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Abstract

We study the symmetry of Maxwell’s equations for external moving media together
with the additional Minkowski constitutive equations (or Maxwell-Minkowski equa-
tions). We have established the sufficient condition for a solution found with the
help of conditional symmetry operators to be an invariant solution of the considered
equation in the classical Lie sense.

In the present paper, we study the symmetry properties of Maxwell’s equations in an
external moving medium

∂ �D

∂t
= rot �H −�j,

∂ �B

∂t
= −rot �E,

div �D = ρ, div �B = 0,
(1)

together with the additional Minkowski constitutive equations

�D + �u× �H = ε( �E + �u× �B),

�B + �E × �u = µ( �H + �D × �u),
(2)

where �u is the velocity of the medium, ε is the permittivity and µ is the permeance of the
stationary medium, ρ and �j are the charge and current densities.

In [1], we have established the infinite symmetry of (1) for ρ = 0, �j = 0. In this
case, the Maxwell equations admit an infinite-dimensional algebra whose elements have
the form

X = ξµ(x)
∂

∂xµ
+ ηEa

∂

∂Ea
+ ηBa

∂

∂Ba
+ ηDa

∂

∂Da
+ ηHa

∂

∂Ha
, (3)

where

ηE1 = ξ3
0B2 − ξ2

0B3 − (ξ1
1 + ξ0

0)E1 − ξ2
1E2 − ξ3

1E3,

ηE2 = −ξ3
0B1 + ξ1

0B3 − (ξ2
2 + ξ0

0)E2 − ξ1
2E1 − ξ3

2E3,

ηE3 = ξ2
0B1 − ξ1

0B2 − (ξ3
3 + ξ0

0)E3 − ξ2
3E2 − ξ1

3E1,

ηB1 = ξ1
2B2 − ξ1

3B3 − (ξ2
2 + ξ3

3)B1 − ξ0
3E2 + ξ0

2E3,

ηB2 = ξ0
3E1 − ξ0

1E3 − (ξ1
1 + ξ3

3)B2 − ξ2
1B1 + ξ2

3E3,

ηB3 = ξ3
1B1 + ξ3

2B2 − (ξ1
1 + ξ2

2)B3 − ξ0
2E1 + ξ0

1E2,

ηD1 = ξ1
2D2 + ξ1

3D3 − (ξ1
1 + ξ0

0)D1 + ξ0
3H2 − ξ0

2H3,

ηD2 = −ξ0
3H1 + ξ0

1H3 − (ξ2
2 + ξ0

0)D2 − ξ2
1D1 + ξ2

3D3,
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ηD3 = ξ3
1D1 + ξ3

2D2 − (ξ3
3 + ξ0

0)D3 − ξ0
2H1 − ξ0

1H2,

ηH1 = −ξ3
0D2 + ξ2

0D3 − (ξ1
1 + ξ0

0)H1 − ξ2
1H2 − ξ3

1H3,

ηH2 = ξ3
0D1 − ξ1

0D3 − (ξ2
2 + ξ0

0)H2 − ξ1
2H1 − ξ3

2H3,

ηH3 = −ξ2
0D1 + ξ1

0D2 − (ξ3
3 + ξ0

0)H3 − ξ3
2H2 − ξ1

3H1,

and ξµ(x) are arbitrary smooth functions of x = (x0, x1, x2, x3), ξ
µ
ν ≡ ∂ξµ

∂xν
, µ, ν = 0, 3,

a = 1, 3. We prove that the Maxwell equations (1) with charges and currents (ρ �= 0,
�j �= 0) are invariant with respect to an infinite-parameter group provided that ρ and �j are
transformed in appropriate way.

Theorem 1. The system of equations (1) is invariant with respect to an infinite-dimen-
sional Lie algebra whose elements are given by

Q = X + ηja ∂

∂ja
+ ηρ ∂

∂ρ
, (4)

where

ηja
= −dja + ξa

b j
b + ξa

0ρ, ηρ = −dρ+ ξ0
0ρ+ ξ0

b j
b, d = −(ξ0

0 + ξ1
1 + ξ2

2 + ξ3
3) (5)

and the summation from 1 to 3 is understood over the index b.

Proof. The proof of Theorem 1 requires long cumbersome calculations which are omitted
here. We use in principle the standard Lie scheme which is reduced to realization of the
following algorithm:
Step 1. The prolongating operator (4) is constructed by using the Lie formulae (see,
e.g., [4]).
Step 2. Using the invariance condition

Q
1
LΨ

∣∣∣
LΨ=0

= 0, (6)

where Q
1
is the first prolongation of operator (4) and LΨ = 0 is the system of equations

(1), we obtain the determining equations for the functions ξµ, ηja
, and ηρ.

