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Abstract: The field of scattering amplitudes plays a central role in elementary-particle physics.

This includes various problems of broader interest for collider physics, gravitational physics, and

fundamental principles underlying quantum field theory. We describe various applications and

theoretical advances pointing towards novel descriptions of quantum field theories. Comments on

future prospects are included.
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Executive summary

Virtually everything we have learned about the behavior of elementary particles has been gleaned

from experimental and theoretical studies of scattering processes. The past few decades have taught

us that scattering amplitudes offer remarkable insights into the structure of quantum field theories,

as well as efficient routes to precision theoretical results needed to interpret modern experiments.

These insights, including those that follow from novel descriptions of scattering amplitudes suggest

that some of our most cherished notions about quantum theories using the principles of locality

need revision. These novel approaches include those using on-shell approaches, twistor-space and

geometric approaches. It has also become abundantly clear that scattering amplitudes have led to

important progress in issues of interest to the broader community.

Scattering amplitudes have a long history of applications to collider physics, string theory,

supergravity, mathematical physics, and more recently to gravitational-wave physics, summarized

in relevant Snowmass white papers [1–13]. The basic premise of the field is a virtuous cycle

between explicitly calculating quantities of experimental or theoretical interest and identifying new

structures that teach us basic facts about quantum field theories. These structures in turn lead to

improved methods to carry out out new calculations that then lead to new insights. This positive

feedback loop has continued to infuse the field with new ideas and energy informing and guiding

new advances. This has been used to push the state of the art for collider physics, supergravity and
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more recently for precision calculations of direct importance to gravitational-wave emission from

binary black holes and neutron stars.

Scattering amplitudes also serve as a wonderful theoretical playground to test new ideas and

connections. This has led to great advances in our understanding of gauge theories, connections to

positive geometry and Amplituhedron, cluster algebras and produced efficient bootstrap methods

for higher-loop amplitudes. We have seen also use of integrability techniques and an intriguing

imprint of AdS/CFT correspondence in the structure of S-matrix at strong coupling. The color-

kinematics duality and related double copy uncovered a deep connection between various quantum

field theories, and allows us to construct scattering amplitudes using universal building blocks.

In the coming years we expect that scattering amplitudes will continue to address nontriv-

ial problems in collider physics, gravitation, conformal field theories, gravitational-wave physics,

effective field theories, and as well as open up new direction such as cosmology and completely un-

expected ones. Tantalizing hints, such as from new geometric approaches to scattering, bootstraps

and unexplained ultraviolet cancellations in extended supergravity theories, suggests that we need

to rethink fundamental principles in quantum field theory.

1 Introduction

From Rutherford’s discovery of the atomic nucleus more than a century ago by scattering α particles

from gold foil, to the much more recent discovery of the Higgs boson at the Large Hadron Collider

(LHC) at CERN, the observation and interpretation of scattering events have been central to our

understanding of elementary-particle interactions. In recent years the field of scattering amplitudes

has taken on a renewed vitality, not only because of the continued importance to experimental

and theoretical studies, but also because of the realization that scattering amplitudes offer deep

insight into the very structure of quantum field theories. It has had a broad variety of state

of the art applications to collider physics, supergravity, string theory, mathematical physics and

gravitational-wave physics.

The past few decades of research have revealed remarkable new structures in scattering am-

plitudes that provide striking insights into the structure of modern quantum theories, as well as

efficient routes to carry out theoretical results needed to interpret various experiments. These

insights, including geometric structures in amplitudes, suggest that some of our most cherished

principles about constructing quantum theories using locality need revision. It has also become

abundantly clear in recent years that deep issues in quantum gravity, including its relation to gauge

theories, can be understood through studies of scattering amplitudes.

As illustrated in Fig. 1, a virtuous cycle between new explicit calculations and new identified

structures that then lead to improved methods is central to progress. Many examples abound,

starting from the n-gluon Parke-Taylor MHV amplitudes [14, 15], which was orginally studied in

the context of jet physics at particle colliders. These amplitudes form the basis for many other

advances including the construction of n-point one-loop MHV amplitudes [16], and the Cachazo–

Svrcek–Witten diagrams [17] for obtaining all tree-level helicity amplitudes starting from the MHV

ones, as motivated by twistor-space representations of amplitudes [18, 19]. The modern unitary

method [16, 20, 21] was developed following computations using earlier methods that led to the

simple form of the explictly computed one-loop five-gluon amplitude of QCD. The Britto–Cachazo–

Feng–Witten (BCFW) on-shell recursion relations [22] were in turn motivated by explicit forms of
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Figure 1. The virtuous cycle between explicit results from calculations, new theoretical structures, and new
methods.

tree amplitudes appearing as coefficients of infrared singularities in one-loop amplitides [23]. The

pace of development of new methods has continued in recent years with examples being new methods

for describing massive states using helicity methods [24], new methods for writing down multi-loop

amplitudes bypassing integration [25] and improved methods to obtain results directly relevant to

precision predictions of gravitational waves from astrophysical sources [26–28]. There are many

other examples of the synergy between explicit results and the development of new methods that

then lead to further new results, with the expectation that the cycle will continue well into the

future.

