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Abstract

Optimal filtering is at the core of data processing for SuperCDMS, and
its performance has direct implications on many aspects of data analysis
including energy resolution, position sensitivity, and others. The NxM op-
timal filter fits pulses from N channels simultaneously with M templates
(N and M are the numbers of channels and templates, respectively). In
this document, we start with an overview of the optimal filtering the-
ory and many of its algorithms that have been used in the collaboration.
Then, the motivations for the NxM optimal filter are discussed, followed
by a new derivation of the algorithm. Finally, we note some technical
peculiarities in its implementation in CDMSBats.

1 Introduction to the Optimal Filter

Optimal filtering in the context of SuperCDMS data processing is a means of
non-adaptive extraction of a weak desired signal in the presence of noise. Mathe-
matically speaking, it deals with the generic problem ofD(t) = aT (t− t0) + N(t),
where D(t) is the data, a linear combination of signal and noise, T (t) is the tem-
plate that has approximately the same pulse shape as the true signal, and N(t)
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is the noise. An important assumption here is that we have some prior knowl-
edge of the signal shape, which differs from most signal processing considerations
such as the Wiener filter in electrical engineering [1]. The name “optimal” comes
from the fact that, if the given template perfectly describes the signal and if the
noise is stationary and Gaussian1, the filter method will render theoretically
the best possible fit results (amplitude a and time delay t0).

A SuperCDMS event is defined as an instance of energy deposition in a
detector. These deposited energies transverse the detector in the form of elec-
trons/holes and phonons, which in turn are collected in either the charge or
phonon channels. As a result, a raw event consists of multiple different copies
of digitized pulses, embedded with information about the same event. For de-
tails, refer to chapter 4 of [2].

The default and simplest Optimal Filter (OF) used by the collaboration is the
single-channel, single-template, stationary Optimal Filter (1x1OF). In addition
to applying it to individual channels, most often the OF is used on the sum of
all individual (phonon) channels, fitted as a virtual “PT” channel. In this case,
only one trace needs to be dealt with, making S(t), A(t), and N(t) effectively
vectors. Appendix B of [3] and Appendix E of [5] present two different flavors
of 1x1OF construction that arrive at the same formulae. Appendix E of [5]
emphasized more explicitly the issue at hand as a χ2 minimization problem.
This will continue to be the rhetoric for deriving the NxM formula.

The actual application of the 1x1OF in the SuperCDMS processing software
(CDMSBats) inserted two additional caveats. The first is that instead of search-
ing for the minimum of the χ2, we are looping through amplitude as a function
of time (bins) to find the maximum amplitude2. The second is the use of the
Inverse Fast Fourier Transform (IFFT) to convert amplitudes from frequency
space to time. Both have proved to be significant at improving the processing
speed but cannot be generalized to multiple-channel, multiple-template cases.
Appendix A of [6] briefly touched on this topic and we will come back to these
two caveats when discussing the NxM optimal filter as well.

Over the years many variants of OF were developed with different focuses
on some particular characteristics of the data, with strong contributions from
Pyle and others. One natural extension of the 1x1OF is the single-channel,
two-templates, stationary Optimal Filter (2TOF, sometimes also referred to
as 1x2OF). Equipped with both primary and residual templates, it excels at
pulses with varying shapes as was observed in the CDMSlite dark matter search.
Additionally, it was demonstrated that a special combination of the two fitted
amplitudes is indicative of the event position [7]. Derivation and performance
evaluation of the 2TOF can be found in [8] and Appendix E of [5].

1Stationary noise is defined as the noise whose power spectral density does not change
with time. A consequence of noise being stationary is that it will be uncorrelated between
different frequencies. Gaussian means a sample at any given time is drawn from a Gaussian
distribution. Note that they differ distinctively from white. White noise refers to noise
whose Fourier transform (and thus the power spectral density) has the same amplitude at all
frequencies. It is sometimes also referred to as Stochastic.

