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I. EXECUTIVE SUMMARY

Ideas and methods of quantum information science
have found wide application to theoretical high energy
physics in recent years. This report divides those aspects
into three main themes; quantum simulation, quantum
sensors and the application of ideas in quantum informa-
tion to formal aspects of quantum field theories (QFTs)
and gravity.
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Understanding the theoretical aspects of quantum in-
formation in quantum gravity and quantum field the-
ories has catalyzed vibrant cross-disciplinary collabora-
tions (e.g. between the lattice gauge theory and quan-
tum gravity communities) and revealed new phenomena
and organizational principles. There are many types of
avenues for exploration, ranging from the concrete (e.g.
what happens dynamically in a particular system), to or-
ganizational (e.g. what attribute of a given system is rel-
evant or useful in characterizing it), to exploratory (e.g.
how does these various attributes’ behavior depend on
the system), to mathematical (e.g. how does one actu-
ally define a certain quantity or meaningfully generalize
it from its original formulation). Although the central
focus is different in each of these avenues, they are in-
terlinked, and progress in one informs the others. This
has opened up a vast and wonderful new theoretical play-
ground.

Complementary to these formal developments there
have been extensive efforts to develop the framework
and algorithms needed to simulate QFTs on quantum
computers. The difficulties in simulating quantum the-
ories classically motivate simulation on a quantum com-
puter [1–3]. Quantum simulation has the potential to
explore non-perturbative physics in theories and regimes
that have previously been inaccessible to classical com-
puting. Examples include probing the real time dynam-
ics of hadronic collisions and associated non-perturbative
phenomena such as fragmentation and hadronization in
particle colliders, the determination of the neutron star
equation of state from finite density QCD, measuring
the viscosity of the QCD quark-gluon plasma, or sim-
ulating chiral fermions in beyond-the-Standard-Model
(BSM) theories.

Current efforts are centered about understanding the
best truncation schemes for gauge theories, and the de-
velopment of efficient classical Hamiltonian simulation
methods such as tensor networks in higher dimensions
including fermions and their role in developing efficient
quantum simulation algorithms. Theoretical work in
HEP is needed to identify the simplest paths that will
bring us closer to simulating the QFTs of interest to par-
ticle physicists. These efforts should, in addition, pro-
vide interesting benchmarks for the quantum computing
community as devices are being developed. Indeed, HEP
theorists have developed active collaborations with quan-
tum hardware developers both in universities and private
companies.

The third strand of this report focuses on the develop-
ment of quantum sensors. Here there is an opportunity,
even in the near term, to leverage the technology that
is developed for QIS to directly search for new physics,
including searching for new particles, dark matter, and
gravitational waves. Theorists have been instrumental in
making interesting connections between quantum sensing
technologies and fundamental physics.

In addition to research at the HEP-QIS interface, there
is a need to develop and train a workforce in that US

which is diverse and well-versed in the tools of quantum
information science. To this end, HEP theorists are in-
volved in workforce development efforts [4] which we will
comment upon.

This synergy between QIS and HEP benefits both
fields. HEP theorists will be needed to build new bridges
and establish existing connections between fundamental
physics and quantum science. The research directions
presented in this summary are relatively new, but are
ambitious. New surprises are surely ahead.

II. QUANTUM SIMULATION FOR HIGH
ENERGY PHYSICS

There are a wide variety of problems in high energy
physics that cannot be addressed using classical compu-
tation. These include real time scattering processes, fi-
nite density strongly interacting matter and theories of
BSM physics that incorporate supersymmetry or chiral
fermions. Monte Carlo simulation of the path integral
representing these quantum systems fails as a compu-
tational method because of the infamous sign problem.
Hamiltonian approaches using classical computation suf-
fer from the fact that the relevant Hilbert spaces grow ex-
ponentially with the number of degrees of freedom which
rapidly renders them beyond the reach of classical com-
puters. In contrast, a quantum computer is capable, in
principle, of representing dynamics on such spaces with a
number of quantum bits that increases only linearly with
the number of degrees of freedom. Furthermore quan-
tum operations ideally retain quantum correlations and
effectively perform massively parallel computations on
the encoded wavefunction.

However the practical application of quantum comput-
ers to such problems faces several immediate problems.
First, the quantum field theories (QFTs) that describe
such systems possess an infinite numbers of degrees of
freedom. Thus before one can contemplate simulating
such a system with a quantum computer one must first
truncate the theory. In classical Monte Carlo simula-
tion one introduces a lattice in spacetime as part of this
process. For quantum computation one also needs to
effect a truncation in the field space. This latter trun-
cation or digitization should preserve as much symmetry
as possible. This is particularly true in the case of gauge
theories where violations of gauge symmetry have the
potential to ruin unitarity and consistency of the theory.
Furthermore, the truncated theory should retain a simple
local encoding in terms of the elementary quantum bits
or qubits that form the building blocks of the quantum
computer.

Recent work has also been devoted to the problem
of simulating scattering from first principles. It is be-
lieved that all relevant scattering and hadronization pro-
cesses can be simulated on a quantum computer using
resources that scale only polynomially with the system
size [5]. Quantum simulations potentially offer an ab
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initio method for understanding these non-perturbative
phenomena that are crucial for interpreting the results of
collider experiments [6].

Parton distribution functions (PDFs) involve a matrix
element of two quark fields separated by a light-like direc-
tion, which can not be calculated using traditional lattice
field theory techniques directly due to a sign problem,
although several indirect methods have been successfully
developed in recent years [7]. Quantum computers give
rise to the possibility to compute the matrix element rel-
evant for the PDFs directly and from first principles.
Several proposals have been put forward in recent years
to demonstrate how PDFs can be accessed on a quan-
tum computer [8–12]. At this stage, it is not clear what
the realistic computational resource requirements are for
computing PDFs and hadronic tensor to given accuracy,
as the complete algorithms, including that needed for
preparation of hadronic states in QCD on a quantum
computer, are either non-existing or premature. PDFs
can also be computed using effective field theories de-
scribing the collinear and soft physics in jet-like collider
events [6]. Another example of important long-distance
effects in collider events is collinear radiation, which tra-
ditionally is described by parton-shower algorithms see
e.g., Ref. [13]. The very nature of a probabilistic Markov-
Chain algorithm makes including quantum-interference
effects challenging, since collider events typically contain
a very large number of final-state particles. This prob-
lem, therefore, is also a suitable candidate for quantum
simulation. A quantum algorithm has been developed
in Ref. [14] that reproduces the regular parton shower,
while by computing all possible amplitudes at the same
time, it also includes quantum-interference effects, see
also Refs. [15, 16] for more progress.

There are two related approaches to quantum simula-
tion that have been explored which can be loosely termed
analog and digital simulation. In both cases one maps the
physical system of interest to hardware whose quantum
dynamics is capable of solving or simulating the origi-
nal theory. In the case of analog simulation the hard-
ware is tailored to the problem at hand and requires sub-
stantial modification to solve a different problem. The
digital case more closely corresponds to a classical com-
puter with elementary unitary quantum gates acting on
quantum states represented by qubits, or qudits (in cases
where the hardware allows for more than a binary repre-
sentation). It is possible to show, in analogy with classi-
cal logic, that any quantum computation can be carried
out with just a handful of one and two qubit or qudit
gates.

A quantum circuit then plays the role of the program
that describes the precise sequence of gates and the con-
figuration of qubits that are needed to simulate a given
Hamiltonian. Like in classical computing, it should be
possible to change the circuit relatively easily in a high
level programming language to solve new problems in a
manner which is agnostic about the underlying hardware.
There are many types of hardware platform that are cur-

rently being investigated for quantum simulation includ-
ing ultra cold atoms in optical lattices [17–22], trapped
ions [23–25] including a proposal to construct such a
trapped ion machine using a storage ring [26], supercon-
ducting circuits on a chip [27–30], superconducting bulk
cavities [31, 32] and configurable Rydberg atom arrays
[33–38]. Gate fidelities, coherence times, the number of
available qubits, and the feasibility for qudit encodings,
all vary significantly across these difference platforms and
at this time it is not clear which type of platform(s) will
ultimately prove most effective for the quantum simula-
tion of high energy physics theories.

Figure 1 which is taken from a recent Snowmass
white paper [39] gives an overview of the physics drives,
methodologies and strategies that are being employed in
the application of quantum simulation to high energy
physics.

A variety of approaches are currently being explored
for Hamiltonian simulation such as the original Kogut-
Susskind formulation of Hamiltonian lattice gauge theory
[40], efforts to find optimal bases for truncation such as
those derived from tensor networks [41–43], pre-potential
and loop-string-hadron formulations [29, 44], quantum
link models [45, 46], and qubit regularizations [47]. A
great deal of work is focused on strategies to retain gauge
invariance even in the presence of basis truncation, cor-
rect for finite time step errors and reduce the effects of
noise. A detailed review of these topics can be found in
a recent white paper [4].

