convenient to define moments that are nor-

malized to the corresponding R�;V=A in order to decouple the normalization from

the shape of the � spectral functions:

Dkl
�;V=A �

Rkl
�;V=A

R�;V=A

=

m2
�Z

0

ds

 
1� s

m2
�

!k  
s

m2
�

!l
1

NV=A

dNV=A

ds
: (164)

There now exist two sets of experimentally almost uncorrelated observables|

R�;V=A and spectral moments|which provide independent constraints on �s(m
2
� )

and thus an important test of consistency.



3.6.6 Measurement of R� and the Moments

The ratio of the nonstrange hadronic width to the electronic branching fraction

is calculated from the difference of the total hadronic width ratio,

R� =
1� B(�� ! e� ��e�� )� B(�� ! �� ����� )

B(�� ! e� ��e�� )
=

1

B(�� ! e� ��e�� )
� 1:9726;

= 3:647� 0:014 (165)

obtained from the world average value (138), and the strange width ratio,

R�;S = 0:155� 0:008; (166)

taken from Ref. 93, yielding the result

R�;V+A = 3:492 � 0:016: (167)

There is no advantage in including R�;S (or equivalently using R� ) in this analysis,

because the strange quark sector introduces another parameter, the strange quark

mass, which the additional data is used to fit.94 Computing the ratio of the

inclusive vector and axial-vector branching fractions taken from Table 6, to the

electronic branching fraction yields

R�;V = 1:775 � 0:017 (168)

R�;A = 1:717 � 0:018: (169)

The moments are determined from the V , A, and V +A spectral functions. For

the latter, many systematic e�ects cancel as V=A separation is no longer required.

The V + A spectral function is shown in Fig. 58. The improvement in precision

in comparison to an exclusive sum of Fig. 48 and Fig. 49 is obvious at higher

mass-squared. One clearly sees the oscillating behavior of the spectral function,

but unlike the vector/axial-vector spectral functions, it does approximately reach

the asymptotic limit predicted by perturbative QCD as s! m2
� .

3.6.7 The Fits to the Data and the Theoretical Uncertainties

The combined fits to the measured V , A, and (V + A) ratios, R� , and moments

adjust the parameters �s(m
2
� ), h(�s=�)GGi, hO6iV=A, and hO8iV=A of the OPE in

the theoretical predictions (156) and (161) of the above quantities.
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Fig. 58. Inclusively measured vector plus axial-vector (v1 + a1) spectral function

and predictions from the parton model and from massless perturbative QCD using

�s(M
2
Z) = 0:120.



The uncertainties entering the theoretical predictions are now estimated. Er-

rors from the light quark masses are negligible while the others, in particular

�SEW, must be taken into account. For the quark condensates which contribute

to dimension D = 4, the PCAC relation

(mu +md)h0j�uu+ �ddj0i ' �2f 2�m2
� (170)

is used.

The errors in the truncated perturbative expansion originate mainly from the

unknown higher order expansion coefficient K4. The authors of Ref. 95 advo-

cate the principle of minimal sensitivity (PMS),96 which allows the computation

of a renormalization scheme (RS) with optimal convergence, i.e., with minimal

dependence on higher order corrections. The difference between an observable

calculated using the PMS and the MS schemes can be used to provide an esti-

mate of the missing terms accumulated in K4. The procedure results in K4 ' 36.

In Ref. 97, an experimental estimate of K4 is performed using the a priori free-

dom of the choice of the renormalization scale � to increase the sensitivity of the

perturbative series on K4. This yields K4 = 27� 5. Motivated by the above and

the expectation that the perturbative series for �(0) should have a constant sign

behavior with increasing coefficients,98 K4 is chosen to be 50� 50.

Another important point is the renormalization scale (�) dependence of

the prediction expressed in the RGE which governs the running of �s. Formally,

the integrals (159) in Eq. (158) also obey the RGE.85 In a truncated series, the

renormalization scale dependence remains and is therefore an intrinsic uncertainty

of the theoretical prediction. In order to estimate its size, � is varied from m�

to � = 1:1 GeV and � = 2:5 GeV (Ref. 85). When changing the � scale, the

coefficients Kn of the perturbative expansion, as well as �s, are reexpressed ac-

cording to the RGE.

