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Report of the Snowmass 2021 Topical Group on Lattice Gauge Theory

Abstract

Lattice gauge theory continues to be a powerful theoretical and computational approach to
simulating strongly interacting quantum field theories, whose applications permeate almost all
disciplines of modern-day research in High-Energy Physics. Whether it is to enable precision
quark- and lepton-flavor physics, to uncover signals of new physics in nucleons and nuclei, to
elucidate hadron structure and spectrum, to serve as a numerical laboratory to reach beyond
the Standard Model, or to invent and improve state-of-the-art computational paradigms, the
lattice-gauge-theory program is in a prime position to impact the course of developments and
enhance discovery potential of a vibrant experimental program in High-Energy Physics over
the coming decade. This projection is based on abundant successful results that have emerged
using lattice gauge theory over the years: on continued improvement in theoretical frameworks
and algorithmic suits; on the forthcoming transition into the exascale era of high-performance
computing; and on a skillful, dedicated, and organized community of lattice gauge theorists in
the U.S. and worldwide. The prospects of this effort in pushing the frontiers of research in High-
Energy Physics have recently been studied within the U.S. decadal Particle Physics Planning
Exercise (Snowmass2021), and the conclusions are summarized in this Topical Report.
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Executive Summary

Quantum field theories permeate our theoretical descriptions of Nature at the smallest distances
and the highest energies. Lattice field theory is the most reliable theoretical tool to date which
rigorously defines and, in a systematically improvable fashion, allows simulation of strongly inter-
acting quantum field theories—most importantly, quantum chromodynamics (QCD), which is one
of the pillars of the Standard Model. Presently, the field of High-Energy Physics (HEP) stands at
a critical point where theoretical uncertainties or lack of predictions for a range of quantities at
the high-energy colliders, in searches for new-physics scenarios in rare processes, and in neutrino
experiments may limit the discovery potential of these endeavors over the coming decade. Fortu-
nately, at the same time lattice field theory has reached maturity in providing reliable and precise
predictions for many of these important experiments, either directly, or indirectly via supplement-
ing the nuclear-level computations. With continued support and growth, lattice field theory will
continue to provide these essential inputs.

In the area of quark and lepton flavor physics, precision lattice-QCD input has been and will
continue to be essential for the interpretation of experimental results. Prominent examples are
hadronic contributions to the muon’s anomalous magnetic moment, hadronic form factors in both
light- and heavy-flavor sectors that are necessary for tests of unitarity of the Cabibbo-Kobayashi-
Masukawa (CKM) matrix and for validation of potential lepton-universality anomalies, as well as
charge-parity (CP)-violating parameters in kaon decays. Precision determinations of quark masses
and the strong coupling constant, as well as nucleon parton distribution functions (PDFs), are re-
quired inputs for precision Higgs physics and beyond-the-Standard-Model (BSM) searches at the
Large Hadron Collider (LHC). Lattice QCD will also continue to enable the computation of nu-
cleon/nuclear form factors and associated charges, and other nucleon matrix elements, for a vari-
ety of investigations in searches for the violation of fundamental symmetries and for new physics.
Prominent examples are neutrino-oscillation experiments that are limited by uncertain neutrino-
nucleus scattering cross sections, electric-dipole-moment (EDM) searches, and searches for rare
processes such as neutrinoless double-β decay, proton decay, lepton-flavor conversion in presence
of nuclear media, and dark-matter–nucleus scattering. Lattice QCD further enables first-principles
prediction of the exotic spectrum of QCD, and enables access to scattering amplitudes and reso-
nance properties, which are critical for several BSM searches.

Lattice-field-theory calculations can also serve as a numerical laboratory to deepen our under-
standing of strongly interacting quantum field theories, both within the Standard Model and be-
yond. Lattice field theory allows direct exploration of how the dynamics are altered when the fun-
damental parameters of the theory (such as the number of colors or the number of light fermions)
are changed, leading to rigorous tests of frameworks such as the large-Nc expansion. These nu-
merical results can also be used to constrain and inform strongly-coupled models of new physics
such as composite Higgs, composite dark matter, or neutral naturalness. Lattice explorations may
also lead to dynamical surprises, such as the discovery of a light scalar resonance in the spectrum
which recently led to the development of dilaton effective field theory (EFT) to describe the lattice
spectrum results. Exploration of supersymmetric theories such as N = 4 super-Yang-Mills may give
new insights into the AdS/CFT correspondence and string theory.