Once one has fixed the truncation scheme it is straight-
forward to implement a discrete time evolution op-
erator via Suzuki-Trotter decomposition which factor-
izes the unitary rotations associated with different non-
commuting parts of the Hamiltonian. The optimal de-
composition of terms to simulatable terms, the ordering
of such terms, and the amount of errors one expects from
digitization schemes constitute an area of research for
both general Hamiltonians and the Hamiltonian of gauge
theories of Standard Model, see e.g., Refs. [25, 48–51].
The basic elements of a digital circuit are single-qubit
rotations (Pauli operators) and CNOT gates acting on a
pair of qubits which flip the target qubit when the control
qubit is in the |1〉 state.

The general aim of the field in recent years has been
to explore the different approaches to quantum simula-
tion for a variety of simple QFTs with the goal of figuring
out the best truncation schemes and evolution algorithms
that can ultimately be scaled to gauge theories including
fermions in (3+1) dimensions. It is particularly impor-
tant in this regard to understand the limitations of what
is possible on NISQ era machines which possess limited
numbers of qubits and no error correction.

Paralleling these developments in quantum simulation
of QFTs there is strong evidence (see section III) of a
holographic connection between strongly entangled quan-
tum systems and gravity. This is visible in the original
AdS/CFT correspondence [52], the Ryu-Takayanagi pro-
posal for entanglement entropy in holographic systems
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FIG. 1: Physics drives, methodologies and strategies for quantum simulation in HEP, from [39].

[53] and applying ideas in quantum entanglement to black
holes in AdS spacetime [54]. These topics and other more
recent work are summarized in a recent Snowmass white
paper [55]. Efforts are also underway to explore these
ideas using classical and ultimately quantum simulation
of spin and gauge models on discrete tessellations of hy-
perbolic space (Wick rotated AdS space) [56, 57]. Such
models are also closely connected to MERA tensor net-
work models that have been proposed for building highly
entangled ground states of many body systems [58] and
play an important role in certain proposals for quantum
error correction [59].

A. Towards simulation of QCD and
other gauge theories

Gauge theories are one of the pillars of the standard
model. Strongly coupled gauge theories are a target
for exploration with high performance computing, using
both classical methods - lattice QCD (LQCD) and, in
the future, with quantum devices. However to make use
of future quantum computers requires the development
of new ways to represent QFTs that can be mapped to
quantum hardware and new algorithms to carry out sim-
ulations that go well beyond what has been done with
classical computers.

A natural starting point for gauge theory is the Kogut-

Susskind formulation of Hamiltonian lattice gauge theory
[40] (though there are alternatives as are described be-
low). Even with a Hamiltonian one wishes to simulate,
there are interesting conceptual challenges need to be re-
solved to make such simulations feasible in the future, as
well as technical problems at the interface of theory and
design. HEP theorists are clearly critical to address the
challenges in this new field. In some cases the decades of
accumulated knowledge in LQCD can be leveraged, yet
some problems are inherently related to quantum simu-
lation and require completely new ideas.

Discretization of space: To turn the infinite-
dimensional Hilbert space of quantum field theories into
finite-dimensional system that quantum computers can
simulate, one necessary step is to discretize continuous
spatial dimensions into a finite-volume lattice [40, 60, 61],
inevitably leading to discretization errors and finite-
volume effects. Such discretization reduces spacetime
symmetries and introduce new operators that modifies
the nonperturbative renormalization. Investigations of
approaching the infinite-volume and continuum limits of
certain QFTs have recently emerged [62, 63] and deserve
more studies. Most gauge theory studies consider the
Kogut-Susskind Hamiltonian [40], Hamiltonians with re-
duced discretization errors [64–66] will improve the con-
vergence towards the infinite-volume and continuum the-
ories, which allows quantum simulations at larger lattice
spacings and smaller lattices for the same error. Re-
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cently, quantum simulations of these improved Hamil-
tonians has been initiated [67] where the corresponding
time-evolution operators are derived together with the
construction of the quantum circuits for a general gauge
theory. Studies on the finite-volume technology in lattice
calculations have been shown powerful to access physi-
cal observables [68–71], which will potentially enable the
mapping between the finite and infinite-volume physics
in quantum simulations of field theories.

Digitization of Fields: In addition to the use of
spatial lattices and discretization in time digital simula-
tions require truncation of the local Hilbert space at each
lattice point. Digitization represents the task of formu-
lating, representing, and encoding truncations for QFTs
suitable for digital quantum computers. Some natural
encodings exist for fermionic degrees of freedom [72–74].
Further proposals discuss how to map lattice fermions
(e.g. Wilson and staggered) onto these encodings [75] or
use gauge symmetry to eliminate the fermions [76, 77].
The relative merits of each approach are only beginning
to be understood. The question of gauge boson digitiza-
tion is murkier, with complicated tradeoffs [47, 78–86].
Digitizing may reduce symmetries – either explicitly or
through finite truncations [87]. Care must be taken as
the regulated theory may not have the original theory as
its continuum limit [88–93]. A particularly illustrative
example of the complications between truncations and
renormalization can be found in Ref. [94]. Prominent
proposals for digitization can be broadly classified [95]
into: Casimir dynamics [17, 87, 96–101] potentially with
auxillary fields [102], conformal truncation [103], discrete
groups (e.g. D4 as a subgroup of SU(2) or S1080 as
a subgroup of SU(3)) [78, 79, 86, 104, 105], dual vari-
ables [21, 106–109], light-front kinematics [110, 111], the
pre-potential and loop-string-hadron formulation [29, 44,
82, 112], quantum link models [113–116], and qubit reg-
ularization [80, 81, 117]. In tensorial reformulations dis-
cussed in II.B, symmetry-preserving [118, 119] trunca-
tions are applied to character expansions and provide
controllable finite dimensional approximations.

State preparation: Given a digitization, the next
obstacle is initializing strongly-coupled quantum states in
terms of fundamental fields. Much of the literature em-
phasized ground-state preparation [120–131] but thermal
and particle states have been investigated [2, 5, 132–149].
For methods which construct states using regulated theo-
ries, careful study of the renormalization needed to prop-
erly match onto the physical limit is required [150, 151].

Time propagation: Propagating for a time t re-
quires the application of a unitary operator U(t) = e−iHt,
which generically cannot be implemented exactly on
a quantum computer and needs to be approximated.
A common method is trotterization, whereby U(t) ≈
(
∏

i e
iHit/N )N ≡ (e−iH

′t/N )N where H =
∑

i Hi is a
sum of k-local terms Hi, and H ′ is an approximation
of H defined via this relation, which is generally hard
to deduce. The renormalization of lattice field theory
in Minkoswki spacetime due to trotterization is to in-

troduce a temporal lattice spacing and new operators
depending upon it [62]. For some H, this allows for
efficient simulations [2, 5, 102, 133–136, 152–154] and
the errors from using H ′ can be reduced via scale set-
tings [62]. Another way to reduce trotterization error
might be using Hamiltonians with reduced lattice arti-
facts [64, 65, 67, 71]. Other approximations of U(t) exist:
QDRIFT [155], variational approaches [156–158], Taylor
series [159], use of nonlinear effects to increase the Trot-
ter step [139, 160] and qubitization [161]. Initial resource
comparisons have been performed for various gauge the-
ories, see Refs. [25, 48–51].

Observables: It is straightforward to evaluate the
expectation values of instantaneous Hermitian operators.
Observables that depend on time-separated operators
(such as parton distribution functions [8, 110, 162], par-
ticle decays [163], and viscosity [164]) are more chal-
lenging. Naively, the first measurement collapses the
state, preventing further evolution. Ways to overcome
this have been proposed, including ancillary probe-and-
control qubits [8, 28, 141, 165, 166] and phase estima-
tion [122, 167]. For time-separated matrix elements, it
is still not known how to perform nonperturbative renor-
malization like RI/SMOM [168–170] on quantum com-
puters.

Gauge invariance and errors: Noisy quantum de-
vices can also be viewed as introducing new operators.
The best-studied examples of this are related to gauge-
violating operators [171–182]. Which operators are intro-
duced and which symmetries are broken are both hard-
ware and digitization dependent. In tensorial reformula-
tions discussed in II.B, the full integration over the gauge
fields provides manifestly gauge-invariant discrete refor-
mulations.

—

Analog quantum simulations provide another poten-
tially promising path to quantum simulation of QFTs.
Such simulators may naturally exhibit fermionic and
bosonic degrees of freedom, or provide tunable inter-
actions between larger local Hilbert. Nonetheless, one
needs to engineer the interactions of these degrees of free-
dom to represent the dynamics of the QFT Hamiltoni-
ans of interest, which is generally a challenging task in
current platforms. For example, simulating the dynam-
ics of both Abelian and non-Abelian gauge theories in
2+1 and higher dimensions have proven hard [183–188]
given either higher-body interactions or non-local inter-
actions depending on the representation of the Hamilto-
nian. Some progress has been reported in recent years,
but a first implementation of complete building blocks of
a lattice gauge theory with high fidelity remains an im-
portant goal of the program in the coming decade. Rig-
orous error-bound analysis, error corrections, and verifi-
ability will need to be developed for analog simulations
as well.