2The equivalence holds in some special cases, but generally there is a small systematic
uncertainty associated with it.
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Another logical extension is to include more than one channel. This is of
special importance in charge channel processing, where the cross-talk between
different channels is significant. The two-channel, two-template3, stationary
Optimal Filter(2x2OF), combining two charge channels with the aid of two
additional cross-talk templates, is used as the default OF for processing charge
data. Appendix A of [6] gave the derivation and performance evaluation. In this
derivation, matrix notations were first used and several complications similar to
the NxM case were recognized and discussed for the first time.

The single-channel, single-template, non-stationary optimal filter (NSOF),
as its name suggests, deals with the case of non-stationary signals, i.e., sig-
nals with varying pulse shapes. Because only one template is used, the non-
stationarity effectively translates from non-stationary signals to non-stationary
noises. This breaks the underlining assumption that noise at different frequen-
cies is independent, and therefore can contribute significantly to the statistical
uncertainty of fitted parameters when using the 1x1OF. The NSOF was first de-
signed to deal with the position-dependent pulse shape variation in the Soudan
iZIP detectors, with the general idea of de-weighting the initial rising part of
the pulse. The construction can be found in Appendix E of [5] and Chapters
6&7 of [9].

2 NxM Optimal Filter: Motivations

Since almost the very start of the CDMS era, it was noticeable that pulses
of the same channel for different events can have different amplitudes, time
delays, and perhaps most importantly pulse shapes. These sometimes intricate
differences originate from the fact that events can occur at different positions
in the detector. Intuitively, the closer the event is to one channel, the bigger
the amplitude, the smaller the time delay (relative to other channels), and the
sharper the rise time for that pulse in the channel. Similarly, pulses in different
channels of the same event also have different amplitudes, time delays, and pulse
shapes. Without prior knowledge of the event position and thus the correct
template to use for the channels, fitting for amplitudes and time delays proves
to be tricky. As stated in the foregoing section, the OF becomes non-optimal
when the template can not perfectly describe the signal. This is reflected as
a bias and a worsening of resolution in the fitted parameters. The historical
solution to this problem has been to try to wash out the position dependence
effects by fitting the summed pulse of all channels instead of individual channels.
The 2TOF and NSOF also contribute to mitigating this effect, through either
providing more than one template or including the variation in pulse shape as
a systematic uncertainty contribution to the covariance matrix (resulting in a
non-diagonal covariance matrix).

In light of the bigger size of the SNOLAB-type detectors, these effects are ex-
pected to be enhanced. Viewed from a different perspective, however, things are

3It is sometimes also referred to as four-template, because all four templates (two for each
channel) are different from each other
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not that grim. If dealt with properly, these amplitudes, time delays, and pulse
shape variations can not only be correctly accounted for to improve the energy
resolution, but also provide a valuable probe sensitive to the event position.

The NxM optimal filter (NxMOF), processing multiple (N) pulses of a detec-
tor event with multiple (M) templates, was proposed precisely for this reason.
With this algorithm, all the (phonon) channels are processed simultaneously so
that the correlated noise such as cross-talk between channels is correctly taken
into account. To achieve this, a covariance matrix (the equivalent of the PSD
in the case of a single-channel fit such as the 1x1OF) needs to be calculated,
with the diagonal elements being the auto-PSDs of each channel and the off-
diagonal elements the cross-PSDs between different channels. Additionally, each
channel is fitted with multiple templates, so that the pulse shape variation can
be correctly represented. The amplitudes of different templates adjust as the
pulse shape varies. Together with the best fitted time delays for each channel,
a figure-of-merit may be constructed to indicate the event position.

The idea of the NxMOF was not new. In fact, it has been a long appealing
concept within the collaboration. Like most of the advanced OFs beyond the
1x1OF, Pyle first developed the NxM in Matlab in 2012 [4]. By 2015, Thakur,
with the help of Pyle, had documented the first mathematical derivation on the
NxMOF [5]. In 2018, Asamar wrote some python package [10] that includes
both the algorithm itself as well as a template generation scheme. Simulated
data were used to study a potential bias in the reconstructed energy. By the
end of 2020, one of the authors (Liu) implemented the first workable version of
the NxMOF in CDMSBats as part of the official data processing.