In addition to the renormalization scale dependence, the arbitrariness of

the choice of the renormalization scheme leaves an ambiguity. Again, an estimate

of its associated uncertainty is obtained by changing the RS from MS to the PMS

scheme. This transformation induces a reduction of �s(m
2
� ) of approximately

0.010 (Ref. 99), which is taken as the corresponding uncertainty.

The OPE power terms of dimensions D = 4; 6; 8 have no theoretical er-

rors since they are freely varying parameters of the fits and are therefore de-

termined experimentally. Contributions from higher orders have not been calcu-



lated yet. However, they can only contribute indirectly via a logarithmic depen-

dence on s to R� . The operators of dimension D = 10 are then suppressed by

(�s=�)
2=m10

� � 4 � 10�5, and are thus neglected in this analysis. Also neglected

is any nonstandard dimension D = 2 term (except for the quark masses). Such

terms are not generated by a dynamical QCD action and are therefore absent

in the SVZ approach. However, they are not ruled out experimentally and are

still controversial theoretically.100 No additional theoretical error is introduced

to cover the possible existence of a �(0) � (�2=s) term from the first ultraviolet

singularity (renormalon) of the Borel resummed large-�0 approximation of the

perturbative series.101 Any such uncertainty is assumed to be taken into account

by the error ascribed to K4.

In Refs. 102{104, R� has been calculated employing a renormalon resumma-

tion of �(0) in the large-�0 limit. The resummation is performed by evaluating

the integral of the Borel transform in the large-�0 limit, where infrared (IR) and

ultraviolet (UV) singularities appear in the Borel plane. The UV renormalons, sit-

uated outside the integration range, have alternating signs and can be resummed.

However, the IR renormalons lie inside the integration range on the positive axis

and give rise to nonperturbative power contributions which are absorbed in the

OPE. The authors of Ref. 105 developed an RS-invariant all-orders renormalon

resummation.

Figure 59 shows the results for �(0) using different methods to evaluate the

perturbative series. The fixed-order PT corresponds to the Taylor expansion

Eq. (160) and the contour-improved prediction is Eq. (158) with a numerical

evaluation of the A(n) integrals. These procedures are applied here. The large-

�0 limit resummed perturbative prediction is taken from Ref. 103, and for the

theoretical prediction of the RS-invariant large-�0 resummed �(0), the formulae

given in Ref. 105 are used. Both resummed predictions are corrected for the first

three exactly known fixed-order coefficients. Also shown is the fit result of this

analysis with its estimated theoretical uncertainty. It covers the whole range of

perturbative approaches presented above within one standard deviation.

3.6.8 Results of the Fits

The results of the �ts are given in Table 7. The limited number of observables and

the strong correlations between the spectral moments introduce large correlations,
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Fig. 59. Perturbative contribution �(0) to R�;V=A with di�erent approaches. \CI"

means contour-improved. The �xed-order PT curves are given for K4 = 50. Both

large-�0 resummations are corrected for the �rst three exactly known �xed-order

coe�cients. Also shown is the result Eq. (171) of this analysis within its estimated

theoretical uncertainty.

especially between the fitted nonperturbative operators. The precision of �s(m
2
� )

obtained with the two perturbative methods employed is comparable; however,

their central values differ by about 0.02 as seen in Fig. 59. The di�erences between

FOPTCI and FOPT for the nonperturbative parameters are negligible compared

to their errors so that only the FOPTCI values are given. The �(2) term is the

pure theoretical contribution from the known masses of the light u; d quarks. No

anomalous dimension D = 2 operator has been fitted since empirically it is found

to be degenerate to �s. The �
(4) term receives contributions from the quark and

gluon condensates and the quartic light quark masses. While the quark conden-

sates and the quark masses are rather well-known and are fixed theoretically by

Eq. (170), the gluon condensate is adjusted in the fit.