Step 3. Solving the corresponding determining equations, we obtain the condition of
Theorem 1.

From the invariance condition (6) for the equation
∂ �D

∂t
= rot �H − �j, we obtain

ηja
= −dja + ξa

b j
b + ξa

0ρ. By applying criterium (6) to the equation div �D = ρ, we
get ηρ = −dρ+ ξ0

0ρ+ ξ0
b j

b. As follows from [1] the invariance condition for the equations
∂ �B

∂t
= −rot �E and div �B = 0 gives no restriction on ηja

and ηρ. Theorem 1 is proved.

The invariance algebra (4), (5) of the Maxwell equations contains the Galilei algebra
AG(1, 3), Poincaré algebra AP (1, 3), and conformal algebra AC(1, 3) as subalgebras.

It is well known that the Maxwell equations in vacuum are invariant with respect to the
conformal group [2]. In [1], we showed that there exists the class of conformally invariant
constitutive equations of the type

�D =M(I) �E +N(I) �B, �H =M(I) �B −N(I) �E, I =
�E2 − �B2

�B �E
, (7)
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where M , N are smooth functions of I. System (1), (7) admits the conformal algebra
AC(1, 3).

It is surprisingly but true that the symmetry of equations for electromagnetic fields in
a moving medium was not investigated at all. The following statement gives information
on a local symmetry of system (1), (2) which may be naturally called Maxwell’s equations
with the supplementary Minkowski conditions (or Maxwell-Minkowski equations).

Theorem 2. System (1), (2) is invariant with respect to the conformal algebra AC(1,3)
whose basis operators have the form

P0 = ∂0 =
∂

∂t
, Pa = −∂a, ∂a =

∂

∂xa

, a, b = 1, 3

Jab = xa∂b − xb∂a + S̃ab + Vab +Rab,

J0a = x0∂a + xa∂0 + S̃0a + V0a +R0a,

D = t∂t + xk∂xk
− 2 (Ek∂Ek

+Bk∂Bk
+Dk∂Dk

+Hk∂Hk
)− 3 (jk∂jk

+ ρ∂ρ) ,

Kµ = 2xµD − x2Pµ + 2xν(S̃µν + Vµν +Rµν), µ, ν = 0, 3,

(8)

where S̃ab, S̃0a are given by (6), and Vab, V0a, Rab, R0a have the form

Vab = ua∂ub
− ub∂ua , V0a = ∂ua − ua (ub∂ub

) ,

Rab = ja∂jb
− jb∂ja , R0a = ja∂ρ + ρ∂ja .

(9)

To prove the theorem, we use in principle the standard Lie scheme and therefore it is
given without proof.

As follows from the theorem, vectors �D, �B, �E, �H are transformed according to a stan-
dard linear representation of the Lorentz group, and the velocity of a moving medium and
the density of charge are nonlinearity transformed

ua → u′a =
ua + θa

1 + �u�θ
, ρ→ ρ′ =

ρ(1− �θ�u)√
1− �θ2

.

Components of the velocity vector �u are transformed in the following way:

uk → u′k =
ukσ − 2b0xk − 2b20xk(x0 − �x�u)

1 + 2b0(x0 − �x�u) + b20(x
2
0 + �x2 − 2x0�x�u)

, (10)

where σ = 1+2b0x0+b20x
2, x2 = x2

0−�x2, b0 is a group parameter under the transformations
generated by Kµ.

Operators Ka generate the following transformations for the velocity vector:

ua → u′a =
uaσ + 2(x0 − �x�u)(ba − b2axa)− 2baua(xa + bax

2)
σ + 2b2ax0(x0 − �x�u)− 2bauax0

, (11)

uc → u′c =
ucσ + 2(x0 − �x�u)b2axc − 2bauaxc

σ + 2b2ax0(x0 − �x�u)− 2bauax0
, c �= a, (12)

where σ = 1− 2baxa − b2ax
2, ba are group parameters and there is no summation over a.
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If the permittivity ε and permeance µ are functions of the ratio of invariants of elec-
tromagnetic field, i.e.,

ε = ε

(
�B2 − �E2

�B �E

)
, µ = µ

(
�B2 − �E2

�B �E

)
,

then system (1), (2) is invariant with respect to the conformal algebra AC(1,3).
Thus, the system of Maxwell’s equations (1), (2) in a moving external medium is invari-

ant with respect to the conformal group C(1,3). Here, the velocity is changed nonlinearly
under the transformations generated by Kµ according to formulae (10), (11), (12).