However, as more NxMOF studies were carried out, it became clear that the
previous NxMOF derivation had several substantial limitations, and sometimes
misconceptions. First and foremost, the notion of the complex covariance ma-
trix is problematic. One of the intrinsic properties of the (complex) covariance
matrix is that it is Hermitian (or symmetrical if the matrix is real). This means
that the complex covariance matrix becomes non-invertible4 if the size of the
matrix is odd, which can potentially place some quite stringent limit on the
application of the NxMOF5. It is also hard to interpret a complex χ2, or derive
a real χ2 from a complex covariance matrix. Finally and perhaps more impor-
tantly, the complex covariance matrix intrinsically miscounts some important
correlations. This can be shown by calculating the covariance between two sam-
ples of complex numbers, z1 and z2. Suppose z1 = a+ bi and z2 = c+di, where
a, b, c, and d are real random variables, and µ1 and µ2 are the mean values of
z1 and z2, respectively (e.g. ⟨z1⟩ = ⟨a⟩+ ⟨b⟩i). The complex covariance can be

4The determinant of an odd Hermitian matrix can be shown to be zero.
5One of the examples is that the NxMOF cannot be applied to detectors with odd-number

channels.
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written as:

cov(z1, z2) =
1

N

N∑
j=1

(z1,j − µ1)(z2,j − µ2)
∗

= cov(a, c) + cov(b, d)− [cov(a, d)− cov(b, c)]i,

(1)

where the real and imaginary parts of the complex covariance are linear
functions of the covariances between the real and imaginary components of the
complex samples themselves. Importantly, the imaginary component of this
complex covariance is the difference between two covariances, which means that
in some extreme cases, these correlations can cancel each other and are not
accounted for at all. In fact, as long as cov(a, d) or cov(b, c) is not sufficiently
small, the complex covariance shown above (and used in the previous deriva-
tion) miscalculates these correlations, namely the covariances between the real
component of one channel and the imaginary component of the other channel.
The size of these covariances is reflective of the time delay difference between
the two channels, which is usually non-negligible.

Another drawback in the previous derivation is in the final amplitude expres-
sion. The amplitudes were given per template, whereas sometimes it is useful to
have one amplitude for every channel and every template6. Depending on the
input templates, the relative per-channel amplitude could potentially carry rich
information about the event position. Furthermore, it is unclear how external
constraints on the amplitude parameters should be applied. We formulate our
new derivation so that different schemes of fit parameters can be accommodated.

The previous derivation also did not allow different channel time delays. Its
NxMOF χ2 only admits a single time delay, t0, and thus inherently assumes that
all pulses of the same event start at the same time. This could turn out to be
a significant limitation to the application of NxMOF, especially when it comes
to large detectors. When fitting a multiple-channel detector with 1x1OF, the
difference in time delays for individual channels can arise from two sources: the
time it takes for an event to traverse the detector to arrive at different sensors,
and the “spillover” effect from (not correctly accounting for) the pulse shape
variation. Using a single time delay is only justifiable in the NxMOF when the
effect from the first source is negligible. For large detectors, this is generally
not true. Take a SuperCDMS SNOLAB Ge HV detector (100 mm diameter,
33.33 mm thick) as an example. The phonon propagation velocity is ∼4000
m/s7. The time delay difference between channels contributed solely from the
first source can be as high as 100mm

4000m/s = 25µs, which is ∼16 time bins (the DAQ

sampling rate is 625 kHz)8. In fact, the time delay difference between channels

6These amplitudes would be correlated, and are ultimately determined by the position and
energy of the energy deposit through a possibly non-linear mapping.

7It is 5324.2077 m/s for longitudinal speed and 3258.7879 m/s for transverse speed. Si
generally has faster phonon velocities, at 9000 m/s longitudinal and 5400 m/s transversal.

8Coincidentally, the downsampled pulses for SuperCDMS SNOLAB has a downsampling
factor of 16, which would have justified the use of only a single overall time delay. However,
the on-pulse region is not downsampled (for good reasons).
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proves to be one of the most sensitive tools for inferring the event position.