One notices a remarkable agreement within statistical errors between the

�s(m
2
� ) values using vector and axial-vector data. The results can be compared

to the one obtained in the previous ALEPH analysis106 where, applying FOPTCI,



ALEPH Vector (V ) Axial-Vector (A) V + A

�s(m
2
� ) (FOPTCI) 0:340 � 0:016 � 0:017 0:349 � 0:015 � 0:017 0:345 � 0:007 � 0:017

�s(m
2
� ) (FOPT) 0:320 � 0:012 � 0:019 0:328 � 0:011 � 0:019 0:322 � 0:005 � 0:019

�(0) (FOPTCI) 0.198� 0.017 0.206� 0.018 0.202� 0.013

�(0) (FOPT) 0.197� 0.025 0.206� 0.026 0.200� 0.022

�(2) �(0.3� 0.3)�10�3 �(0.6� 0.3)�10�3 �(0.4� 0.2)�10�3

�(4) (0.6� 0.8)�10�3 (�5.7� 0.9)�10�3 �(2.5� 0.8)�10�3

�(6) 0.029� 0.004 �0.029� 0.004 0.001� 0.004

�(8) �0.009� 0.001 0.008� 0.001 �0.001� 0.001

Total �NP 0.020� 0.004 �0.027� 0.004 �0.003� 0.004

�2=d.o.f. 0.1/1 0.1/1 0.2/1

Table 7. Fit results of �s(m
2
� ) and the OPE nonperturbative contributions from

vector, axial-vector, and (V + A) combined �ts using the corresponding ratios R�

and the spectral moments as input parameters. Where two errors are given, they

denote experimental (�rst number) and theoretical uncertainties (second number).

The di�erences between FOPTCI and FOPT for the nonperturbative parameters

are negligible compared to their errors. The �(2) term is the pure theoretical predic-

tion. The quark condensates in the �(4) term are �xed to their theoretical values,

Eq. (170), and only the gluon condensate is varied as a free parameter. The total

nonperturbative contribution is the sum �NP = �(4) + : : :+ �(8).

the strong coupling was measured to be �s(m
2
� ) = 0:330� 0:046 using the much

smaller data set of 8500 � decays.

The total nonperturbative contribution to R�;V+A is compatible with zero

within an uncertainty of 0.4% that is much smaller than the error arising from

the perturbative term. The advantage of separating the vector and axial-vector

channels and comparing to the inclusive (V + A) fit becomes obvious in the ad-

justment of the leading nonperturbative contributions of dimension D = 6 and

D = 8, which cancel in the inclusive sum. This cancellation of the nonperturba-

tive terms increases the con�dence on the �s(m
2
� ) determination from the inclusive

(V +A) observables. The gluon condensate is fixed by the first l = 0; 1 moments

which receive lowest order contributions while it is suppressed in R� by (�s=�)
2.
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Fig. 60. Results for �s(m
2
� ) using R�;V+A only, the moments Dkl

V+A only, and the

combined information from vector and axial-vector � decays using FOPTCI. The

measurements are strongly correlated due to the dominant theoretical errors.

Taking the value obtained in the (V + A) inclusive fit and adding as system-

atic uncertainties half of the difference between the vector and axial-vector fits

as well as the FOPTCI and FOPT results, the gluon condensate is found to be

h(�s=�)GGi = (0:001�0:015) GeV4. An interesting observation is the alternating

sign in both vector and axial-vector cases between the �(6) and �(8) terms. This is

connected with the special form of the shape of R�;V (s0) (R�;A(s0)) as a function

of a varying \� mass" s0 � m2
� , as will be discussed in the following section.

In order to check the consistency of the different approaches, one can use

either the normalization, i.e., the ratio R� obtained from the hadronic branching

ratios, or the intrinsic shape of the spectral functions, i.e., the spectral moments.

The value of �s(m
2
� ) can then be determined using variables coming from only

one of these inputs. This is done for the (V + A) case for which contributions

from nonperturbative terms are small, so that the effect of additional theoretical

assumptions are minimized. The results of these fits using FOPTCI are shown in

Fig. 60.

As mentioned above, there exists no constraining prescription which allows

a resolution of the ambiguity between FOPTCI and FOPT. The final result on



�s(m
2
� ) is thus the average of the two values given in Table 7, with half of their

difference added as theoretical error:

�s(m
2
� ) = 0:334� 0:007(exp:) � 0:021(theo:): (171)

The first error accounts for the experimental uncertainty; the second number

gives the uncertainty of the theoretical prediction of R� and the spectral moments

as well as the ambiguity of the theoretical approaches employed.