1.1 Further Reading

Snowmass is a community planning exercise, and the present document aspires to represent the

excitement and interests of the growing community of theorist who work in the area of scattering

amplitudes and topics with direct overlap. We gratefully acknowledge the contributions from the au-

thors of the white papers offering valuable insights and guidance for the future. The following people

have contributed to white papers helpful as input for this summary: Tim Adamo, Nima Arkani-

Hamed, Benjamin Basso, Daniel Baumann, Xavier Bekaert, Nathan Berkovits, Nicolas Boulanger,

Jacob L. Bourjaily, Broedel Broedel, Alessandra Buonanno, Andrea Campoleoni, John Joseph Car-

rasco, Mariana Carrillo-González, Ekta Chaubey, Marco Chiodaroli, Claudia de Rham, Lance J.

Dixon, Claude Duhr, Eric D’Hoker, Henriette Elvang, Fernando Febres Cordero, Dario Francia,

Hjalte Frellesvig, Steven B. Giddings, Walter Goldberger, Daniel Green, Michael B. Green, Maxim

Grigoriev, Martijn Hidding, Henrik Johansson, Austin Joyce, Mohammed Khalil, Martin Kruczen-

ski, Sandipan Kundu, Robin Marzucca, Andrew J. McLeod, Tobias Neumann, Donal O’Connell,

Enrico Pajer, Joao Penedones, Guilherme L. Pimentel, Radu Roiban, Oliver Schlotterer, Ergin Sez-

gin, William Shepherd, Evgeny Skvortsov, Mikhail P. Solon, Marcus Spradlin, Lorenzo Tancredi,

Massimo Taronna,Andrew J. Tolley, Jarosalv Trnka, Matthew Reece, Balt C. van Rees, Charlotte

Sleight, Cristian Vergu, Anastasia Volovich, Matthias Volk, Matt von Hippel, Andreas von Man-

teuffel, Stefan Weinzierl, Matthias Wilhelm, Mao Zeng, Chi Zhang, and Shuang-Yong Zhou.

In this summary, due to the large number of papers, we include citations only to a relatively

small number of selected papers and refer readers to the relevant white papers [1–13] for a detailed

list of references. Besides the white papers, readers may also consult various review articles [29–37]
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and books [38–40] for further details and references. We also limit our discussion here to a few

selected topics for the purpose of illustrating various principles as well as the vitality of the field.

A list of pertinent white papers that present an overview of developments, challenges and new

opportunities related to the field of scattering amplitudes are as follows:

Computational Challenges for Multi-loop Collider Phenomenology [1]. High-order pre-

cision computations needed to match the experimental precision at the LHC continue to motivate

the field of scattering amplitudes to develop ever more efficient theoretical tools.

N = 4 super-Yang Mills [2]. N = 4 super-Yang–Mills theory is an important special case, not

only because its relative simplicity compared to QCD makes it possible to obtain results at spec-

tacularly high-orders, but it links to both to Maldacena’s AdS/CFT conjecture and to supergravity

via the double copy [3].

The Double Copy and its Applications [3]. The double copy began as a means for obtaining

gravitational scattering amplitudes directly from corresponding gauge-theory ones, and has since

spread in various directions to a web of theories, impacting string theory, particle physics, general

relativity, and more recently gravitational-wave physics, astrophysics, and cosmology.

Gravitational Waves and Scattering Amplitudes [4]. Powerful tools from scattering am-

plitudes and effective field theory (EFT) have pushed state-of-the-art perturbative calculations of

direct interest to the problem of gravitational-wave signals from inspiraling binary black holes and

other astrophysical objects.

Effective Field Theories of Gravity and Compact Binary Dynamics [5]. The meth-

ods of effective field theory make it possible to diirectly apply scattering amplitude methods to

gravitational-wave physics, with a useful synergy between the two areas.

Standard Model Effective Field Theory (SMEFT) at the LHC and Beyond [6]. The

impact of new physics on scattering of Standard Model particles can be systematically described

by EFTs; the understanding of scattering amplitudes in such EFTs will continue to be an important

direction in the coming years.

String Perturbation Theory [7]. String theory scattering amplitudes are closely tied to those

of quantum field theory and are an essential part of studies of gravitational physics, dualities and

mathematical structures. Such studies will continue to lead to new insights.

Higher Spin Gravity and Higher Spin Symmetry [8]. The problem of consistent descrip-

tions of higher-spin particles and their scattering amplitudes continues to be important, and has

applications to quantum gravity, cosmology, conformal field theory, AdS/CFT, string theory, and

very recently to the problem of the coalescence of binary spinning (Kerr) black holes [4].

Functions Beyond Multiple Polylogarithms for Precision Collider Physics [9]. Our ability

to push the frontiers of scattering amplitudes, whether for collider physics or more theoretical

studies, rely crucially on the mathematics of special functions.