The role of hardware implementation and benchmarks
in guiding the course of developments in quantum sim-
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ulation cannot be overstated. Many recent experiments
and implementations of a variety of QFT problems on
a range of quantum platforms in both analog and digi-
tal modes (see e.g., Refs. [25, 49, 100, 128, 130, 189–200]
have generated a platform for communications and col-
laborations with experts in quantum hardware technol-
ogy. It has also generated proposals and experiments
dedicated to developing simulators suitable for QFTs,
see e.g., Refs. [23, 37, 97, 201–207]. This is a critical
path as otherwise theory and algorithmic developments
will be disconnected from the reality of hardware. To
achieve meaningful progress, a series of models from low-
dimensional theories and simpler gauge groups need to
be identified and progressively made more complex to
follow, or ideally, guide, hardware developments. Finally,
hybrid classical-quantum approaches to quantum simu-
lation should be taken advantage of in both near and far
terms [188, 203, 208]. See Ref. [4] for more references and
context.

LQCD began around the time the computing became
available to the scientific community and developed to its
current mature state alongside the increase in computing
power. These decades of experience can be leveraged as
quantum computers develop. The challenges of simulat-
ing gauge theories, with an eye towards QCD, will be a
rich area of research in the decades ahead.

B. Tensor networks

Tensor network methods are playing an increasingly
important role in several branches of physics and in quan-
tum information science. In the context of HEP, tensor
networks have appeared as ways to reformulate lattice
gauge theory models to obtain a fully discrete formula-
tion that is suitable for quantum computation and coarse
graining methods. Tensor networks also provide tools to
understand entanglement in conformal field theories and
their connection to gravity [42].

In the context of lattice gauge theory, tensors can be
seen as the translationally invariant, local building blocks
of exact discretizations of the path integral. They en-
code both the local and global symmetries of the original
model. It is easy to design approximations (truncations)
that preserve these symmetries and to design simplified
models that should have the same correct universal con-
tinuum limit as the original model. Developing these
building blocks and optimizing the approximations for
NISQ machines and classical computers are important
tasks for the near-term future. Tensor networks can also
be used to perform classical simulations of quantum cir-
cuits. This is useful for developing and testing quantum
computing algorithms and quantum computational ad-
vantage.

Tensor networks have their origins in condensed mat-
ter physics where they provide a suitable truncated ba-
sis for constructing the low lying energy eigenstates of
strongly interacting many body systems. In particular

matrix product states and the DMRG algorithm provide
very accurate ground state wavefunctions for one dimen-
sional systems [209–211]. The annual lattice conferences
have helped foster interactions among the communities
involved [212–218] and the number of contributions has
grown steadily with the years [219]. Current applications
to particle physics include the Schwinger and Thirring
models and gauge theories in (2 + 1) dimensions - see
[220] and references therein. The basic idea is to express
the ground state wavefunction as the trace of a product
of local tensors which are functions of a set of parameters.
Varying these parameters allows for a good estimation of
the ground state.

Tensor network formulations can also be constructed
for Euclidean path integrals and in conjunction with the
tensor renormalization group (TRG) have been used to
provide classical simulations of two dimensional models
including both gauge fields, scalars and fermions such
as the non-abelian Higgs, Schwinger and Gross-Neveu
models provide classical simulations of lattice field the-
ory models including spin models, gauge theories, scalars
and fermions, the non-abelian Higgs, the Schwinger and
Gross-Neveu models [42, 43]. For more extensive sets of
references and a road-map (the “Kogut sequence”), Typ-
ically the local Boltzmann factors are expanded on char-
acters of the group and the original fields integrated out
exactly yielding a discrete tensor representation that can
form a starting point for quantum simulation. Further-
more, it can be shown that truncation of these tensors
to a finite number of representations does not break any
symmetries. These tensor networks can be coarse grained
using renormalization group ideas to allow computation
of a variety of observable including the free energy. Fig. 2
shows an example of this procedure for the two dimen-
sional Ising model Recently, improved renormalization

FIG. 2: A coarse-graining step for a tensor network.
Circles represent tensors, and closed indices should be

contracted. From Ref. [43].

group methods (loop-TNR and ATRG algorithms—see
Ref. [43]) have been developed that are capable of yield-
ing accurate results for three dimensional U(1) gauge the-
ory and scalar theories in four dimensions [221]. To han-
dle fermions a Grassmann tensor renormalization group
has also been developed which can keep track of any signs
arising from the fermions [222].
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C. Simple holographic lattice models

FIG. 3: Sample configuration for Ising model on 2d
hyperbolic disk

The original AdS/CFT correspondence provided
strong evidence for a duality between gravity in anti-
deSitter space and strongly coupled quantum field the-
ories living at the boundary of that space [52]. Sub-
sequently ideas from quantum information science have
served to strengthen this holographic connection between
gravity and entangled quantum systems—see a recent
Snowmass review [55]. Typically this correspondence is
studied in the limit where the bulk gravitational fluctua-
tions are vanishing. Quantum simulation can be used in
principle to probe this duality in more general regimes.
A significant amount of work has been done using classi-
cal simulation over the last decade to check holography
see Refs. [223–229]. However the next frontier in testing
the holographic dictionary will likely come from quantum
simulation.

Motivated by this a variety of simple scalar, Ising and
fermion matter systems have been simulated on tessel-
lations of hyperbolic space (Wick rotated anti-deSitter
space) in two and three dimensions [56, 57, 115]. Results
like the RT formula for the entanglement entropy arises
naturally via lattice strong coupling expansions. An ex-
ample Ising configuration generated by a Monte Carlo
algorithm is shown in fig. 3. In spite of the fact that the
discrete spaces are only invariant under a subgroup of the
continuum isometry group the boundary theories are seen
to exhibit power law correlations as expected for a con-
formal field theory. Furthermore it is possible to include
dynamical gravity effects by allowing the tessellation to
fluctuate. Preliminary results in this case suggest the
existence of both conformal and non-conformal phases
depending on the size of the gravitational fluctuations
[230].

Extending this approach to a Hamiltonian formulation
allows for quantum simulation and would allow a connec-
tion to be made to tensor network models of quantum
error correction [59]. The central idea of holographic er-
ror correction is that the quantum state of qubits residing
deep inside the bulk of such a tessellated hyperbolic space
is robust to errors in the quantum state of the boundary
qubits.

D. Future near-term goals

Both the algorithms and hardware needed for quantum
simulation are progressing rapidly and so any projection
for the next decade will necessarily be somewhat uncer-
tain. Nevertheless the successes that have been achieved
so far suggest some interesting goals may be achievable
with the next five to ten years. These include:

• Simulation of quantum circuits representing gauge
theories coupled to Dirac fermions in (1+1) and
(2+1) dimensions on small lattices with control
over time-digitization errors.

• Classical tensor-network calculations of similar sys-
tems for validation purposes. Use of tensor net-
works for initial state preparation.

• Classical and quantum simulation of gauge theories
and fermions formulated on discretizations of two
and three dimensional hyperbolic space. Studies of
quantum error correction on such networks.

• Identifying and implementing problems that
can provide qualitative understanding of non-
equilibrium dynamics of strong interactions, in-
cluding mechanisms for equilibration and ther-
malization, starting from small prototype models
and using potentially analog simulators with larger
Hilbert spaces, as well as classical Hamiltonian-
simulation methods such as tensor networks, see
e.g., Refs. [147, 200, 231–234].

Crucial to the long term success of these efforts will be
the development of reliable quantum error correction al-
gorithms and hardware. This will in turn depend partly
on the fabrication of systems with many thousands of
qubits. Keeping gate fidelities and decoherence times ac-
ceptable at such scales will be an important mission of
the quantum hardware community.

III. THEORY FOR QUANTUM SENSING OF
FUNDAMENTAL PHYSICS

The emerging ability to manipulate and control the
quantum state of a system, as well as the technologi-
cal advances that enable it, opens a host of new op-
portunities to directly probe fundamental physics and
to search for new physics. Particle theorists are playing
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a vital role in identifying the physics opportunities for
novel sensing experiments and drawing new connections
between technology and fundamental tests. The theory-
experiment-technology connection in the broadly-defined
area of quantum sensing is strong and mutually beneficial
to all these communities. Researchers developing sensors
and systems for “practial” quantum applications in the
areas of superconducting circuits, quantum optics, sin-
gle photon detection, atomic physics, or superconducting
cavities have been made aware of the utility of their tech-
nology to searching for new physics by particle theorists.
Similarly, HEP theorists have been informed by their ex-
perimental colleagues about state-of-the-art technology,
triggering new ideas. This back-and-forth is particularly
strong in universities and labs in the US.