In the following section, a new derivation for the NxMOF is laid out. In
addition to discussing how the concerns listed above are addressed, we intend
it to be a comprehensive, self-contained mathematical derivation. Perhaps one
of the most distinctive differences from the previous derivation is that we resort
to using matrix notation for our entire derivation.

Finally, we consider the template generation, as well as the question of how
to calculate a figure-of-merit for event position, outside the scope of this doc-
ument. Although a position indicator is one of the ultimate goals of NxMOF,
extensive simulation and calibration are required to better understand the de-
tector response and relate template/pulse shape to event position. As of now,
neither is in place for detailed studies. We therefore constrain the discussion to
the NxMOF algorithm itself: a method of retrieving the best fitted amplitudes
and time delays given a collection of templates.

3 Derivation of NxMOF

3.1 The NxM χ2

Suppose that we have N channels to which we fit M template shapes. Following
the logic in 1x1OF, we expect an amplitude and a time delay for each template
of each channel. Presumably we can then write the prediction for the data d̂c
in channel c in the time domain as:

d̂c = ac1Tc1(tc1) + ac2Tc2(tc2) + ...+ acMTcM (tcM ) =

M∑
i=1

aciTci(tcM ). (2)

Here we suppressed any index for the time sample. Tci represents the ith tem-
plate for channel c and aci (tci) is the amplitude (time delay) of that template
in the model prediction. As is the case for the 1x1OF, the χ2 has a nonlinear
dependence on tci and therefore it is a good idea to discuss separately how to
deal with time delays and amplitudes.

Eqn. 2 is written in most general terms and allows for N × M different
time delays, one for each template of each channel. This, however, potentially
introduces some significant degeneracy (with amplitudes for different templates
of the same channel) and can result in multiple local minimums and eventually
unstable fits. We therefore restrain all templates from the same channel to
have the same time delay9. On the other hand, as was shown previously, it is
necessary to have channel-dependent time delay terms. Notwithstanding, using
only a single time delay term across the fit (as was the case in the previous
derivation) is just a special case and is automatically included in this setup.

Searching for the best fitted time delay(s) is a non-linear problem for all OFs.
The NxMOF is further complicated by the absence of an equivalent IFFT in the

9This differs from 1x2OF, where the fast and slow templates have their own time delays.

6



matrix format, which prohibits the application of the trick used in the 1x1OF
to calculate amplitudes as a function of time, a(t). Without such a shortcut,
one of the few viable methods for obtaining the best fitted time delay is to
calculate and compare χ2 using brute force. This is likely to be computationally
very expensive. Take the example of a 12-channel detector. In order to search
through a time window of ±5 bins for each channel, we need to calculate the χ2

for 1210 ≈ 1011 times. In this document we do not cover the methods to obtain
the best fitted time delays as more studies are evidently needed to optimize
this process10. For now, we simply assume that the best fitted time delays are
known a priori (from fit results of other OFs such as the 1x1OF)11.

Before we dive into the amplitudes, let us first note down some characteristics
about the NxMOF templates. In Eqn. 2, we allow different channels to have
different templates, by attaching two indices to Tci. This is not necessarily
needed, especially when taking into consideration the physics in SuperCDMS.
In this case, using the same set of templates for all channels would reduce Tci

to Ti. However, it is not entirely impossible that future applications find it
beneficial to have different templates assigned to different channels. Channels
of the same detector are hardly “identical”. Aside from electronic arrangement,
the surface area of each channel covers a different shape, which may show up as a
non-negligible effect in the pulse shapes. The cross-talk templates, if included,
can also be different for different channels. Therefore, we try to be inclusive
by denoting Tci in the derivation. Whether the templates are the same for
all channels is therefore purely a decision at the application stage (i.e., what
templates are provided), not the derivation.

Eqn. 2 also dictates that all channels have the same number (M) of tem-
plates. This places hardly any constraint, though. In practice, one can always
first identify the maximum number of templates needed for any channel and
make it equal to M . All other channels with fewer numbers of templates can
then be padded out with some random templates with their amplitudes fixed to
zero (see below).