UV Constraints on IR Physics and the S-matrix Bootstrap [10, 11]. Recent years has

seen a renewed vigor toward fundamental principles, such as unitarity, crossing and good Regge

behavior to constrain low-energy EFTs, with the goal of identifying the regions where physically
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sensible EFTs live.

The Deepest Problem: Some Perspectives on Quantum Gavity [12]. Scattering amplitudes

will continue to be an important tool towards the goal of realizing a fully satisfactory description

of quantum gravity.

The Cosmological Bootstrap [13]. A promising and exciting new direction is to connect the

basic principles of scattering amplitudes—unitarity, locality and symmetry assumptions— to the

study of fluctuations in the early universe.

2 New Structures from Amplitudes

Scattering amplitudes display structures with deep implications that are completely hidden using

standard Feynman diagram methods. The earliest example of such structures are the maximally-

helicity-violating (MHV) tree amplitudes of quantum chromodynamics (QCD) [14, 15]. At the

lowest perturbative (tree-level) order in QCD the n-gluon color-ordered amplitude is given by

A(1−, 2−, 3+, . . . , n+) = i
〈1 2〉

〈1 2〉〈3 4〉 · · · 〈n 1〉 , (2.1)

where the plus and minus signs refer to the helicity of the gluons, and the notation 〈i j〉 denotes

spinor-inner products. (In this amplitude the color-charges have been stripped away, giving a color-

ordered amplitude from which complete amplitudes can be reconstructed [29, 30]). Perhaps the

most remarkable aspect of this formula is its simplicity which may be contrasted to the complexity

of high-multiplicity Feynman diagrams. The observed simplicity in Eq. (2.1) eventually led to the

development of new methods to exploit it, including the unitarity method [16, 20, 21] and on-shell

recursion [22].

Over the years the field has continued to identify new and novel presentations of amplitudes.

Some examples of novel structures that have driven the development of new methods include,

• Descriptions of scattering amplitudes in terms of algebraic curves in twistor space, as moti-

vated by twistor-string theory [18, 19].

• Iterative descriptions based on unitarity for loop-level scattering-amplitude integrands start-

ing from tree-level ones [16, 20, 21, 41].

• Recursive descriptions of tree-level scattering amplitudes, inspired by the twistor-space de-

scription and generalized unitarity [17, 22, 23].

• A hidden “dual conformal” symmetry in planar N = 4 super-Yang-Mills theory [42, 43] that

guides the construction of amplitudes in the theory.

• Geometric representations of amplitudes, such as the Amplituhedron [44], which seek to recast

the basic premise of quantum field theory.

• A duality between color and kinematics [45], that greatly clarifies the double-copy relations

between gravity and gauge theory, first identified in string theory [46].
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Figure 2. The modern field of scattering amplitudes began in collider physics and has since been applied
to a wide variety of topics.

• New representations of tree amplitudes by an integral over the position of n points on a sphere

restricted to satisfy a set of equations known as “scattering equations” [47].

Many of these novel descriptions and structures have led to greatly improved computational meth-

ods.

3 Highlights of Amplitudes

As illustrated in Fig. 2 the modern field of scattering amplitudes has its roots in collider physics,

and has now spread to a large variety of topics.

3.1 Collider Physics

The past five years have been a golden era in pushing forward high-precision calculations in collider

physics [1], driven by the unprecedented precision of the upcoming high-luminosity run at the

Large Hadron Collider. Even rare processes such as Higgs boson production require theoretical

control of cross sections at an unprecedented level of about one percent. For many processes,

current theoretical uncertainties still do not match the anticipated experimental uncertainties.

This continues to be a primary driver of the field of scattering amplitudes.

In the mid-1980’s as collider physics was progressing towards studies of ever increasing numbers

of objects such as jets or vector bosons, as well as more precise measurements, a need arose for

better methods which became apparent as more calculations were completed. This cycle of new

collider physics calculations driving new methods continues today, except now this is occurring at

the multi-loop level.

To fully exploit the new-physics discovery potential of on-going particle-collider experiments, it

is essential to continue to reduce theory uncertainties in order to match experimental improvements.

The current lack of new physics discoveries at the LHC beyond the landmark discovery of the Higgs

boson, emphasizes the importance of the quest for ever more precise measurements that can tease
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out long-awaited new physics. To reach the required level of precision requires control over all

aspects of the collision including parton distributions functions, the final state parton shower, soft

physics associated with hadronization, as well as the partonic high-energy interactions.