In this section we will present some of the physics tar-
gets for quantum sensor searches and proceed to highlight
some of the technologies that theorists, often in collab-
oration with experimentalists, have proposed to pursue
these target. We conclude with a a discussion and out-
look. Other Snowmass white papers that deal with sens-
ing with a theory component include Refs. [235, 236].

A. Fundamental physics targets

Some of the physics questions on which sensing exper-
iments aim to shed light are central to enhancing our
understating of nature. These include:

Searching for new particles: An understanding of
which degrees of freedom are included in the rule book of
nature – in other words, which particles exist – has always
been at the heart of fundamental physics. Cosmic rays
(in the early 20th century) and collider experiments (in
its later half and into the 21st) have pushed the frontier
in search of heavier particles. New light degrees of free-
dom that are feebly interacting, of which neutrinos are an
example, are well motivated, and can exist within a large
parameter space [237]. Axions [238], axion-like particles,
dark photons [239], and milli-charge particles are among
the best motivated. Proposed and ongoing sensing ex-
periments, with strong theory involvement, are making
headway in this search.

Dark matter: Our and other galaxies were brought
to form by the gravitational pull of dark matter which
still dominates galactic mass. The beyond the standard
model nature of dark matter motivates the search for
new degrees of freedom, as in the previous paragraph,
which also make up all or part of our dark matter halo.
New sensing initiatives have originated from the the-
ory community, going back to Ref. [240], but many new
ideas have been put forth recently (see Refs. [241–243]
for Snowmass summaries). Dark matter candidates that
can be probed by quantum sensing setups are remarkably
varied, from ultralight wavelike dark matter (masses of
10−21 eV to about 1 eV) of which axions [238], dark pho-
tons [239] are the most well-known, to light WIMP-like
particles (in the keV to GeV range), as well as Planck

mass particles and above [244].
Gravitational waves: The discovery of gravita-

tional waves (GWs) by LIGO [245] has profound impli-
cations, both in confirming the predictions of general rel-
ativity, and in opening a new window for exploring the
Universe. Expanding the range of frequencies in which
we can observe GWs is of vital importance, akin to the
detection of light beyond the visible spectrum. Quantum
technology is playing an important role in enabling and
enhancing LIGO’s reach. Furthermore, theorists have
put forth ideas for detecting gravitational waves in a large
range of frequencies [246–249], some of which are being
actively pursued experimentally [243].

Tests of quantum mechanics: Quantum mechan-
ics (QM) is an odd theory. Yet, it has withstood many ex-
perimental tests, and hence it is at the very least an excel-
lent approximation of Nature. Despite its oddity, it has
also proven theoretically very difficult to modify due to
constraints imposed by unitarity and causality [250, 251].
High energy theorists are well positioned to address this
because any successful modification of QM would need
to be consistent, or at least embedded within the stan-
dard model of particle physics, a theory which provides
an excellent description of nature at high energies. A
modification of quantum mechanics must find a home in
quantum field theory (QFT). Indeed, recently a new non-
linear extension of quantum mechanics that is inherently
unitary and causal has been proposed by HEP theorists
by starting with a modification of QFT and working back
to the consequences for QM [252]. This extension, and
likely others that may follow, can be tested experimen-
tally with dedicated quantum sensing setups [253].

Tests of gravity in a quantum setting: Theories
of gravity and quantum mechanics have yet to be unified
to a single framework at arbitrarily short lengths scales.
From a theoretical point of view, gravity and quantum
theory are compatible within a long distance effective
field theory. Still, given the difficulty in unifying them
at short distance it is interesting to test gravity at lab-
oratory length scales in situations in which things are
manifestly quantum. Theorists have proposed such tests
employing recent advances in atomic physics and opto-
mechanical systems [254].

B. Theory for sensing experiments

In this subsection we demonstrate the role theorists
are playing in the arena of sensing with quantum technol-
ogy by providing explicit examples of experimental efforts
which were spawned by theory-experiment collaboration
as well as proposals for novel experiments. The takeaway
from this list is that theory is contributing to the devel-
opment of an innovative and varied research program in
the area of quantum sensing. A similar point has been
made more broadly in Ref. [236]. The list below is by no
means complete (apologies for omissions), but the degree
of its incompleteness serves to strengthen the point that
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the HEP theory community is making a strong and broad
contribution in proposing innovative ways to search for
new physics.

Atom interferometers - MAGIS: Atom interfer-
ometers operated in free fall provide an exciting oppor-
tunity to search for gravitational waves in the mid-band
(around a Hz, between LIGO and LISA) as well as for
several classes of wavelike dark matter [255]. The flagship
experiment in this class, MAGIS 100, a 100 meter net-
work of interferometers is in design stages [255] and will
be at Fermilab in the coming years. The initial proposal
to search for gravitational waves with atom interferom-
eters was put forth by a collaboration of HEP theorists
and atomic experimentalists [256–258].

Atomic clocks and other atomic experiments:
Atomic physics provides ever increasing precision in time
keeping and frequency determination. The comparison of
two atomic clocks, or of an atomic clock to another high
quality device can be sensitive to light bosonic dark mat-
ter, such as a dilaton, as proposed by theorists [259–261]
(and reviewed in greater detail in Ref. [242]. Atomic clock
technology is also of interest for future space missions to
probe fundamental physics [262, 263]. In addition, preci-
sion atomic spectroscopy and a systematic comparison of
transitions among nuclear isotopes has been shown, again
in HEP theory-experiment collaboration, to be sensitive
to new long range forces [264].

Condensed matter systems for low recoil
searches: The program to detect dark matter directly
in the lab has focused for several decades on dark mat-
ter masses above 10 GeV. The leading detectors in this
range, liquid noble element experiments, do not have sen-
sitivity to dark matter below this range because detection
thresholds are above the energy deposited in dark matter
collisions. A need for lower threshold detectors has thus
arisen. Many ideas have been put forth and are pursued
experimentally. Not surprisingly, many such efforts have
been spawned by theorists or in a theory-experiment col-
laboration. The connection to quantum technology is
simply that the systems that are needed to explore this
region of parameter space are often used to detect sin-
gle photons or single quanta. Examples include Skipper
CCDs and the SENSEI experiment [265] (which has po-
tential for growth [266]), proposals to use transition edge
sensors [267], a proposal to search for dark matter with
superconducting nano-wires [268], and magnetic bubble
chambers [269] (with prototype results in Ref. [270]).

Cavity based Dark Matter searches: High qual-
ity radio frequency cavities are a key component of the
axion haloscope originally proposed by Sikivie [240] and
are currently being used to search for dark matter axions
in the 1-10 GHz mass range [241]. Quantum techniques,
such as squeezing (demonstrated in the HAYSTAC ex-
periment [271]) and photon counting [272] holds promise
to hasten the search in this range. A recent theoretical
analysis showed that squeezing can be distributed over a
coherent network of sensors to provide additional gain in
the scan rate [273].

Recent proposals by theorists and experimentalists
have been made to extend cavity based searches to lower
axion masses by leveraging the extremely high quality of
superconducting cavities by considering the upconversion
of one cavity mode to another [274–276] with interesting
potential coverage. R&D is ongoing with theory input to
pursue this goal [243, 277].

LC resonator DM searches: Axion, dark photon,
and milli-charged particles searches at lower dark mat-
ter masses can be achieved by other resonant systems
such as LC circuits. The DM-Radio experiment [278]
was originated by a theory-experiment collaboration
and will search for faint electromagnetic signals inside
a well shielded region employing a squid [279]. The
ABRACADABRA-10cm experiment [280], which also
originated in the theory community [281], proposed a
similar detection strategy employing a toroidal geometry.
ABRACADABRA is now merged with DM-Radio [278].
Pushing limits on the QCD axion can be achieved with
quantum limited sensing and a large scale effort. A mod-
est modification to such setups involves driving electro-
magnetic fields in a nearby shielded environment; such
a “direct deflection” experiment was proposed by theo-
rists and would be sensitive to the same class of milli-
charged dark matter models targeted by low-threshold
detectors [282].

Searching for new particles with cavities: High
quality cavities can be utilized to search for new degrees
of freedom independently without assuming they make
up the dark matter. Dark SRF (reviewed in Ref. [243])
is an ongoing light-shining-through-wall (LSW) exper-
iment, with theory-experiments collaboration, searching
for dark photons as part of the SQMS center at Fermilab.
An ultra high-Q superconducting RF cavity is excited to
the brim with photons, and a feeble appearance signal
is searched for in a nearby cavity which is in tune with
the first. The Dark SRF setup is optimized to search for
the longitudinal polarization of the dark photon, which
leads to enhanced sensitivity, as pointed out in a theo-
retical paper [283]. Theorists have also pointed out that
the Dark SRF experiment will also be sensitive to very
light milli-charged particles via Schwinger pair produc-
tion [284]. The Dark SRF experiment will be pushed to
the quantum regime in the coming years [243].

