GANIL, the Heavy Ions National Large Accelerator is dedicated to nuclear physics research. It can accelerate from hydrogen to uranium ions. Research topics studied are: atomic physics, astrophysics, fundamental physics, radiobiology, radioisotope R&D and also some industrial and spatial applications. The historical “GANIL” facility, made of cyclotrons, runs experiments since 1983. The new “SPIRAL2” facility, made of a superconducting linear accelerator, runs experiments since 2019. They are currently running 4.5 months a year each.

DESIR project (see below in orange outline) is a low-energy beam facility to study the properties and structure of exotic nuclei in unexplored regions of the nuclide chart, the fundamental interactions driving their properties and their formation in the universe.

Beams will come either from Ganil cyclotrons or Spiral2/53. The building construction phase will start in 2023. Most of the beam devices are already prepared through different collaboration.

Beams are produced by sources and then accelerated. The bunches of ions travel only once in the tubes and are sent on the target of the experimental set up. Absolute alignment precision is not so severe, but relative precision from one equipment to another is tight because the beam needs to travel smoothly. The relative precision required is usually around and under 0.1mm. It is less than for synchrotron rings but the major difficulty is that the figure can not be closed and looped. Consequently, the whole network can not be compensated. Sub networks are transferred from one zone to another. It is not ideal but constraint.

All these works continuously provide alignment activities for the two surveyors’ team: networks establishment, new equipment’s design study involvements, fiducializations, beam line equipment’s alignment and periodic inspection, and all along the year, experiment setups alignment. Laser tracker and SpatialAnalyzer software are the “Swiss knife” for most of the alignment works. But some "old" theodolites are still being used sometimes to sight some detectors or equipments that (still) can not be probed. Last year, the “old” ROMER Flex Arm was upgraded to an Absolut Arm.