The field of scattering amplitudes is especially attuned to dealing with the problem of pre-

cision interactions at colliders. Scattering amplitudes play a central role in virtually all collider

phenomenology predictions and contain the essential dynamical information associated with the

underlying physics. In order to achieve percent-level control generally one needs at least two-loop

calculations of scattering amplitudes. Despite numerous advances in recent years, such calculations

remain challenging, in particular those that depend on multiple scales associated with either masses

or kinematic invariants. In the past five years many such new calculations have been performed

thanks in part to advances in our understanding of the analytic structure of scattering amplitudes

in quantum field theory [9]. These calculations include, for example, two-loop amplitudes for 2→ 2

and 2→ 3 processes with multiple scales, three- and four-loop form factors. Important progress has

been accomplished also for the calculation of related quantities, for example the complete five-loop

beta function and first results for the four-loop splitting functions. (See the white paper [1] for

references.) A central issue is to develop ever improved methods for reducing multiloop Feynman

integrals to a small number of master integrals that can be evaluated using advanced methods.

This progress is not only important in collider physics but the same advances carry over to other

areas such as to conformal field theories, such as N = 4 super-Yang–Mills theory [2], and problems

in gravitational-wave physics [4] which involve similar integrals.

Besides precision Standard Model calculations another crucial direction in collider physics is

quantifying new physics models. In recent years effective field theories have risen in prominence

as a means for systematically catagorizing physics beyond the Standard Model [6, 48]. Scattering

ampltitudes can aid this in two direction, firstly being useful for organizing the independent interac-

tions and also by providing tools for computing useful quantities such as anomalous dimensions and

cross-sections. It has also proven useful for explaining new structures, such as nontrivial zeroes [49]

in anomalous dimension matrices of the Standard Model Effective Field Theory [50].

3.2 Scattering Amplitudes and Gravitational Waves

Arguably the most exciting recent application of scattering amplitudes methods is to calculate

new quantities of interest to the gravitational-wave community [4]. The experimental detection of

gravitational waves has fundamentally transformed key areas in astronomy, cosmology, and particle

physics, and will continue to do so for many decades to come given the anticipated advances in

current and future detectors. This era of ever-increasing sensitivities holds the promise of dramatic

new and unexpected discoveries, but relies crucially on complementary advances in our theoretical

modeling of gravitational-wave sources. In recent years, a new program for understanding the

nature of gravitational-wave sources based on tools from scattering amplitudes and effective field

theory (EFT) has emerged.

At first sight the subject of scattering amplitudes in quantum field theory might seem to be

rather distant from the problem of gravitational waves. Firstly the sources are purely classical, then

all the measured events are for bound states not unbounded scattering processes, and finally the

basic object are kilometer scale not point-like elementary particles. On the other hand, compared

to the even larger scale of the orbit and the wavelength of gravitational wave the black holes are

– 7 –



2

1

2 3

41

2 3

41

2 3

4

5 6

78

FIG. 1. Unitarity cuts needed for the classical scattering am-
plitude. The shaded ovals represent tree amplitudes while the
exposed lines depict on-shell states. The wiggly and straight
lines denote gravitons and massive scalars, respectively.

explicitly the completeness of our second method, where
we work in strictly D = 4 so as to benefit from very
simple expressions for gauge-theory amplitudes in terms
of spinor helicity [19] variables. We then build the two
corresponding gravitational amplitudes via the KLT re-
lations [16]. At two loops, both approaches are efficient,
but at higher loops, helicity amplitudes offer a much more
compact starting point.

For concreteness, consider the first generalized unitar-
ity cut in Fig. 1, which we refer to as CH-cut and is com-
prised of products of four three-point and one four-point
amplitudes. Since four-point tree amplitudes are already
very simple there is little computational advantage to
imposing the on-shell conditions on matter lines. Thus,
we replace the pairs of three-point amplitudes at the top
and bottom of the cut with four-point amplitudes and
then impose the matter cut conditions at the end. The
resulting iterated two-particle cut is then

C2,2 =
∑

states

M4(2
s, −8, 7, 3s)M4(−5, 6, −7, 8)

× M4(1
s, 5, −6, 4s), (1)

where M4 denotes the tree-level four-point amplitude for
gravity minimally coupled to two massive scalars denoted
here by legs 1s, 2s, 3s, 4s. In this cut, legs 1s, 4s have
mass m1 while legs 2s, 3s have mass m2. All momenta in
each tree amplitude are taken to be outgoing. The sum
runs over graviton states for legs 5, 6, 7, 8, where the
minus signs on the labels indicate reversed momenta.

The four-point gravity tree amplitudes needed in the
cuts are obtained from gauge-theory ones via the field-
theory limit of KLT relations [16],

M4(1, 2, 3, 4) = −is12A4(1, 2, 3, 4)A4(1, 2, 4, 3), (2)

where the A4 are tree-level color-ordered gauge-theory
four-point amplitudes and sij = (pi + pj)

2, working
in mostly minus metric signature throughout. Strictly
speaking, the KLT relations apply only to massless
states. However, they can be applied here by interpreting
the scalar masses, in the sense of dimensional reduction,
as extra-dimensional momentum components. While we
have not included coupling constants, these are easily
restored at the end of the calculation by including an
overall factor of (8πG)3, where G is Newton’s constant.