Several theoretical proposals have been made to utilize
the high quality of SRF cavities to search for axions.
These include two cavities and a conversion region with a
static magnetic field [285] in an LSW setup, a two-cavity
LSW employing the up-conversion technique [286], or a
single cavity in which two modes are populated, and a
third quiet mode is used as a signal mode [287]. The
later can in principle also be sensitive the the standard
model Euler-Heisenberg light-by-light interaction. The
feasibility of these various schemes is being studied by
experimentalists and theorists in SQMS [243].

DM Searches with Dielectric Stacks and Dish
Antennas: HEP Theorists have pointed out that both
axion and dark photon dark matter can convert to pho-
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tons at the surface of a mirror, and that using the ap-
propriate geometry, the signal can be focused [288]. This
broadband search approach will benefit from single pho-
ton detection at the frequency in question. This idea led
to a plethora of experimental efforts, including new lim-
its, such as Refs. [289–292] (some of which with strong
theory involvement) and planned experiments [293].

A related detection strategy also proposed by theo-
rists [294, 295], is to use the transition between two di-
electric materials to generate photons from dark matter.
A repeated transition, a dielectric layered stack, can be
used to enhance the rate. The MADMAX experiment,
a collaboration including theorists, has grown from this
and is already in the prototype phase [296].

Optics based searches: Quantum optics is a ma-
ture field and a strong driver of progress in QIS. Optics-
based searches for new particles and/or dark matter
present interesting opportunites around the eV scale.
The LAMPPOST experiment [297], an optics realization
of the dielectric stack was first proposed in a theory pa-
per [298]. A prototype has already set new limits on dark
photon dark matter.

Optics is also a key tool to search for particles that
are not dark matter. The ALPS experiment [299], also
with strong theory involvement, is a LSW experiment
consisting of two optical cavities on either side of a wall,
one acting as emitter and the other as receiver. The para-
metric gain achieved by a receiver cavity was first pointed
out in Ref. [300] in a theory-experiment collaboration.

More recently, nonlinear optics was proposed as a novel
tool to search for new particles by theorists and exper-
imentalists. In a process dubbed dark SPDC, a pump
photon down-converts to a signal photon and an associ-
ated dark particle, either a dark photon or an axion [301].
A “missing energy at the optics table”experiment may
have parametric advantages, and very different chal-
lenges, compared to light shining through walls exper-
iments.

Spin precession experiments: Some of the most
powerful constraints on new physics that violates CP
come from constraints on the (static) electric dipole mo-
ments of fundamental particles [302]. The QCD axion, if
it is dark matter, will lead to an oscillation of the neutron
electric dipole moment with a frequency set by the ax-
ion mass. Theorists and experimentalists have proposed
to search for this effect by looking for the precession of
the polarized nuclear spins in an electric field in a reso-
nant NMR setup [303]. The CASPER experiment [304]
is pursuing this, as well as spin precession effects due
to direct axion coupling to matter, known as CASPER-
Wind [304] (see also Ref. [305] for a proposal using super-
fluid helium-3 and precision readout using atomic clocks).
Using a liquid co-magnetometer, a prototype has already
set limits with theoretical involvement [306]. Other spin
precision experiments, including a spin polarized torsion
pendulum, have been shown to have interesting reach in
a theory-experiment collaboration in [307].

As a notable example, quantum spin gyroscopes known

as noble-alkali co-magnetometers can also been used to
detect the coupling of a gradient of the axion field to
nuclear spins [308, 309]. In a small scale effort dubbed
NASDUCK [310], initiated by theorists, new limits on
such axion dark matter couplings have been set.

Similar NMR techniques can also be used to search
for the spin dependent long range force which is medi-
ated by the QCD axion. Again, in strong collaboration
with theorists, the ARIADNE project aims to look for a
force between a Helium-3 polarized sensor and a nearby
tungsten target [311].

Single particle traps: One area of advance in the
quantum regime is the ability to trap and manipulate the
quantum state of a single charged particle, either an ion
or electron. In the realm of fundamental physics, this al-
lows one to study the properties of single particles. The
classic example is the anomalous gyromagnetic moment
of the electron, (g−2)e, for which the theory-experiment
comparison represents the most precise test of the stan-
dard model to date [312].

Recently, it was pointed out that a single particle can
be a sensitive target for dark matter direct detection.
Millicharged dark matter can cause energy to be trans-
ferred from the laboratory to the cold particle trap at a
rate which is higher than observed [313, 314]. In addition,
dark photon dark matter can be resonantly absorbed by
a trapped electron leading to quantum jumps in its ax-
ial energy level, as has been shown in a recent proof of
concept experiment [315].

Opto-mechanical sensors: The ability to bring
macroscopic objects to their ground state and sense their
motion at quantum-limited precision is opening new op-
portunities for sensing. An array of quantum-limited sen-
sors was proposed by theorists to search for the gravita-
tional interaction of very heavy dark matter [316] and for
B−L vector boson dark matter [317]. A theoretical anal-
ysis of going beyond the standard quantum limit was pre-
sented in Ref. [318]. An ambitious program, Windchime,
was also proposed [319]. Theorists have also analyzed the
reach of torsion balance experiments to some of the same
targets in Ref. [320] and a dedicated search can make
further progress.

C. Outlook

There are conclusions to draw from this long, yet par-
tial, list of contributions from theorists to the search for
new physics:

• The search for new physics requires us to cast a
wide net [321]. Theorists are contributing to the
search, in particular searches for new particles, dark
matter, and gravitational waves, in a central way.

• Though some of the contributions date back
decades, many were made in the past decade and
at an increasing rate. The field of novel ideas to
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strengthen our searches for new physics is vibrant
and growing.

• Though they may lead to small or large projects,
these contributions are enabled by the vibrant HEP
research environment in which theorists and ex-
perimentalists interact, learn and exchange ideas.
Maintaining the funding for research in the US,
particularly for theory, is vital in order to reap the
benefits from new innovations. A shortage in fund-
ing for small scale efforts in this genre is a current
bottleneck in expanding the search for new physics.

• Not all theory-experiment collaborations are within
the scope of quantum science (see Ref. [236] for a
discussion that is synergistic to this one, but with a
broader scope). However, a large number of quan-
tum and quantum-related technologies have been
identified by theorists and experimentalists as new
tools in the search for new physics. This is not a
coincidence; quantum information science requires
isolation and control of delicate systems as well as
reading out the most feeble of signals. These chal-
lenges are shared by the endeavour to look for new
physics and this justifies an investment by the HEP
community in the research that connects quantum
technology to fundamental physics. HEP theorists
are well poised to make the needed connections be-
tween these fields.

• Gravitational waves have, for a while, been re-
moved from the scope of HEP. Regardless of how
they are detected, GWs are of great interest to the
HEP community. The emergence of new GW de-
tection schemes serves to strengthen this point fur-
ther.

IV. FORMAL ASPECTS OF QUANTUM
INFORMATION AND FUNDAMENTAL

PHYSICS

Let us now consider more broadly the theoretical un-
derpinnings of the links between quantum information
science (QIS) and fundamental physics. Within QIS it-
self the main directions can be categorized into broad
themes of quantum information theory, quantum com-
puting, and implementations. This section focuses on
the former set, where topics such as entropy, entangle-
ment measures, quantum error correction, and quantum
communication play a prominent role. These concepts
have remarkably enriched theoretical physics, especially
in the context of quantum field theories and quantum
gravity.

A particularly fruitful setting at the confluence of
these ideas is the AdS/CFT correspondence [52] (also
known as gauge/gravity duality), which relates a higher-
dimensional gravitational theory to a lower-dimensional

non-gravitational one. A cornerstone feature of these du-
alities is the specific type of rearrangement (or transmu-
tation) of the degrees of freedom between the two sides,
which allows one to extract genuinely quantum features
on the CFT side from classical ones in the dual AdS, as
well as strongly gravitational effects in AdS from non-
gravitational ones in the CFT, with both pictures never-
theless retaining the requisite degree of locality. Within
the last decade or so, it has become evident that many
key quantities of interest in QI theory actually have a
rather simple description on the gravity side, belying the
intricacy of the holographic mapping as well as the opera-
tional definition of the QI construct itself – in some sense,
the bulk geometry in the gravitational theory naturally
‘knows about’ entanglement!

This section will explain how this revelation allowed
for a change in perspective which fueled the vibrant
activity in the recent years, then briefly indicate some
of the fascinating resulting developments, and end with
a broad outlook of the big-picture questions that the
community is now well poised to answer over the next
decade. Much of the narrative is adapted from the ex-
cellent and pedagogically written white paper [55]. A
related theme focused on quantum aspects of black holes
and the emergence of spacetime is nicely summarized in
the white paper [322]. Other white papers on related
topics include [42, 323, 324]. Some useful pedagogical re-
sources on the subject include Refs. [325, 326] for an in-
troduction to quantum information in quantum mechan-
ics, Refs. [327, 328] for algebraic treatment of QFTs, [329]
for computation of entanglement in conformally invariant
QFTs, and Refs. [330–333] for reviews of developments in
the context of holography. The referencing in this section
will be kept minimal, restricted to other relevant white
papers and to seminal works initiating a given subject or
reviews thereof.