One can express the value of �s(m
2
� ) in terms of the MS renormalization scale

�MS at four-loop level. For the result (171) with three active flavors, one has

�
(3)

MS
= (370� 13(exp:) � 38(theo:)) MeV: (172)

3.6.9 Test of the Running of �s(s) at Low Energies

The analysis presented in the preceeding section indicates that the framework

of the perturbative expansion and the OPE approach, used for the theoretical

prediction of the measured quantities, describes the data phenomenologically. The

exclusive measurement of the vector and axial-vector spectral functions allows

further investigations of QCD phenomena at low energies up to the � mass.

Using the spectral functions, one can simulate the physics of a hypothetical

� lepton with a mass
p
s0 smaller than m� through Eq. (155). Assuming quark-

hadron duality, the evolution of R� (s0) provides a direct test of the running of

�s(s0), governed by the RGE �-function. On the other hand, it is a test of the

validity of the OPE approach in � decays. The studies performed in this section

employ only FOPTCI. Results obtained with FOPT are similar and differ only in

the central �s(m
2
� ) value.

The functional dependence of R�;V+A(s0) is plotted in Fig. 61 together with the

theoretical prediction, using the results of Table 7. The spread due to uncertainties

are shown as bands. In the (V +A) case, the experimental errors are diminished by

normalizingR�;V+A(s0 = m2
� ) to Eq. (167). The correlations between two adjacent

bins s1 < s2 are large as the only new information is provided by the small mass

difference between the two bins and the slightly different weight function. They

are reinforced by the original experimental and theoretical correlations. Below

1 GeV2, the error of the theoretical prediction of R�;V+A(s0) starts to blow up due

to the increasing uncertainty from the unknown K4 perturbative term; errors of
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theoretical prediction using the results of Table 7.

the nonperturbative contributions are not contained in the theoretical error band.

Figure 62 shows the plot corresponding to Fig. 61, translated into the running of

�s(s0), i.e., the experimental value for �s(s0) has been individually determined at

every s0 from the comparison of data and theory. Also plotted is the four-loop

RGE evolution using two and three quark flavors.

Figure 63 gives the vector and axial-vector ratios R�;V=A as a function of s0

together with the corresponding theoretical predictions using as input the fitted

parameters of Table 7. By construction, data and theory converge at m2
� , but

the observed agreement is much less stable than in the (V + A) case. As a

consequence, one might question the reliability of the OPE approach at the scale

m2
� for vector or axial-vector only. On the other hand, the agreement of the �s(m

2
� )

values for V and A (see Table 7) may indicate that within the achieved precision,

nonperturbative contributions are well absorbed by the dimension D = 6; 8 power

terms. Nevertheless, the deviation between data and theory observed implies that



the values of the fitted parameters should depend on the spectral moments used,

i.e., of the specific shape of the weighting function inserted in the integral (161).

The experimental fact that the nonperturbative contributions cancel over the

whole range 1.2 GeV2� s0 � m2
� leads to confidence that the �s determination

from the inclusive (V + A) data is robust.

3.6.10 Discussion of the Determination of �s(m
2
� )

The evolution of the �s(m
2
� ) measurement from the inclusive (V + A) observ-

ables is based on the Runge-Kutta integration of the differential equation of the

renormalization group to N3LO (Refs. 87, 107{110), and yields

�s(M
2
Z) = 0:1202� 0:0008(exp:) � 0:0024(theo:) � 0:0010(evol:): (173)

The last error stands for possible ambiguities in the evolution due to uncer-

tainties in the matching scales of the quark thresholds.110 Effects associated with

the truncation of the RGE at O(�5s) are small: the new N3LO order87 gives a tiny

contribution of �s(M
2
Z)3�loop � �s(M

2
Z)4�loop = 0:0003.

The result (173) can be compared to the determination from the global elec-

troweak �t discussed in the previous lecture. In this case, the sensitive observable

is the ratio RZ . This variable has similar advantages as R� , but it di�ers con-

cerning the convergence of the perturbative expansion because of the much larger

scale. It turns out that this determination is dominated by experimental errors

with very small theoretical uncertainties, i.e., the reverse of the situation encoun-

tered in � decays. The most recent value111 yields �s(M
2
Z) = 0:1206� 0:0030, in

excellent agreement with Eq. (173). Both results agree with the less precise de-

terminations from deep inelastic lepton scattering and from event shape analyses

in lepton scattering and e+e� annihilation.50

Figure 64 illustrates well the agreement between the evolution of �s(m
2
� ) pre-

dicted by QCD between m2
� and M

2
Z.
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3.7 Applications to Vacuum Polarization Calculations

3.7.1 Improvements to the Standard Calculations

From the studies presented above, we have learned that:

� The I = 1 vector spectral function from � decays agrees with that from e+e�

annihilation, while it is more precise for masses less than 1.6 GeV. Small

CVC violations are expected at a few times 10�3 level56 from radiative �

decays and SU(2)-breaking in the � and � masses.

� The description of R� by perturbative QCD works down to a scale of 1 GeV.

Nonperturbative contributions at 1.8 GeV are well below 1% in this case.



They are larger (� 3%) for the vector part alone, but reasonably well-

described by OPE. The complete (perturbative + nonperturbative) descrip-

tion is accurate at the 1% level at 1.8 GeV for integrals over the vector

spectral function such as R�;V .

These two facts have direct applications to calculations of hadronic vacuum

polarization which involve the knowledge of the vector spectral function: the muon

magnetic anomaly and the running of �. In both cases, the standard method

involves a dispersion integral over the vector spectral function taken from the

e+e� ! hadrons data. Eventually at large energies, QCD is used to replace

experimental data. Hence, the precision of the calculation is given by the accuracy

of the data, which is poor above 1.5 GeV. Even at low energies, the precision can

be signi�cantly improved at low masses by using � data.56

The next breakthrough comes about using the prediction of perturbative QCD

far above quark thresholds, but at low enough energies (compatible with the

remarks above) in place of noncompetitive experimental data.53 This procedure

involves a proper treatment of the quark masses in the QCD prediction.107

Finally, it is still possible to improve the contributions from data by using

analyticity and QCD sum rules, basically without any additional assumption.

This idea, advocated in Ref. 112, has been used within the procedure described

above to still further improve the calculations.54

The experimental results for R(s) and the theoretical prediction are shown

in Fig. 65. The shaded bands depict the regions where data are used instead of

theory to evaluate the respective integrals. Good agreement between data and

QCD is found above 8 GeV, while at lower energies systematic deviations are

observed. The R measurements in this region are essentially provided by the 2

(Ref. 113) and MARK I (Ref. 114) Collaborations. MARK I data above 5 GeV

lie systematically above the measurements of the Crystal Ball115 and MD1116

Collaborations as well as the QCD prediction.

3.7.2 Muon Magnetic Anomaly

By virtue of the analyticity of the vacuum polarization correlator, the contribution

of the hadronic vacuum polarization to a� (Fig. 66) can be calculated via the
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formation).
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Fig. 66. Leading order hadronic vacuum polarization contribution to a�.

dispersion integral117

ahad� =
1

4�3

1Z
4m2

�

ds �had(s)K(s): (174)

Here, �had(s) is the total e
+e�! hadrons cross section as a function of the c.m.

energy-squared s, and K(s) denotes the QED kernel118

K(s) = x2
 
2� x2

2

!
+ (1+x)2

�
1 +

1

x2

� 
ln(1 + x)� x+

x2

2

!
+

(1 + x)

(1� x)
x2 lnx;

(175)

with x = (1� ��)=(1 + ��) and � = (1� 4m2
�=s)

1=2 (see also remarks concerning

the numerical stability of K(s) in Ref. 71). The function K(s) decreases mono-

tonically with increasing s. It gives a strong weight to the low-energy part of the

integral (174). About 91% of the total contribution to ahad� is accumulated at c.m.

energies
p
s below 2.1 GeV, and 72% of ahad� is covered by the two-pion final state

which is dominated by the �(770) resonance. The new information provided by

the ALEPH two- and four-pion spectral functions can significantly improve the

ahad� determination.