In terms of the spinor-helicity conventions of Ref. [20],
the independent tree-level gauge-theory amplitudes

needed in Eq. (1) are

A4(1
s, 2+, 3+, 4s) = i

m2
1 [2 3]

〈2 3〉 t12
,

A4(1
s, 2+, 3−, 4s) = i

〈3| 1 |2]
2

t23 t12
,

A4(1
−, 2−, 3+, 4+) = i

〈1 2〉4
〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉 ,

A4(1
−, 2+, 3−, 4+) = i

〈1 3〉4
〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉 , (3)

where tij = 2pi · pj and the ± denote gluon helicities.
The dilaton and antisymmetric tensor states are re-

moved from unitarity cuts by correlating the gluon helic-
ities on both sides of the double copy. The unwanted
states correspond to one gluon in the double copy of
positive helicity and the other of negative helicity. An
internal graviton state is obtained by taking the corre-
sponding gluons in the KLT formula in Eq. (2) to be of
the same helicity.

Using spinor evaluation techniques, it is straightfor-
ward to obtain a compact expression for the iterated two-
particle cut in Eq. (1) (e.g. see Ref. [25]). Imposing cuts
on the matter lines, as indicated in the first unitarity cut
of Fig. 1, further simplifies it and gives CH-cut. We find

CH-cut = 2i

[
1

(p5 − p8)2
+

1

(p5 + p7)2

]

×
[
s2
23m

4
1m

4
2 +

1

s6
23

∑

i=1,2

(
E4

i + O4
i + 6O2

i E2
i

)]
, (4)

where we have defined

E2
1 =

1

4
s2
23(t18t25 − t12t58)

2, O2
1 = E2

1 − m2
1m

2
2s

2
23t

2
58,

E2
2 =

1

4
s2
23(t17t25 − t12t57 − s23(t17 + t57))

2,

O2
2 = E2

2 − m2
1m

2
2s

2
23t

2
57. (5)

The simplicity of this expression is a reflection of the
double-copy structure: the same building blocks appear
in the simpler corresponding gauge-theory cut.

The spurious double-pole in s23 can be explicitly can-
celled by adding terms proportional to the Gram determi-
nant formed from the five independent momenta at two
loops which vanishes in D = 4. In fact, the expression de-
rived from the D-dimensional approach is automatically
free of such spurious singularities. While these Gram
determinants contribute quantum mechanically, we have
checked explicitly that they vanish in the classical limit.
This is not accidental—such terms are of the wrong form
to generate the required log(s23) needed to contribute to
the classical 3PM amplitude (see Ref. [24] for details).

The remaining two independent generalized unitarity
cuts in Fig. 2 are more complicated because they re-
quire five-point tree amplitudes with two massive scalar
legs. The four-dimensional input gauge-theory ampli-
tudes are simple to compute using modern methods

M
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Figure 3. Amplitudes based methods start from the double copy (a) which constructs gravity scattering
amplitudes (b) from gauge-theory ones. Generalized unitarity (c) then builds higher-order loop scattering
amplitudes (d) from which the interactions (e) between black holes or neutron stars can be extracted. From
Ref. [4].

effectively points making it possible to use effective field theory methods [5, 51]. Given the success of

performing high-order calculations in quantum gravity, even through five loops, one might suspect

that if powerful amplitude methods could be applied to the gravitational-wave problem one would

be able to make progress (see e.g. Refs. [4, 26, 28, 52, 53]).

The scattering amplitudes community has taken on the challenge, pushing forward the state of

the art in a variety of directions (summarized in Ref. [4]). A specific request from the gravitational-

wave community [54] to obtain the conservative two-body Hamiltonian the third order in Newton’s

constant was soon answered [28, 55] and more recently at the next order as well. New ideas have

been flourishing that link scattering amplitudes to problems of direct importance (see, for example,

Refs. [56, 57]) to theorists working on precision predictions for LIGO/Virgo/KAGRA and future

detectors. This includes the development of new methods (see e.g. Refs. [26, 27, 55]) for linking

scattering amplitudes to physical observables in the bound-state gravitational-wave problem. As

illustrated in Fig. 3, amplitudes-based methods start with tree-level scattering which are amenable

to double-copy methods, which then feed into unitarity methods, leading to a scattering amplitude

from which the classical interactions between two black holes or other astrophysical objects can

be extracted. New progress has also been accomplished on radiation effects, tidal effect and spin

effects. Higher-spin theories are well studied in particle physics [8], further aiding recent progress.

An interesting open problem is to apply scattering-amplitude methods to dissipative effects from

the absorption of energy by black holes or neutron stars. Based on the recent advances it is clear

that scattering amplitudes will continue to play a prominent role in pushing forward state-of-the-art

perturbative gravitational-wave computations.