A. Change of perspective

With the advent of QIS, the traditional and intuitively
natural ways of organizing physics, e.g. by energy scale
or interaction strength, by field content or observables
of interest, or even by its computational tractability, has
been amended by a wholly different perspective of focus-
ing rather on the information content. Such an approach
allows for a description applicable to a bewildering va-
riety of physical systems, unifying previously disparate
avenues of exploration and simultaneously deepening our
understanding.

Of particular significance is the shift of focus towards
genuinely quantum phenomena. Although quantum field
theory, providing a framework for explaining the fun-
damental laws of nature, is built on quantum mechan-
ics as its central pillar, the full quantumness is seldom
utilized in the traditional approach. Instead, one typi-
cally focuses on observables that can be computed using
correlation functions of local operators, which can then
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be translated into physical quantities such as scattering
cross-sections and dynamical response functions. The
Wilsonian effective field theory paradigm is also primarily
geared towards identifying relevant operators and under-
standing their correlation functions below some cut-off
scale. Furthermore, techniques such as path integrals,
the renormalization group, effective theories, symmetries,
and dualities are all primarily geared in textbook treat-
ments towards computing such correlation functions.

There is, however, more information to be mined by
generalizing the framework to one which is more cog-
nizant of the underlying quantum mechanical structure.
In particular, such a perspective has to account for the
fact that composite quantum mechanical systems exist in
tensor product superpositions, which leads to the essen-
tial concept of entanglement. Focusing on these aspects
can not only help us further elucidate the field theory
framework, but it also appears better suited to address-
ing profound questions in the quantum gravitational set-
ting.

B. Recent developments

The general themes that have been explored in this
broad area include refinement of conventional field-
theoretic tools to quantify spatially-ordered entangle-
ment in QFTs, quantifying measures of entanglement in
mixed states, and the revival of operator algebraic for-
mulations of QFT. In a parallel development, the ge-
ometrization of information theoretic measures in the
context of the holographic AdS/CFT correspondence has
played an important role in furthering our understand-
ing of the holographic dictionary. Additionally, progress
has been made on questions relating to the complexity of
state preparation, which is important for quantum sim-
ulations, and it has furthermore been argued that these
ideas have a physics role to play in QFT and quantum
gravity. Many of these developments have been accompa-
nied by novel insights on the quantum information side,
showing that the synergy between the fields benefits both
sides. Here we briefly mention the most important recent
developments and open problems in these areas.

Characterizing quantum information: It has be-
come increasingly evident that the structure of entangle-
ment plays a key role in understanding many properties
of physical systems. Correspondingly a central goal is
to define and quantify the amount of entanglement, with
view towards understanding the organization of entan-
glement in any given state, in terms of how it is struc-
tured in space and between scales, and how it can be
prepared. This is by no means a simple task. Already in
the typical QIS setting involving finite systems (having
Hilbert space of finite dimension which factorizes into
Hilbert spaces of subsystems), there are many distinct
entanglement measures. They are typically based on en-
tropic functions designed to be meaningful from the point
of view of communication, or motivated from a resource

theoretic perspective. Examples include von Neumann
entropy (which in the high energy community is referred
to as entanglement entropy), relative entropy, entangle-
ment of distillation, entanglement cost, entanglement of
purification, etc..

In the setting of interest to high energy physics, for-
mulated in the language of a QFT and in particular
gauge theory, things are far more complicated. Not
only is the Hilbert space infinite-dimensional, but it does
not actually factorize [334]. Nevertheless, one can still
define entanglement entropy and extract its regulator-
independent universal features. In the holographic con-
text this takes a particularly nice form: the entanglement
entropy of a subsystem defined by a spatial region in the
CFT is given by the area of a certain (area-extremizing)
surface in the bulk geometry associated to the specified
region. (This prescription is referred to as RT [335] in
the static context, HRT [336] in the general dynamical
context, and QES [337] when certain quantum correc-
tions are included.) The fact that entanglement entropy
is computed by such a simple geometrical construct pro-
vided an early hint at the intriguing connection between
entanglement and geometry which we are still trying to
fathom. The emerging lesson is that in some sense, en-
tanglement builds spacetime [338] (sometimes referred to
by the slogan ER=EPR [339]). In the holographic con-
text, the bulk geometry naturally implements a quantum
error correcting encoding of the boundary physics [340].

Hence such geometrization of entanglement has been
immensely useful not only at the practical level (of prob-
ing the behavior of entanglement in many systems of in-
terest) but also at the conceptual level. The QI-based in-
sights will in turn deepen our understanding of the physi-
cal frameworks. For example, by connecting information
quantities to basic data in QFT, we might expect to be
able to put new constraints on the QFT theory space.

Symmetry, renormalization group flows, and
phases: Quantum information ideas also interplay with
some key non-perturbative structures in QFT. For exam-
ple, one can extract statistical properties of charge fluc-
tuations in localized regions and study different charged
sectors using symmetry resolved entanglement [341], as
well as formulate order parameters based on the rela-
tive entropy which probe superselection sectors of global
charges in QFT [342].

Our understanding of effective field theories relies on
the fact that dynamics below some cut-off scale is only
sensitive to a handful of relevant parameters [343]. Since
from a microscopic viewpoint, the effective description
is attained by tracing out high energy degrees of free-
dom which is an intrinsically lossy process, it is natural
to expect a measure of the number of degrees of free-
dom that is monotonic in energy scale, reaching a con-
formal fixed point in the IR. Such functions (dubbed c, F ,
and a in 2, 3, and 4 dimensions respectively) have been
found [344, 345] starting with Zamolodchikov’s c-theorem
[346]. While the conventional field theory methods relied
on dimension-specific techniques, more recently entropic
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proofs based on the Markovian property of the CFT vac-
uum have been developed [347], which provide an inter-
esting overarching principle. One may then hope that
analogous information theoretic perspective will provide
similar monotone functions for higher-dimensional field
theories (at least in five and six dimensions where super-
conformal critical points exist).

Entanglement and complexity also play an impor-
tant role in the classification of IR fixed points of RG
flows. In the context of many-body physics, both in con-
densed matter examples and engineered systems built
from atoms, molecules, and photons, such fixed points
describe distinct phases of matter. Classification of these
phases is a major challenge in many-body physics, inti-
mately tied to the classification of QFTs. (See also the
white papers [348, 349] for related reviews.)

Dynamics: The subject of dynamics may be viewed
on several levels. The most manifest one is simply under-
standing how specific systems evolve in time, and what
universal features such time evolution exhibits. A more
primal level concerns the actual formulation of the quan-
tities of interest in a generic time-dependent setting. This
is especially fruitful in the context of holography, where
the notion of time differs between the two sides. In par-
ticular, using general covariance of the bulk gravitational
theory explicitly provides a useful guiding principle to de-
veloping the holographic dictionary by suggesting natural
geometric quantities dual to specific QI or CFT quan-
tities in the boundary theory. At a deeper level, it is
intriguing to observe that the formulation of the typical
QI quantities explored in holography, defined at a single
instant in time, does not manifest the dual bulk general
covariance. Understanding this symmetry in the bound-
ary formulation has been relatively under-explored, and
we may expect to see the insights gained from harness-
ing the full power of the gauge/gravity duality come to
fruition in the next decade.

Under time evolution, quantum information tends to
spread across many degrees of freedom. It spreads both
spatially, as signals propagate locally through the sys-
tem, and internally, among the degrees of freedom at
each location. Over the last decade we have come to bet-
ter understand the remarkable fact that the spreading of
quantum information obeys universal laws. In a wide
variety of complex systems, including condensed mat-
ter, strongly interacting QFTs, and black holes, infor-
mation spreads according to general principles and sub-
ject to fundamental bounds imposed by locality and by
information-theoretic inequalities. These bounds play a
key role in questions such as how locality emerges in
quantum gravity and how to characterize the dynamics
of strongly correlated materials.

Another important feature is scrambling, a dynamical
process which effectively randomizes the quantum state,
which is ubiquitous in chaotic quantum systems with
many degrees of freedom, from the SYK model to black
holes and large-N CFTs [350]. A far-reaching new per-
spective on scrambling, developed over the last decade,

reformulates it in terms of out-of-time-order correlation
functions (OTOCs) [351], which measure the effect of
small initial time perturbations on later time operators,
and hence can be used to probe the onset of chaos. This
in turn carries connections to a wide range of topics such
as emergence of bulk causality in AdS/CFT or bounds
on CFTs from conformal bootstrap.