3.7.3 Running of the Electromagnetic Coupling

In the same spirit we evaluate the hadronic contribution ��(s) to the renormal-

ized vacuum polarization function �0
(s) which governs the running of the elec-

tromagnetic fine structure constant �(s). For the spin 1 photon, �0
(s) is given



by the Fourier transform of the contraction of the electromagnetic currents j�em(s)

in the vacuum (q�q� � q2g��) �0
(q

2) = i
R
d4x eiqxh0jT (j�em(x)j�em(0))j0i. With

��(s)=�4��Re
h
�0
(s)� �0

(0)
i
, one has

�(s) =
�(0)

1���(s)
; (176)

where 4��(0) is the square of the electron charge in the long-wavelength Thomson

limit. The contribution ��(s) can naturally be subdivided into a leptonic and a

hadronic part. Furthermore, at s = M2
Z it is appropriate to separate the leading

vacuum polarization contribution involving the five light quarks u; d; s; c; b from

the top quark contribution since the latter cannot be calculated in the light fermion

approximation.

The leading order leptonic contribution is given by

��lep(M
2
Z) =

�(0)

3�

X
`

 
ln
M2

Z

m2
`

� 5

3

!
= 314:2� 10�4: (177)

Using analyticity and unitarity, the dispersion integral for the contribution from

the light quark hadronic vacuum polarization ��had(M
2
Z) reads

119

��
(5)
had(M

2
Z) = � M2

Z

4�2 �
Re

1Z
4m2

�

ds
�had(s)

s�M2
Z � i�

; (178)

where �(s) = 16�2�2(s)=s � Im�0
(s) from the optical theorem and Im�0

 stand for

the absorptive part of the hadronic vacuum polarization correlator. In contrast

to ahad� , the integration kernel favors cross sections at higher masses. Hence, the

improvement when including � data is expected to be small.

The top quark contribution can be calculated using the next-to-next-to-leading

order �3s prediction of the total inclusive cross section ratio R from perturbative

QCD65,71:

Rpert(s) = 3
X
f

Q2
f

 
1� 4m2

f

s

!1=2 
1 +

2m2
f

s

!"
1 +

�s

�
+ r1

�
�s

�

�2
+ r2

�
�s

�

�3 #
;

(179)

where r1 = 1:9857�0:1153nf , r2 = �6:6368�1:2001nf�1:2395(
P

f Qf )
2=3

P
f Q

2
f ,

and nf is the number of involved quark avors. The evaluation of the inte-

gral (178) with mtop = 175 GeV and the running strong coupling constant fixed

at �s(M
2
Z) = 0:121 yields ��top(M

2
Z) = �0:6� 10�4.



3.7.4 Results

Table 8 shows the experimental and theoretical evaluations of ��had(M
2
Z), a

had
� ,

and ahade for the respective energy regimesz. Experimental errors between different
lines are assumed to be uncorrelated, whereas theoretical errors (except those from

c�c and b�b thresholds, which are quark mass dominated) are added linearly.

According to Table 8, the combination of the theoretical and experimental

evaluations of the integrals (178) and (174) yields the results

��had(M
2
Z) = (276:3� 1:1(exp:) � 1:1(theo:))� 10�4;

��1(M2
Z) = 128:933� 0:015(exp:) � 0:015(theo:);

ahad� = (692:4� 5:6(exp:) � 2:6(theo:))� 10�10;

aSM� = (11 659 159:6� 5:6(exp:) � 3:7(theo:))� 10�10; (180)

and ahade = (187:5 � 1:7(exp:) � 0:7(theo:)) � 10�14 for the leading order hadronic

contribution to ae. The total a
SM
� value includes an additional contribution from

nonleading order hadronic vacuum polarization summarized in Refs. 56 and 120 to

be ahad� [(�=�)3] = (�10:0 � 0:6)�10�10. Also, the light-by-light scattering (LBLS)
contribution has recently been reevaluated to be ahad� [LBLS] = (�7:9� 1:5)�10�10
(Ref. 121). Together with the value ahad� [LBLS] = (�9:2 � 3:2)�10�10 (Ref. 122),
we use the average hahad� [LBLS]i = (�8:5 � 2:5)� 10�10, so that the total higher

order hadronic correction amounts to ahad� [(�=�)3 + LBLS] = (�18:5 � 2:6) �
10�10. Figures 67 and 68 show a compilation of published results for the hadronic

contributions to �(M2
Z) and a�. Some authors give the hadronic contribution for

the five light quarks only and add the top quark part separately. This has been

corrected for in Fig. 67.