3.3 Planar N = 4 super-Yang–Mills Amplitudes: from Weak to Strong Coupling

Maximally supersymmetric Yang–Mills (SYM) theory in the planar limit is from many perspectives

the simplest quantum field theory, making it an ideal toy model for testing amplitude methods that

can then be applied to other theories including QCD. One such success is the unitarity method

which was first developed for maximally supersymmetric Yang–Mills theory [16, 21] and then later

extended to QCD (see e.g. [58]). The perturbative expansion of the maximally supersymmetric

theory has a number of simplifying features: it is convergent, its scattering amplitudes are ultra-

violet finite and it exhibits a hidden infinite-dimensional Yangian symmetry [59]. The structure of

the scattering amplitudes at weak coupling is surprisingly simple and follows various organizational

principles such as maximal transcendentality, connections to cluster algebras, and allow for pow-

erful bootstrap methods [2, 60]. These bootstrap methods offer hope that one day all multi-loop

scattering amplitudes relevant for collider physics can be directly obtained bypassing the usual step
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for first finding an integrand that must then be laboriously integrated. The leading IR divergence

of the maximally supersymmetric Yang–Mills S-matrix, related to cusp anomalous dimension, is

known to all loop orders in this case via integrability methods [61]. The integrability also plays a

crucial role in the flux-tube methods [62]: the dual (to scattering amplitudes) null polygon Wilson

loop can be calculated using the operator product expansion (OPE) and a new decomposition in

terms of pentagon transitions related to the dynamics of flux tubes. Finally, the strong-coupling

limit is controlled by Maldacena’s celebrated AdS/CFT correspondence [63, 64] and classical string

configurations in AdS5 [65]. In special cases, it is even possible to resum the entire perturbative

series, linking weak and strong coupling [66, 67].

3.4 Gravity as a Double Copy of Gauge Theory

Perhaps one of the more surprising outcomes from studies of scattering in gravitational theories is

the double copy [3, 36, 45–47]. The past few years have seen a burst of interest in this topic. At its

core, the double provides a means to calculate amplitudes in one theory using, as input, amplitudes

from two technically simpler theories. The most prominent case gives gravity scattering amplitudes

in terms of two corresponding gauge-theory ones. Such relations were originally discovered in the

context of string theory [7, 46] and have since been greatly clarified via a “duality between color

and kinematics” [45], which allows gravity amplitudes to be generated by gauge-theory ones via

a simple replacement of color factors by kinematic factors. Here color refers to the usual color

charges of nonabelian gauge theories that describe either strong or electroweak forces. This duality

is effectively a map between color and kinematic factors that extends to a broad variety of familiar

field and string theories. It has its origins in perturbative scattering amplitudes but is currently

being systematically extended to generic classical solutions. The simplest such example relates the

Coulomb solution in electromagnetism to the Schwarzschild black hole in Einstein gravity [68], with

many more sophisticated constructions available such as the Weyl double copy.

As the simplest example of the double copy, 2 → 2 graviton scattering amplitude at lowest

order in Einstein gravity are simply related Yang–Mills (YM) theory,

M(1, 2, 3, 4) =
(κ

2

)2 st

u
A(1, 2, 3, 4)×A(1, 2, 3, 4) , (3.1)

where A(1, 2, 3, 4) is a color-ordered gauge-theory four-gluon partial scattering amplitude (related

to ordinary amplitudes by appropriately stripping off group-theory color factors), M(1, 2, 3, 4) is

a four-graviton tree amplitude, κ is the gravitational coupling to related to Newton’s constant via

κ2 = 32π2GN , and s, t, u are the Mandelstam kinematic invariants. We can summarize the relation

heuristically as

gravity ∼ (gauge theory)× (gauge theory) . (3.2)

In a precise sense the double copy gives us a “multiplication table” for converting pairs of gauge

theories to gravitational theories.

In the coming years we can expect continued development of the double copy on its practical and

theoretical sides. In supergravity besides the quest to understand whether all supergravity theories

can be expressed as double copies of corresponding gauge theories, it will be important to carry

out new higher-loop computations to finally understand whether all point-like supergravity theories

must, as lore suggests, necessarily be ultraviolet divergent. The double copy has also been used in
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state-of-the-art calculations of interest to the gravitational-wave community; it will be important

see what further insights emerge from these studies. General questions about the set of all allowed

higher-derivative interactions that permit a double copy also remain. An important outstanding

puzzle is to fully understand the kinematic algebra behind the duality between color and kinematics.

While there are many examples where double copies for classical solutions have been identified it

would be important to find a coherent principle for identifying double-copy mappings for generic

classical solutions.

3.5 String Scattering Amplitudes and World Sheet Models

The perturbative S-matrix is a central object not only in quantum field theory but also in string

theory [7]. Superstring perturbation theory is a rich subject which reveals deep connections be-

tween QFT amplitudes, D-branes, gauge/gravity duality, gravitational waves, black holes, algebraic

geometry, and modular forms. The central objects are superstring amplitudes, which are primar-

ily considered for massless gravitons, gauge bosons and their respective supersymmetry partners.