Vacuum-subtracted energy density in quantum field
theory can be negative due to quantum fluctuations.
This negative energy can potentially give rise to acausal,
or otherwise pathological, gravitational dynamics when
coupling the QFT to gravity. For example, traversable
wormholes might provide shortcuts between distant
points. The Hawking black hole area theorem and Pen-
rose singularity theorems rely on assumptions about non-
existence of various forms of negative energy [352]. It is
thus important to find general constraints on such neg-
ative energy. Surprisingly, these constraints have been
shown to arise from quantum information considerations
applied directly to the quantum field theory without
gravity. For example, the positivity of relative entropy
implies the Bekenstein bound [353], the monotonicity of
relative entropy gives the averaged null energy condition
(ANEC) [354], the algebraic approach to quantum in-
formation provides a proof for the quantum null energy
condition (QNEC [355]), etc.. This story thus connects
to the broader paradigm of gravity from quantum infor-
mation.

The interaction of a system with an external environ-
ment (whose unknown details are traced over) can be de-
scribed by a quantum channel acting on an open quantum
system (naturally described by a density matrix). Since
such situations are ubiquitous in physics, it is of broad
interest to determine the general rules to construct effec-
tive field theories for these open quantum systems. One
important problem is to ascertain sufficient conditions
for a local effective field theory to emerge. For pertur-
bative dynamics, this is difficult, since locality relies on
the system losing memory of its interaction with the en-
vironment, whereas the relaxation timescale is long at
weak coupling. However holographic systems, where the
dynamics is intrinsically strongly coupled, are fast scram-
bling and maximally ergodic in their dynamics, leading to
a simple dynamics of probe effective field theories. Build-
ing on developments in real-time AdS/CFT [356, 357],
there has been renewed interest and progress in this sub-
ject.

The concept of circuit complexity has also found its
way into the holographic context over the last decade,
catalyzed by the observation that its linear growth under
time evolution mimics the growth of the Einstein-Rosen
bridge in a two-sided black hole in the bulk. Several
specific geometrical duals of complexity have been pro-
posed [358, 359] and substantiated by a tensor-network
picture. A different set of ideas connecting holography to
a notion of complexity is path-integral optimization, in
which the bulk spacetime emerges from minimizing the
number of operations required to prepare the state us-
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ing a Euclidean path integral [360]. While each of these
proposals does seem to capture important qualitative fea-
tures of holographic dualities, it remains to be seen how
they are related to each other and in what regime (if any)
they are correct. The idea that circuit complexity has a
simple bulk dual in holographic theories has also led to a
large amount of work attempting to define and quantify
this notion in general field theories, including free ones,
as well as in quantum mechanics.

One of the most notorious open problems in theoreti-
cal physics is the black hole information paradox, high-
lighting the clash between general relativity and quantum
physics, specifically the thermality of Hawking radiation
being incompatible with the unitarity of quantum evolu-
tion. This problem provides an excellent testing ground
for putative formulations of quantum gravity, and over
the last decade, many of the above-mentioned ideas have
revitalized efforts in this direction, engendering signifi-
cant progress and change of perspective. This story is
the focus of the white paper [322] and the earlier ped-
agogical review [361], explaining how using holographic
entanglement (in particular the QES prescription) one
can recover the Page curve for Hawking evaporation con-
sistent with unitarity, and the key role played by space-
time wormholes. These can be studied in a controlled
way in low dimensional settings such as the SYK model
and its low-energy limit of JT gravity, though the story is
much less clear for higher-dimensional gravity with prop-
agating gravitational degrees of freedom. A complemen-
tary perspective is offered in the white paper [323] dis-
cussing quantum gravity more broadly. This work em-
phasizes that gravity requires modifications of the tradi-
tional notion of locality (which hinges on understanding
the correct mathematical structure to define a subsys-
tem in quantum gravity). Further remarks on UV/IR
mixing in quantum gravity and it possible signatures at
low energies can be found in the white paper [362]. A
distinct viewpoint is presented by the approaches of the
fuzzball and microstate geometry programs, reviewed in
the white paper [363], which give gravitational and quan-
tum description of horizon-scale microstructure in terms
of horizonless objects in string theory. The vibrant de-
bate revolving around the black hole information paradox
underscores the utility of exploring diverse approaches, in
a healthy symbiosis though which we bootstrap our way
towards more complete understanding.

C. Outlook

Despite the remarkable progress in our understanding
of quantum information in fundamental physics, many
important questions remain to be addressed. Fortu-
itously there is high hope of progress on these over the
next few years.

What is QFT?: Notwithstanding its celebrated suc-
cess as a framework for understanding the fundamental
principles of nature, it is fair to say that we don’t yet

fully understand the nature of QFT [364]. In addition
to the growing role of information-theoretic methods ap-
plied to QFT [55], the past decade has also seen new
geometric approaches to computing observables such as
scattering amplitudes [365], further development of non-
perturbative bootstrap techniques [366, 367], a better un-
derstanding of symmetries and charges [349], and ever
deeper connections to many areas of mathematics [368].
All of these developments have in different ways lent in-
sights far transcending the standard textbook treatments
of QFT. One natural question is: Which of these ingre-
dients is a defining feature of the theory? What is the
canonical toolkit of a future quantum field theorist, as
presented in a textbook a couple of decades hence? While
these questions might be intangible at present, part of
the progress will likely come from asking questions about
the interconnections among these developments. Some
of these are easier to fathom, being already somewhat
developed, such as the connection between symmetry
charges and operator algebraic formulations of QFT. On
the other hand, while we have several different proofs of
quantities that are RG monotones (c, F , and a theorems),
as yet we still lack a unified picture. Nevertheless, un-
derstanding how the information theoretic data in QFTs
relates to other observables, and developing further tech-
niques to extract them, should provide valuable insight
towards this goal.

Gauge invariance and information: In theories
with gauge-invariant degrees of freedom, the decompo-
sition of algebras comes with non-trivial centers and re-
lated superselection sectors. Several open questions re-
main in this context. What is the significance of algebraic
centers for lattice gauge theories in the continuum limit?
What is the role of topological entanglement in gapless
theories? How do we describe gauge theory entanglement
in the algebraic approach? What of interacting theories
in the algebraic approach? Does the change in the nature
of the von Neumann algebras, noted in the case of large N
confinement-deconfinement transition [369], lead to new
insights into the dynamics of confining gauge theories?

From fields to gravity and strings: In the gravi-
tational context, at the semiclassical level we now under-
stand the relevance of the generalized entropy, an object
that combines a Bekenstein-Hawking-like classical term
with a quantum von Neumann entropy. It has played a
crucial role both in the development of gravitational en-
tropy bounds, and in the recent discussions of the black
hole information paradox [322]. An open problem is to
better understand this quantity beyond the semiclassical
regime. How does one pick subregions and define their al-
gebras in this setting in a relational manner, maintaining
diffeomorphism invariance? How does one define these
quantities in string theory? Can the information theory
approach shed light on the question of which effective
field theories can be consistently completed into a quan-
tum theory of gravity, and which lie in the swampland?
In the context of holography, it is interesting to ask about
the information-theoretic nature of QFT wavefunctions.



15

t

FIG. 4: Students and organizers of the first Quantum
Computing Internship for Physics Undergraduates
Program (QCIPU) organized at Fermilab in the

summer of 2021.

In particular, which aspects of their entanglement struc-
ture are central for the holographic entropy inequalities,
and what does this tell us about quantum gravity? Is
there a principled way to discern which of the various
conjectures relating to complexity are valid, and what
they are telling us about the nature of quantum gravita-
tional wavefunctions?

Real-time dynamics and cosmology: QFT dy-
namics in cosmological spacetimes shares many charac-
teristics of open quantum systems. To date, there isn’t
a clean description of the effective dynamics of quantum
fields in an open system, and many questions remain to
be addressed. Progress in these directions should help
us better formulate the issues we need to confront in the
cosmological context, such as the nature of observables
or the temporal evolution of von Neumann entropy and
other information-theoretic quantities. It would also be
interesting to tie these to the study of cosmological corre-
lators, which has been tackled using bootstrap methods.

Connections: While the list of interesting, impor-
tant, and timely questions of course far exceeds the
above sample, it is already evident that the most fruit-
ful progress is rooted in their interconnection. Physi-
cal systems which were traditionally far beyond the re-
mit of HEP are gradually recognized to underlie deeper
understanding. The encouraging trend of diffusing top-
ical boundaries is likely to accelerate further progress,
which often comes from unexpected directions. The next
decade might well be one of the most exciting ones in
theoretical physics.

V. QUANTUM WORKFORCE DEVELOPMENT

As quantum information science is becoming an indus-
try, there is an anticipated need to develop a workforce
that is educated in the physics, language, and tools of
QIS [370]. Emphasizing the need for diversity in the

workforce while the field is in its infancy is important
from the standpoint of equity, as well as to enrich the field
with a plethora of viewpoints. In light of this theorists
have taken initiatives that target students at a variety of
levels. Examples include

• References [371] is a textbook and/or course-
module on quantum computing tailored to ad-
vanced high school students or physics undergrad-
uates authored by a collaboration of HEP theorists
and high school teachers brought together by a sci-
ence teacher internship at Fermilab. The course has
been successful in classroom setting, as described
in [372].