There are also N ×M amplitude coefficients aci in Eqn. 2, but they are not
all independent. In fact, the correlation between aci can be very complicated,
and the ultimate energy or position estimators will be expressed in a non-linear
mapping of aci. Nonetheless, external constraints can also be placed to reduce
the number of degrees of freedom before running the fit. For example, we could
require that a template has the same amplitude on every channel (e.g. aci = Ci),
or we may not want to fit every template to every channel, in which case some
of the coefficients can be set to zero.

Assume these external constraints are linear and suppose that we have P
free parameters. We define a mapping from these P parameters to the N ×M

10Some interesting methods include the inverse Hartley transform and the Levenberg-
Marquardt algorithm. One can also search through a carefully chosen small subset of time
delay combinations.

11There is of course a systematic uncertainty associated with this assumption.
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amplitude coefficients aci:

aci =

P∑
k=1

Bc,ikPk. (3)

Here Pk is the value of the kth parameter, and Bc is a matrix of dimension with
M rows and P columns. There can be a separate such matrix for each channel,
defining how the P free parameters map to the M template coefficients for that
channel.

We can rewrite Eqn. 2 in matrix form as a function of P⃗ , which is a column
vector containing all the free parameters. Let matrix Tc(tc) represent the values
of all templates of channel c, where tc is the time delay for channel c (remember
templates of the same channel share the same time delay). The data prediction
for channel c in the time domain is then,

d̂c = Tc(tc) ·Bc · P⃗ . (4)

If we take a Fourier transform to the frequency domain, then at a given
frequency f we have,

ˆ̃
dc,f = R(tc) · T̃c,f ·Bc · P⃗ . (5)

Now
ˆ̃
dc,f and T̃c,f are complex vectors/matrices, and we have explicitly written

their frequency dependence. R(tc) is a rotation matrix that rotates the template
T̃c,f in the complex plane by a phase ϕ = 2πftc. This is equivalent to doing a
mapping such as:

Re(T̃ci) → cosϕ Re(T̃ci) + sinϕ Im(T̃ci)

Im(T̃ci) → − sinϕ Re(T̃ci) + cosϕ Im(T̃ci).

for every template of channel c. R(tc) is not dependent on either templates nor
frequency.

We want to calculate the contribution to the χ2 at frequency f for a single
channel c, which we’ll denote χ2

c,f . Because the data d̃c,f is complex, we need

to include both the real and complex components in the χ2. Since we only have
a single channel to deal with, we can write:

χ2
c,f =

|d̃c,f −R(tc) · T̃c,f ·Bc · P⃗ |2
Sc,f

. (6)

where Sc,f , a scalar, is the (variance) noise of channel c at frequency f . Note

that all of d̃, T̃, and S are functions of channel and frequency.
This is equivalent to treating the real and the imaginary parts of the data

residual as two independent data points, each of which must be fit to the
data. So if we define the residual between data and model production as

∆c,f = d̃c,f − ˆ̃
dc,f = d̃c,f − R(tc) · T̃c,f · Bc · P⃗ , and writing out ex-

plicitly, we get

χ2
c,f =

(Re(∆c,f ))
2 + (Im(∆c,f ))

2

Sc,f
(7)
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Eqn. 7 gives the χ2 for the single-channel, multiple-template, and single-frequency
case.

Let us first consider expanding the χ2 to include multiple channels, where the
correlations between channels are to be taken into account. These correlations
can be expressed in a covariance matrix in place of Sc,f . Note that the noise
covariance matrix is itself a function of frequency.

For a given frequency, we need a covariance matrix of size 2N×2N to encode
the covariances between the real and imaginary components of the data from
the N channels. Note that some off-diagonal elements of this matrix may be
zero, especially between the real and imaginary terms of the same channel (if
the noise is stationary)12. Let us denote this covariance matrix as Vjα,kβ where
α and β can represent either the real or imaginary parts of the data for the
channels j and k, respectively. Likewise we denote the real and imaginary parts
of ∆c with a Greek subscript. We then get this expression for χ2

f :

χ2
f =

N∑
j=1

N∑
k=1

∑
α=Re,Im

∑
β=Re,Im

∆jα,f∆kβ,f (V
−1)jα,kβ,f . (8)

The summation is over channel and real/imaginary components. Note that
this is really just the inverse covariance matrix V−1

f (dimension 2N×2N , an en-
tirely real matrix) multiplied on either side by a vector of length 2N representing
the real and complex components of the residuals ∆f .