These amplitudes are integrals over the moduli spaces of Riemann surfaces, and exhibit some re-

markable simplicity and unexpected properties, tightly connected to gauge theory in the infinite

string-tension limit. In recent years, the calculation front of string perturbation theory was pushed

to three loops with many non-trivial new results. New insights were obtained from string dual-

ities and AdS/CFT correspondence, and string amplitude were shown to have some fascinating

connections to transcendentality principle and multiple zeta values. Future targets include lift-

ing technical obstacles to perform higher-loop calculations of string amplitudes, explore the rich

mathematical structure of Feynman integrals associated with K3 or Calabi-Yau geometries in the

context of higher-genus amplitudes.

There are also two related exciting directions that have benefited from the advances in the

perturbative string theory [7]: ambitwistor string models [69] and Cachazo–He–Yuan (CHY) for-

malism [47]. The latter one expresses field-theory amplitudes as certain integrals over the world-

sheet localized at the points which satisfy scattering equations. The integrals are built from simple

building blocks and manifest connections between various field theories, including color-kinematics

duality. The ambitwistor string express the same field-theory amplitudes as the worldsheet corre-

lators of certain ambitwistor strings defined by a simple worldsheet action. The correlators reduce

to the formulas in the CHY formalism, making a fascinating link between strings, worldsheets

and field-theory amplitudes. The existence of such novel descriptions of field-theory scattering

amplitudes points to new underlying principles in quantum field theories.

3.6 Web of Theories

Many scattering-amplitudes developments suggest that there are nontrivial fundamental links be-

tween amplitudes in different quantum field theories [3, 36]. Their tree-level amplitudes are uniquely

fixed by simple physical conditions: locality and unitarity (pole structure and factorizations) to-

gether with additional constraints [16, 22]: gauge invariance in the context of gauge theory and

gravity [70]; vanishing soft limits (of various degrees) for non-linear sigma model (NLSM), DBI

action or special Galileons, Born-Infeld action, and combinations of those for Volkov-Akulov or

Einstein–Yang–Mills actions, and others [71–74]. The uniqueness of these tree-level amplitudes, for

example, allow for their reconstruction using recursion relations from elementary amplitudes [22].
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Figure 4. The web of theories exhibited by the double copy, as presented in Ref. [36]. The nodes represent
double-copy-constructible theories, including gravitational theories (rectangular nodes), string theories (oval
nodes) and non-gravitational theories (octagonal nodes). Undirected links connect theories with a common
gauge-theory factor. Directed links are drawn between theories constructed by modifying both gauge-theory
factors.

Infrared physics and soft limits are also under study from the novel perspective of transforming am-

plitudes to celestial sphere [75, 76]. In this picture the soft theorems are understood as symmetries

of the celestial correlators.

The same theories also appear in the context of CHY world-sheet discription of scattering

amplitudes [3, 7, 47, 77], and are linked by double-copy relations: the CHY integrand of the special-

Galileon theory contains two copies of the NLSM integrands, and the same combination appears

in the double-copy construction. In fact, amplitudes in these special theories can be all built

from elementary building blocks making the connections between theories and special kinematical

behaviors manifest.

A specific example illustrating these ideas are relations between theories that can be expressed

in a double-copy format as a product of two theories along the lines of Eq. (3.2). This type of

multiplication table extends to a remarkably broad variety of theories beyond standard gravitational

theories [3], illustrated in Fig. 4, which show links between theories that share a common theory

in the product factor. A key goal is to extend these types of relations to a much larger class of

theories and to find new building blocks in a unified description.

3.7 Constraints on Effective Field Theories

Physically sensible quantum field theories are constrained by basic assumptions of unitarity, causal-

ity, crossing, and good high-energy behavior. The conformal bootstrap program [78] has emphasized

the power of such ideas. These constraints are natural to apply to scattering amplitudes in the
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context of effective field theories that describe physics at scales lower than that of the underlying

fundamental theories [79]. Such effective field theories are a basic tool for describing physics beyond

the Standard Model [6], including also gravitational theories.

How strongly can we constrain generic EFTs using fundamental principles that all sensible

theories must satisfy? Recent progress (see e.g. Refs. [80–82]) systematically constrains the Wilson

coefficients of operators or equivalently the EFT coefficients appearing in amplitudes to bounded

regions. EFTs describing weakly coupled gravity provide an an important test case, where we can

use string theory, as well as various intermediate energy models to compare the known constraints

to the regions where sensible models actually land [83]. Remarkably, sensible effective field theories

seems to lie on tiny theory islands far smaller than anticipated from known constraints. This

suggests that new principles constraining physically sensible effective field theories may very well

exist. An example of such a principle is the concept of “low spin dominance”. Given the recent

advances, in the coming years we can expect much more progress on understanding the islands

where physically sensible EFTs live and identifying new constraints that all such theories satisfy.