• The Quantum Computing Internship for Physics
Undergraduates Program (QCIPU) is a sum-
mer school and internship program which pro-
vides training in QIS for undergraduate students,
with an emphasis on physics sophomores and ju-
niors from under-represented groups. The pro-
gram is run and organized by Fermilab theo-
rists, taking place virtually (see Figure 4 and
https://indico.fnal.gov/event/54760/) in the past
two summers, with plans for in-person programs
in the future. Several students from the 2021 pro-
gram have continued to work on research projects
at Fermilab as part of the internship.

• At the graduate level and beyond, the SQMS center
has organized two GGI summer schools, one (vir-
tual) dedicated to Quantum sensing for fundamen-
tal physics, and a second (in person) on quantum
simulation of QFT.

The continued success and further developments of pro-
grams such as QCIPU, especially as we leave the zoom
era, will require increased community support, and de-
votion of effort and funding.

VI. ACKNOWLEDGEMENTS

We thank the authors of snowmass white papers that
were submitted to TF10. RH is much obliged to Ying-
Ying Li and Wanqiang Liu for useful discussions. Fermi-
lab is operated by the Fermi Research Alliance, LLC un-
der contract No. DE-AC02-07CH11359 with the United
States Department of Energy. The work of RH is also
supported by the U.S. Department of Energy, Office
of Science, National Quantum Information Science Re-
search Centers, Superconducting Quantum Materials and
Systems Center (SQMS) under the contract No. DE-
AC02-07CH11359. VH has been supported by the U.S.
Department of Energy grant DE-SC0009999. S.C has
been supported under U.S. Department of Energy grants
DE-SC0009998 and DE-SC0019139. ZD is supported the
U.S. Department of Energy grant DE-SC0021143, U.S.
Department of Energy’s Quantum Computing Applica-
tion Teams program under fieldwork proposal number

https://indico.fnal.gov/event/54760/


16

ERKJ347, and by the National Science Foundation QLCI grant OMA-2120757.

[1] Richard P. Feynman, “Simulating physics with comput-
ers,” Int. J. Theor. Phys. 21, 467–488 (1982).

[2] Stephen P. Jordan, Hari Krovi, Keith S.M. Lee, and
John Preskill, “BQP-completeness of Scattering in
Scalar Quantum Field Theory,” Quantum 2, 44 (2018),
arXiv:1703.00454 [quant-ph].

[3] Marcela Carena, Henry Lamm, Ying-Ying Li, Joseph D.
Lykken, Lian-Tao Wang, and Yukari Yamauchi, “Prac-
tical Quantum Advantages in High Energy Physics,”
Snowmass 2021 LOI TF10-077 (2020).

[4] Christian W. Bauer, Zohreh Davoudi, et al., “Quan-
tum Simulation for High Energy Physics,” (2022),
arXiv:2204.03381 [quant-ph].

[5] Stephen P. Jordan, Keith S. M. Lee, and John Preskill,
“Quantum Algorithms for Quantum Field Theories,”
Science 336, 1130–1133 (2012), arXiv:1111.3633 [quant-
ph].

[6] Christian W. Bauer, Marat Freytsis, and Benjamin
Nachman, “Simulating Collider Physics on Quantum
Computers Using Effective Field Theories,” Phys. Rev.
Lett. 127, 212001 (2021), arXiv:2102.05044 [hep-ph].

[7] Martha Constantinou et al., “Lattice QCD Calculations
of Parton Physics,” (2022), arXiv:2202.07193 [hep-lat].

[8] Henry Lamm, Scott Lawrence, and Yukari Yamauchi
(NuQS), “Parton physics on a quantum computer,”
Phys. Rev. Res. 2, 013272 (2020), arXiv:1908.10439
[hep-lat].

[9] MG Echevarria, IL Egusquiza, E Rico, and G Schnell,
“Quantum simulation of light-front parton correlators,”
Physical Review D 104, 014512 (2021).

[10] Tianyin Li, Xingyu Guo, Wai Kin Lai, Xiaohui Liu,
Enke Wang, Hongxi Xing, Dan-Bo Zhang, and Shi-
Liang Zhu, “Partonic structure by quantum comput-
ing,” arXiv preprint arXiv:2106.03865 (2021).

[11] Niklas Mueller, Andrey Tarasov, and Raju Venu-
gopalan, “Deeply inelastic scattering structure functions
on a hybrid quantum computer,” Physical Review D
102, 016007 (2020).

[12] Wenyang Qian, Robert Basili, Soham Pal, Glenn
Luecke, and James P Vary, “Solving hadron structures
with variational quantum eigensolvers,” arXiv preprint
arXiv:2112.01927 (2021).

[13] Christian W. Bauer and Matthew D. Schwartz, “Event
Generation from Effective Field Theory,” Phys. Rev. D
76, 074004 (2007), arXiv:hep-ph/0607296.

[14] Christian W. Bauer, Wibe A. de Jong, Benjamin Nach-
man, and Davide Provasoli, “Quantum Algorithm for
High Energy Physics Simulations,” Phys. Rev. Lett.
126, 062001 (2021), arXiv:1904.03196 [hep-ph].

[15] Simon Williams, Sarah Malik, Michael Spannowsky,
and Khadeejah Bepari, “A quantum walk ap-
proach to simulating parton showers,” arXiv preprint
arXiv:2109.13975 (2021).
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[134] L. Garćıa-Álvarez, J. Casanova, A. Mezzacapo, I. L.
Egusquiza, L. Lamata, G. Romero, and E. Solano,
“Fermion-Fermion Scattering in Quantum Field Theory
with Superconducting Circuits,” Phys. Rev. Lett. 114,
070502 (2015), arXiv:1404.2868 [quant-ph].

[135] Stephen P. Jordan, Keith S. M. Lee, and John Preskill,
“Quantum Algorithms for Fermionic Quantum Field
Theories,” (2014), arXiv:1404.7115 [hep-th].

[136] Ali Hamed Moosavian and Stephen Jordan, “Faster
Quantum Algorithm to simulate Fermionic Quan-
tum Field Theory,” Phys. Rev. A98, 012332 (2018),
arXiv:1711.04006 [quant-ph].

[137] Henry Lamm and Scott Lawrence, “Simulation of
Nonequilibrium Dynamics on a Quantum Computer,”
Phys. Rev. Lett. 121, 170501 (2018), arXiv:1806.06649
[quant-ph].

[138] Erik Gustafson, Yannick Meurice, and Judah Unmuth-
Yockey, “Quantum simulation of scattering in the quan-
tum Ising model,” (2019), arXiv:1901.05944 [hep-lat].

[139] Erik Gustafson, Patrick Dreher, Zheyue Hang, and
Yannick Meurice, “Benchmarking quantum computers
for real-time evolution of a (1+1) field theory with error
mitigation,” Quantum Sci. Technol. 6, 045020 (2021),
arXiv:1910.09478 [hep-lat].

[140] Siddhartha Harmalkar, Henry Lamm, and Scott
Lawrence (NuQS), “Quantum Simulation of Field
Theories Without State Preparation,” (2020),
arXiv:2001.11490 [hep-lat].

[141] Erik J. Gustafson and Henry Lamm, “Toward quan-
tum simulations of Z2 gauge theory without state
preparation,” Phys. Rev. D 103, 054507 (2021),
arXiv:2011.11677 [hep-lat].

[142] Natalie Klco and Martin J. Savage, “Minimally-
Entangled State Preparation of Localized Wave-
functions on Quantum Computers,” (2019),
arXiv:1904.10440 [quant-ph].

[143] Arnau Riera, Christian Gogolin, and Jens Eisert,
“Thermalization in nature and on a quantum com-
puter,” Phys. Rev. Lett. 108, 080402 (2012).

[144] Fernando GSL Brandão and Michael J Kastoryano, “Fi-
nite correlation length implies efficient preparation of
quantum thermal states,” Communications in Mathe-
matical Physics 365, 1–16 (2019).

[145] Giuseppe Clemente et al. (QuBiPF), “Quantum com-
putation of thermal averages in the presence of a
sign problem,” Phys. Rev. D 101, 074510 (2020),
arXiv:2001.05328 [hep-lat].

[146] Mario Motta, Chong Sun, Adrian TK Tan, Matthew J
O’Rourke, Erika Ye, Austin J Minnich, Fernando GSL
Brandao, and Garnet Kin-Lic Chan, “Determining
eigenstates and thermal states on a quantum com-
puter using quantum imaginary time evolution,” Nature
Physics 16, 205–210 (2020).

[147] Wibe A. de Jong, Kyle Lee, James Mulligan, Mateusz
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