To write Eqn. 8 in matrix format, let us first (re)define some terms. Let d̃f be

a column vector of the size 2N . d̃f contains data from all channels at frequency
f in sequential order, alternating between real and imaginary components:

d̃f =



Re(chan1 FFT)
Im(chan1 FFT)
Re(chan2 FFT)
Im(chan2 FFT)

...
Re(chanN FFT)
Im(chanN FFT)


(9)

Similarly, we can redefine terms in Eqn. 5 to accommodate multiple-channel
cases. R(⃗t), now a function of the time delay vector t⃗, is extended into a block
diagonal matrix where each block is a 2×2 rotation matrix, and all other entries

12The general observation from data is that these terms are close to zero but not exact - a
reminder that the stationary noise assumption is not strictly met.
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outside these 2× 2 blocks are zero:

R(⃗t) = R(t1, t2, · · · , tN )

=



cosϕ(t1) sinϕ(t1)
− sinϕ(t1) cosϕ(t1) 0

cosϕ(t2) sinϕ(t2)
− sinϕ(t2) cosϕ(t2)

. . .
. . .

. . .
. . .

0
cosϕ(tN ) sinϕ(tN )
− sinϕ(tN ) cosϕ(tN )


(10)

Each 2 × 2 block is determined by a ti, which is the time delay for that
channel.

T̃f is the template matrix consisting all templates (Fourier transformed)

and B again is a (larger) transformation matrix, now for all channels. T̃f and
B are closely coupled and in principle can have some flexibility in their exact
form as long as they combine to express the same underlining physics. One of
the configurations for T̃f is as such,

T̃f =



Re(T̃11) · · · Re(T̃1M )

Im(T̃11) · · · Im(T̃1M ) 0
Re(T̃21) · · · Re(T̃2M )

Im(T̃21) · · · Im(T̃2M )
. . .

. . .

0
Re(T̃N1) · · · Re(T̃NM )

Im(T̃N1) · · · Im(T̃NM )


(11)

which has a size of (2N)×(N×M). In this case, B becomes a (N×M)×(N×M)

identity matrix if P⃗ is a column vector of the N×M amplitudes in the following
form:
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P⃗ = a⃗

=



a11
...

a1M
...
...

aN1

...
aNM



(12)

Note that both B and P⃗ (a linear mapping of the N ×M amplitudes) are
independent of frequency.

With the above definitions, we can extend Eqn. 5 to the multiple-channel
cases:

ˆ̃
df = R(⃗t) · T̃f ·B · P⃗

= A · P⃗
(13)

where we further define A ≡ R(⃗t) · T̃ ·B, which is effectively a transformation
matrix that projects fitted parameters to data. A has the size of 2N × P , and
has the form,

A =



d
at
a
p
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d
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ti
on
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r
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an

n
el
s
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e
to

P
1

d
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P
2

. . . d
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P
P



(14)

Fig. 1 is a schematic of Eqn. 13, showing additionally the size of the matrices.
Now we can write out the χ2 for multiple-channel, multiple-template, and

single-frequency cases in matrix form:

χ2
f = (d̃f − ˆ̃

df )
T V−1

f (d̃f − ˆ̃
df )

= (d̃f −Af · P⃗ )T V−1
f (d̃f −Af · P⃗ )

(15)
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ˆ̃
df

(2N×1)

= R(̃t)

(2N×2N)

· T̃f

(2N×(N×M))

·
B

((N×M)×P )

· P⃗

(P×1)

1

Figure 1: Schematic showing the size of various matrices for the single-frequency
case.

We’ve written explicitly the dependence on frequency. Note that Eqn. 15 is
equivalent to Eqn. 8.