In the all above-given equations, the fields �D, �B, �E, �H are transformed in a linear way.
Here, we give one more system of nonlinear equations for which a nonlinear represen-

tation of the Poincaré algebra AP(1,3) is realized on the set of its solutions. The system
has the form

∂Σk

∂x0
+Σl

∂Σk

∂xl
= 0, k, l = 1, 2, 3, (13)

where Σk = Ek + iHk. The complex system (12) is equivalent to the real system of
equations for �E and �H:

∂Ek

∂x0
+ El

∂Ek

∂xl
−Hl

∂Hk

∂xl
= 0,

∂Hk

∂x0
+Hl

∂Ek

∂xl
+ El

∂Hk

∂xl
= 0.

(14)

Having used the Lie algorithm [4], we have proved the theorem.

Theorem 3. The system of equations (14) is invariant with respect to the 24-dimensional
Lie algebra with basis operators

Pµ =
∂

∂xµ

= ∂µ, µ = 0, 3

J
(1)
kl = xk∂l − xl∂k + Ek∂El

− El∂Ek
+Hk∂Hl

−Hl∂Hk
,

J
(2)
kl = xk∂l + xl∂k + Ek∂El

+ El∂Ek
+Hk∂Hl

+Hl∂Hk
,

G
(1)
a = x0∂a + ∂Ea ,

G
(2)
a = xa∂0 − (EaEk −HaHk)∂Ea − (EaHk +HaEk)∂Hk

,

D0 = x0∂0 − Ek∂Ek
−Hk∂Hk

,

Da = xa∂a + Ea∂Ea +Ha∂Ha (there is no summation by k) ,

K0 = x2
0∂0 + x0xk∂k + (xk − x0Ek)∂Ek

− x0Hk∂Hk
,

Ka = x0xa∂0 + xaxk∂k + [xkEa − x0(EaEk −HaHk)]∂Ek
+

[xkHa − x0(HaEk + EaHk)]∂Hk
.

(15)

The invariance algebra of (14) given by (15) contains the Poincaré algebra AP(1,3), the
conformal algebra AC(1,3), and the Galilei algebra AG(1,3) as subalgebras.
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The operators J0k = G
(1)
k +G

(2)
k generate the standard transformations for x:

x0 → x′0 = x0 ch θk + x0 sh θk,

xk → x′k = xk ch θk + x0 sh θk,

xl → x′l = xl, if l �= k,

(16)

and nonlinear transformations for �E, �H:

Ek + iHk → E′
k + iH ′

k =
(Ek + iHk) ch θk + sh θk

(Ek + iHk) sh θk + ch θk
,

Ek − iHk → E′
k − iH ′

k =
(Ek − iHk) ch θk + sh θk

(Ek − iHk) sh θk + ch θk
,

(17)

El + iHl → E′
l + iH ′

l =
El + iHl

(Ek + iHk) sh θk + ch θk
, l �= k,

El − iHl → E′
l − iH ′

l =
El − iHl

(Ek − iHk) sh θk + ch θk
, l �= k.

(18)

There is no summation over k in formulas (16), (17), (18).
Conformal invariance can be used to construct exact solutions of Maxwell’s equations.

In conclusion, we give the theorem determining the relationship betwen invariant and
conditionally invariant solutions of differential equations.

Let consider a nonlinear partial differential equation

Lu = 0. (19)

Suppose that (19) is Q-conditionally-invariant under the k-dimensional algebra AQk [4,
5, 6] with basis elements 〈Q1, Q2, . . . , Qk〉 , where

Qi = ξa
i ∂xa + ηi∂u,

and the ansatz corresponding to this algebra reduces equation (19) to an ordinary differen-
tial equation. A general solution of the reduced equation is called the general conditionally
invariant solution of (19) with respect to AQk. Then the following theorem has been
proved.

Theorem 4. Let (19) is invariant (in the Lie sense) with respect to the m-dimensional
Lie algebra AGm and Q-conditionally invariant under the k-dimensional Lie algebra AQk.
Suppose that a general conditionally invariant solution of (19) depends on t constants c1,
c2, . . ., ct.

If the system

ξa
i

∂u

∂xa
= ηi(x, u), i = 1, t, (20)

is invariant with respect to a p-dimensional subalgebra of AGm and p ≥ t + 1, then the
conditionally invariant solution of (19) with respect to AQk is an invariant solution of this
equation in the classical Lie sense.

Thus, we obtain the sufficient condition for the solution found with the help of condi-
tional symmetry operators to be an invariant solution in the classical sense. It is obvious
that this theorem can be generalized and applicable to construction of exact solutions
of partial differential equations by using the method of differential constraints [7], Lie-
Bäcklund symmetry method [8], and the approach suggested in [9].
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