3.8 Positive Geometry and the Amplituhedron

A completely new way to define and calculate perturbative scattering amplitudes has been devel-

oped for certain theories as volumes of positive geometries. The positive geometry encodes the

combinatorics of singularities in the kinematical space and the geometry volume form reproduces

the amplitudes. The prime example is the Amplituhedron picture [44] for planar N = 4 SYM

theory which defines all tree-level amplitudes and loop integrands in this theory. Recently the

Associahedron geometry has been linked to amplitudes in scalar φ3 theory [84]. These are new

definitions of the perturbative S-matrix reformulating the physics problem of summing an infinite

number of Feynman diagrams as the mathematical problem of triangulating geometric spaces. The

central object is the positive geometry [85], a region in the kinematical space defined by certain

inequalities, and the canonical differential form on this geometry reproduces the scattering ampli-

tude. This picture has been used to provide some all-loop order calculations, not accessible using

standard methods [86, 87]. There is also a fascinating connection pure mathematics: Amplituhe-

dron provides a substantial generalization of the positive Grassmannian and is of great interests to

combinatorists; the positive geometries are closely linked to cluster algebras and tropical geome-

tries, which are both very active areas of research (see e.g. Refs. [88, 89]). The future goals include

uncovering more mathematical connections and using them in the triangulations and explicit eval-

uations of differential forms, the discovery of positive geometries for other quantum field theories,

and formulating a unified geometric picture for the perturbative S-matrix.

This approach stands out in the way it seeks to reformulate the usual principles of quantum

field theories in terms of a completely different set of geometric principles from which the usual

ones of unitarity, causality and locality follow. Further progress offers the promise of radical

reinterpretations of quantum field theory.

3.9 S-Matrix Function Space

The perturbative scattering amplitudes are kinematical functions of many variables with special

properties dictated by underlying physical constraints. The poles and branch cuts encode the

basic principles of locality and unitarity, while scaling and various limits encode universal soft or
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collinear properties of the S-matrix. While tree-level amplitudes are simple rational functions, the

loop amplitudes are much more complicated and the universe of all functions that can appear in

the loop amplitudes is not well understood even at next-to-next to leading order in the coupling [9],

which is necessary to match experimental precision for many processes [1]. This important question

has deep mathematical significance—mathematical properties of these functions can encode hidden

physics—as well as practical use for finding a relatively small basis of objects we need to consider

in any particular calculation. Over the last decade, it has become clear that a broad range of

scattering amplitudes can be expressed in terms of functions called multiple polylogarithms. This

realization had led to major computational advances for QCD amplitudes, as well as remarkably

high-loop calculations in supersymmetric theories.

In planar N = 4 SYM theory [2] knowledge of the function space, symbols and the connec-

tion to cluster algebras [90–92] was used to obtain results for six-point amplitudes up to seven

loops (see e.g. Refs. [60, 93, 94]) for various helicity structures (more precisely IR finite objects

called “remainder” and “ratio” functions), and uncover a remarkable new duality which relates the

amplitudes to form factors [95].

Unfortunately, scattering amplitudes need further special functions beyond the polylogarithms,

especially in processes with multiple kinematical variables. This includes multiple polylogarithms,

extensions to elliptic polylogarithms and beyond. Similar functions beyond ordinary polylogarithms

also enter into high-order calculations of gravitational-wave physics [4]. A summary of the state of

the art, reviewing the “zoo” of non-polylogarithmic integrals and functions and providing future

directions is given in Ref. [9].

3.10 Cosmological Bootstrap

An exciting new direction with important synergies with scattering amplitudes is the cosmological

bootstrap [13]. The physics of primordial density fluctuations is a unique probe of an early universe.

During inflation quantum fluctuations were stretched to very large distances, and these correlations

provide today a rare insight of the early stages of our universe. All these are spatial correlations,

and the time only appears in the scale dependence as the modes freeze at different times depending

on the wavelength. The standard approach to calculate inflationary correlators is to evolve them

from the origin of quantum fluctuations until reheating which requires the evaluations of compli-

cated time integrals. The cosmological bootstrap is a new strategy to construct the cosmological

correlation functions using basic physical principles like locality, unitarity and scale invariance as an

approximate symmetry. The grand goal is to classify all possible patterns of primordial fluctuations

based on these general principles, as well as uncover unexpected connections between fundamental

principles and correlators, theory and data. Recent developments in various directions include the

study of constraints imposed by unitarity on cosmological correlations, both in the perturbative and

non-perturbative setup. These ideas naturally align with scattering amplitudes so we can expect

new fruitful applications of scattering amplitude methods.

4 Outlook and Conclusions

In summary the modern amplitudes program continues to be a vibrant area significantly impacting

various directions including collider physics, gravitational-wave physics, effective field theory, su-

persymmetric gauge and gravity theories, string theory and mathematical physics. At its core the
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field of scattering amplitudes is about identifying new structure that then help us calculate difficult

to obtain quantities of theoretical or experimental interest. Some of the identified structures, such

as the geometric interpretation of scattering amplitudes or the double copy, suggest that our basic

description of quantum field theory need revision. In the coming years we can expect continuing

advances on both the applications and theoretical sides.
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