3.7.5 Outlook

These results have direct implications for phenomenology and ongoing experimen-

tal programs:

� We have seen in the second lecture that most of the sensitivity to the Higgs

boson mass originates from the measurements of asymmetries and in �ne

from (sin2 �W )eff = �s2. Unfortunately, this approach is limited by the fact

zThe evaluation of ahade follows the same procedure as ahad� .
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Energy (GeV) ��had(M
2
Z)� 104 ahad� � 1010 ahade � 1014

(2m� { 1:8)uds 56:36 � 0:70(exp:) � 0:18(theo:) 634:3 � 5:6(exp:) � 2:1(theo:) 173:67 � 1:7(exp:) � 0:6(theo:)

(1:8 { 3:700)uds 24:53 � 0:28(theo:) 33:87 � 0:46(theo:) 8:13 � 0:11(theo:)

 (1S; 2S; 3770)c

+ (3:7 { 5)udsc
24:75 � 0:84(exp:) � 0:50(theo:) 14:31 � 0:50(exp:) � 0:21(theo:) 3:41� 0:12(exp:) � 0:05(theo:)

(5 { 9:3)udsc 34:95 � 0:29(theo:) 6:87 � 0:11(theo:) 1:62 � 0:03(theo:)

(9:3 { 12)udscb 15:70 � 0:28(theo:) 1:21 � 0:05(theo:) 0:28 � 0:02(theo:)

(12 { 1)udscb 120:68 � 0:25(theo:) 1:80 � 0:01(theo:) 0:42 � 0:01(theo:)

(2mt { 1)t �0:69� 0:06(theo:) � 0 � 0

(2m� { 1)udscbt 276:3 � 1:1(exp:) � 1:1(theo:) 692:4 � 5:6(exp:) � 2:6(theo:) 187:5 � 1:7(exp:) � 0:7(theo:)

Table 8. Contributions to ��had(M
2
Z), a

had
� , and ahade from the di�erent energy

regions. The subscripts in the �rst column give the quark avors involved in the

calculation.

that the intrinsic uncertainty on �(M2
Z) in the standard evaluation is at

the same level as the experimental accuracy on �s2, as shown in Table 9.

The situation has completely changed with the new determination of �(M2
Z)

which does not limit anymore the extraction of the Higgs mass from accurate

experimental determinations of sin2�W. As a result, the 95% C.L. upper limit

onMH has decreased from 215 to 202 GeV/c2, even though the most probable

value increased from 66 to 83 GeV/c2. The improvement in precision is

more directly appreciated on the more relevant variable log MH with MH in

GeV/c2 (Ref. 55):

log MH = 1:82+0:33�0:40 [�(M2
Z) from Ref: 72]; (181)

log MH = 1:92+0:24�0:27 [�(M2
Z) from Ref: 55]: (182)

� The interest in reducing the uncertainty in the hadronic contribution to ahad�

is directly linked to the possibility of measuring the weak contribution. Let

us write down explicitly the di�erent parts as

aSM� = aQED� + ahad� + aweak� ; (183)

where aQED� = (11 658 470:6 � 0:2)� 10�10 is the pure electromagnetic con-

tribution (see Ref. 133 and references therein), ahad� is the contribution from



�sin2�
lept
e�

Experiment 0.00023

�(M2
Z) 0.00023

this work
=) 0.00005

mt 0.00018

Theory 0.00010

MHiggs 0.00160 [MHiggs = 60{1000 GeV]

Table 9. Dominant uncertainties of input values of the Standard Model electroweak

�t, expressed in terms of �sin2�
lept
e� .

hadronic vacuum polarization, and aweak� = (15:1 � 0:4)� 10�10 (Refs. 133{

135) accounts for corrections due to the exchange of the weak interacting

bosons up to two loops. Note that the one-loop electroweak part of aSM� with

the Higgs boson contribution neglected gives aweak� (1 loop) = 19:5 � 10�10.