To extend Eqn. 15 to multiple-frequency case, in principle we need to in-
crease the size of the vectors and matrices in Eqn. 13 accordingly. Suppose the
pulses have F sampling points/frequencies, the covariance matrix V(including
all frequencies), for example, will have the following form:

V =


Vf=1 covf=1,2 . . . covf=1,F

covf=1,2 Vf=2 . . . covf=2,F

. . . . . .
. . . . . .

covf=1,F covf=2,F . . . Vf=F

 (16)

where the diagonal elements are theN×N covariance matrices of all channels
for a given frequency, and covf=i,j (i, j are natural numbers) is the N × N
covariance matrix between frequency i and j. V in this case has the size of
(2N × F )× (2N × F ).

In reality V (and other vectors and matrices) can be extremely huge. The
typical physics pulses in SuperCDMS have 32768 time sampling points (Nf ≈
32768), and for a 12-channel detector, this means a size of about 800000×800000
for V. Inverting such a matrix is impractical, let alone the rest of the matrix
multiplications.

An important assumption can come in handy. If the noise is stationary, then
the frequencies are not correlated. In this case, covf=i,j = 0 for all i, j. The
χ2
f is also independent of frequencies, and we can simply sum Eqn. 15 over all

frequencies to get the total χ2,

χ2(⃗t, P⃗ ) =
∑
f

χ2
f (⃗t, P⃗ )

=
∑
f

(d̃f −Af · P⃗ )T V−1
f (d̃f −Af · P⃗ )

(17)

Eqn. 17 gives the χ2 expression as a function of time delays t⃗ (A is dependent on
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t⃗) and amplitudes P⃗ for the multiple-channel, multiple-template, and multiple
frequency case.

3.2 Minimizing the χ2

Before we embark on minimizing the χ2 for NxMOF, it is helpful to draw a
comparison with the 1x1OF. Both OFs minimize the χ2(t, a) separately for time

delay t(⃗t) and amplitude a(P⃗ ) due to the non-linear dependence on the time
delay. For the 1x1OF, the best amplitude is first calculated for every time delay
via an analytical solution, which is derived by calculating ∂

∂aχ
2 = 0. Similarly

for the NxMOF, we will derive an analytical solution for P⃗ , which turns out to
follow the same form as the 1x1OF.

For the 1x1OF, searching for the best fitted time delay rests on two im-
portant assumptions. First, we can make use of the IFFT transformation to
convert amplitudes in frequency space to time. This saves a significant amount
of computation required to construct such a function. Without this technique,
different time delays mean effectively different templates, and quantities that
otherwise could be calculated one time now have to be re-calculated for every
time delay. Second, it so happens that ∂

∂tχ
2 = ∂

∂ta, so that minimizing the χ2

is equivalent to maximizing the amplitude.
Neither assumption holds for the NxMOF. There is no IFFT equivalence

because we changed to use real covariance matrices to properly account for
the correlations. It is also unclear what “maximum amplitude” means in the
NxMOF. Maximizing any specific amplitude will disproportionally increase that
amplitude in the overall fit; and maximizing the sum of all amplitudes does
not guarantee a minimum χ2 either. This is because each amplitude carries
different weights (information on the pulse shape) and in general can not be
arithmetically summed. It may be possible to figure out the weights and put
them in B, but we defer that to further studies. As a compromise, for now we
use the best fitted time delay from the 1x1OF in the NxMOF as a fixed input,
and turn our focus to minimizing the NxM χ2 with respect to P⃗ .

To do so, the most straightforward way is to use a minimizer and a good
choice would be the MINUIT2 package in ROOT [11]. However, this is time-
consuming and soon becomes impractical when dealing with a large number of
channels and templates. On the other hand, because d̃f depends linearly on P⃗
if t⃗ is fixed (Eqn. 13), there exists an analytical solution for ∂

∂P⃗
χ2 = 0.