Taking into account fermionic and bosonic two-loop corrections reduces the

electroweak contribution to the value given above. The authors of Ref. 136

considered effects from nonzero quark masses and obtained �aweak� (2 loop) '
�(36:9� 2:5) � 10�11, which gives aweak� = 15:8 � 10�10. The present value

from the combined �+ and �� measurements,137

a� = (11 659 230� 85)� 10�10 ; (184)

should be improved to a precision of at least 4 � 10�10 by a forthcoming

Brookhaven experiment (BNL-E821) (Ref. 138), well below the expected

weak contribution. Such a program makes sense only if the uncertainty on

the hadronic term is made su�ciently small. The improvements described

above represent a signi�cant step in this direction.

3.8 Are � Decays Standard?

For many years, several nagging problems were casting doubts on our understand-

ing of the � decays within the Standard Model. A recurrent pathology was the

so-called \missing one-prong decay" problem. Then appeared some persistent in-



dication of a violation of universality. Both problems were rooted in experimental

systematic e�ects and they have now disappeared thanks to precise and reliable

data. In particular, the ALEPH Collaboration has measured all the important

exclusive modes61,139 and shown them to be in good agreement with the standard

phenomenology.

Indeed, it is possible to describe phenomenologically the � decay modes start-

ing from the following ingredients:

� the measurement of �� providing the total � width;

� the universality of the Wl��l couplings;

� the isospin invariance of the vector currents (CVC): hadron production through

the vector coupling to W is identical to that observed in e+e� annihilation

through the I = 1 electromagnetic current;

� the equality between the hadronic vector and axial-vector counterparts, slightly

broken by a small QCD nonperturbative contribution;

� the Cabibbo angle and an estimate of the SU(3)flavor symmetry breaking, in

order to compute the strange modes.

In practice, the calculation is limited by the accuracy of e+e� data for the

modes � ! ����
0 and ��3��

0, and consequently, for the axial modes. Neverthe-

less, the comparison between the measured branching ratios and the calculated

ones shows a good level of consistency and no signi�cant deviation, as can be seen

in Table 10.

By construction, the measured branching fractions add up to one, while this is

not guaranteed for the predictions because the widths for the modes are estimated

independently and turned into branching ratios through the � total width. The

theory sum is therefore a test of the global consistency of the standard description.

The value obtained

X
i

Bstandard
i = (9813� (41)�� � (156)e+e� � (28)SU(3) � (50)QCD) 10

�4 (185)

is compatible with 1 within a precision of 2% dominated by uncertainties from

e+e� data.

Within the present experimental accuracy, the � lepton decays according to

the Standard Model.



BX(10
�4) modes � ! �� X Standard Model

ALEPH + ��

X * + other exp. + e+e� data

e ��e 1779 (7)* 1778 (7)

���� 1732 (8)* 1729 (7)

� 1123 (16) 1090 (5)

��0 2534 (19) 2467 (70)

�3�0 118 (14) 107 (5)

3��0 418 (12) 420 (30)

6� 4 (2) 13 (2)

��� 17 (3)* 13 (2)

�KK0 19 (4) 15 (3)

�!(! �) 17 (2) 17 (5)

�KK�(V ) 21 (11) 16 (16)

�KK��(V ) 8 (8) 20 (20)

A(3�; 5�; �KK�) 1933 (25) 1834 (86)

�K 69 (3) 73 (1)

�K� 127 (9) 120 (12)

�K�� 67 (10) 81 (20)

�K��� 11 (10) 20 (20)

Sum 10 000 9813 � 171

Table 10. Branching ratios of the � lepton and Standard Model predictions. The

labels V, A correspond to �nal states obtained through the vector and axial-vector

currents, respectively.



Conclusion

We have witnessed in recent years an avalanche of new and precise results in par-

ticle physics. Mostly thanks to the democratic character of e+e� annihilation and

the generosity of the Z boson, properties of leptons have been studied with great

accuracy. The net result is somewhat disappointing as the Standard Theory is

still undisputed and many of the old questions remain unanswered. Nevertheless,

much progress has been achieved. The number of quark and lepton families has

profound consequences for particle physics and cosmology. The agreement be-

tween the indirect and direct determinations of the top quark mass is a test of the

electroweak theory at the level of its quantum uctuations. Starting from almost

nowhere, the mass of the Higgs boson is found to lie in a band close to the W and

Z masses. Finally, much progress has been achieved in testing QCD, especially in

the transition region between the hadrons and the asymptotic regime, thanks to

our universal � lepton.
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