Starting with Eqn. 17, we can write ∂

∂P⃗
χ2 as,

∂

∂P⃗
χ2 =

∂

∂P⃗

∑
f

(d̃f −Af · P⃗ )T V−1
f (d̃f −Af · P⃗ )

=
∂

∂P⃗

∑
f

(d̃Tf V
−1
f d̃f − d̃Tf V

−1
f (Af · P⃗ )− (Af · P⃗ )TV−1

f d̃f + (Af · P⃗ )TV−1
f (Af · P⃗ ))

(18)

Since V−1
f is a symmetric matrix, the transpose of V−1

f is itself. Therefore, we

13



have,

∂

∂P⃗
χ2 =

∂

∂P⃗

∑
f

(d̃Tf V
−1
f d̃f − 2d̃Tf V

−1
f (Af · P⃗ ) + (Af · P⃗ )TV−1

f (Af · P⃗ ))

= −2
∑
f

d̃Tf V
−1
f Af +

∑
f

(Af · P⃗ )T (V−1
f + (V−1

f )T )Af

= 2(
∑
f

(Af · P⃗ )TV−1
f Af −

∑
f

d̃Tf V
−1
f Af )

(19)

Setting the derivatives to be zero, and providing that the matrix
∑

f A
T
f V

−1
f Af

is not singular, we arrive at the analytical solution,

P⃗ = (
∑
f

AT
f V

−1
f Af )

−1
∑
f

AT
f V

−1
f d̃f (20)

Following Chapter 7 of [12], it can be proven that this estimator is unbiased
and has the minimum possible variance of any linear estimators (thus the name
“optimal”).

The covariance matrix for the parameters P⃗ is given by,

U = (
∑
f

AT
f V

−1
f Af )

−1 (21)

4 Implementation of NxMOF

CDMSBats [13] is the official SuperCDMS software for data processing. As
is the case for any data processing software in a collaboration, CDMSBats is
under constant development and the implementation of NxMOF may change.
The first CDMSBats master version that includes NxMOF is v?.?.? (TO BE
FILLED). In this section we describe the NxMOF implementation for v?.?.?
(TO BE FILLED).

The implementation of NxMOF is mostly in two main modules in CDMS-
Bats: BatNoise and BatRoot. In BatNoise, we calculate two quantities re-
lated to Eqn. 20, which, accordingly to CDMSBats jargon, have the names
“fSignalToNoiseRatioNxM” and “fOptimalFilterNxM”:

fOptimalFilterNxM = AT
f V

−1
f

fSignalToNoiseRatioNxM = U−1 =
∑
f

AT
f V

−1
f Af

(22)

Note that fOptimalFilterNxM is a function of frequency (i.e. for each fre-
quency there is such a matrix). These quantities are calculated with noise pulses
(and templates) for a given series in BatNoise, and stored in an intermediate
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“noise” ROOT file. BatRoot then reads in the two quantities and applies them
on the shifted pulses to calculate the best fitted amplitudes via Eqn. 20. Since it
is still unclear how template generation will work for NxMOF, we exert no ex-
ternal constraints on the amplitude parameters aci so that P⃗ = a⃗ (see Eqn. 12)
and B is an identity matrix of the size (N ×M)× (N ×M).

The NxMOF as is implemented does not try to search through time delays.
Instead, it pulls the fitted results from 1x1OF (1x1OF is therefore a prerequisite
for running NxMOF), and shifts the pulses by the amount of fitted 1x1OF
time delay for that channel. The reason for shifting the pulses instead of the
templates is evident. We don’t know by what amount to shift the template
before the pulses are processed using 1x1OF in BatRoot. An alternative is
to calculate fOptimalFilterNxM and fSignalToNoiseRatioNxM for every shifted
template within a specified time window, but that would mean a significant
increase in the size of the intermediate noise file, which is unfavourable.

The time-delay-adjusted pulses do create a discontinuity in the raw traces.
The way we shift the pulses is to cut a length of the raw pulse equal to the
fitted 1x1OF time delay and attach it to the end. This discontinuity in time
gets dispersed into all frequencies via Fourier transform. However, this effect is
expected to be small as long as both the start and end of the pulses are pure
noise.

Finally, the χ2 is calculated using Eqn. 17, now that P⃗ is known. The
output of the NxMOF includes a χ2, the N ×M amplitudes, and N time delays
as calculated from 1x1OF.
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