The projections in recent whitepapers provided by the community for the impact of lattice
gauge theory in each of the areas discussed above rely on several important requirements. With
the exascale era of computing promising at least an order of magnitude increase in overall com-
puting power over the next decade, commensurate increases in the computing resources devoted
to lattice gauge theory will be necessary to ensure that the goals of the lattice gauge theory re-
search program, as stated by the community in this planning exercise, can be achieved. However,
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increased computing resources alone will not be sufficient to achieve important research goals over
the next decade, as further innovations in computing algorithms and physics methods will also
be necessary. Investment in a diverse human resource with various skill sets in theory, algorithm,
high-performance computing (HPC), and numerical analysis is the key in bringing new ideas and
facilitating innovation, keeping up with ever-changing computing software and hardware architec-
ture including machine learning and quantum computing, and engaging with the theoretical and
experimental communities to increase impact and relevance. Supporting dedicated programs for
software development and hardware integration will continue to be critical over the next decade,
as is ensuring that the trained workforce will be retained in the program, e.g., by creating positions
of more permanent nature, so that the continuity of the long-term projects will not be disrupted.

1 Introduction

The field of HEP boasts a vibrant experimental program that aims to discover new physical mecha-
nisms at the foundations of Nature, whether through increasing energy or intensity of the probes, or
through astrophysical and cosmological observations. However, experimental progress also relies
on a thriving theoretical-physics community that proposes new plausible models beyond the (ac-
cepted but incomplete) Standard Model of particle physics, and is further able to provide accurate
predictions based on those models for experimental searches. Quantum field theories permeate our
theoretical description of Nature at the smallest distances and the highest energies—scales that can
be probed either at particle colliders of today and of the future, or indirectly through the influence
of new virtual particles in low-energy experiments. Lattice field theory1 is the most reliable theo-
retical tool to date to simulate strongly-interacting quantum field theories of relevance to Nature,
both well-established and hypothetical.

The history of lattice field theory is a success story spanning multiple decades in developing and
applying an extensive theoretical and computational suite to difficult problems in both HEP and Nu-
clear Physics. This history consisted of, first of all, formally defining the field-theory path integral
and various correlation functions in a finite discrete spacetime in such a way that as many symme-
tries as possible are kept, or systematically recovered, in the continuum infinite-volume limit, start-
ing from the pioneering work of Wilson [1] and Kogut and Susskind [2]. Many more theoretical
and conceptual breakthroughs came along later, an example of which being the mapping that al-
lows seemingly inaccessible few-hadron scattering amplitudes to be obtained from imaginary-time
lattice field theory computations, starting from the pioneering work of Lüscher [3]. The develop-
ment of lattice field theory also includes devising algorithms that, over time, scaled better with the
system’s parameters and took advantage not only of advances in applied mathematics and com-
puter science but importantly of physics input, such as expression of symmetries and constraints,
and renormalization group and scale separation, to make seemingly impossible computations pos-
sible. Furthermore, the success of lattice studies relied on adjusting algorithms and compilations to
the hardware architecture, and remarkably in some instances, impacted the development of com-
puting architecture itself via a co-design process [4, 5]. It is no surprise that the community is
currently embracing new trends in computational sciences such as machine learning and quantum
computing. The field of lattice field theory also enjoys a robust and organized community that
generally works in harmony and shares knowledge, data, and codes to expedite science and save
human- and computing-time resources.

1Throughout this report, we use the (more general) term “lattice field theory” and the (less general) term “lattice
gauge theory” interchangeably, as well as the colloquial shorthand of simply “lattice”.
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We are standing at a critical point in HEP where the theoretical uncertainties or lack of pre-
dictions for nonperturbative quantities at the high-energy colliders, in searches for new physics in
rare processes, and in neutrino experiments may limit the discovery potential of these endeavors
over the coming decade. Fortunately, at the same time lattice field theory has reached the point
that it is providing reliable and precise predictions for many important experiments, and is hence
changing the game constantly and rapidly. Prominent examples include, but are not limited to: i)
hadronic contributions to the muon’s magnetic moment to confront experiment without reliance on
ad hoc models, ii) hadronic form factors in both light- and heavy-flavor sectors for tests of unitarity
of the CKM matrix and for validation of potential lepton-universality anomalies, iii) CP-violating
parameters in mesonic decays such as kaon decays, iv) precision calculation of quark masses and
strong coupling for precision Higgs physics and BSM searches at the LHC, v) nucleon EDM, nucleon
form factors, and associated charges for constraining CP violation and various BSM scenarios, for
neutrino-oscillation experiments that are limited by uncertain neutrino-nucleus scattering cross sec-
tions, and for constraining dark-matter–nucleus cross sections in direct dark-matter detections, vi)
nucleon PDFs and other structure functions needed for the LHC program and for augmenting the
current limited phenomenological fits, vii) hadronic spectra including exotic resonances and reso-
nance transition amplitudes, and viii) the first steps towards quantifying nuclear effects in several
matrix elements of relevance to the HEP experiments. Currently, only some of these studies have
reached the desired precision generally needed for the respective experiments. Nonetheless, with
the availability of sufficient computing resources in the exascale era and the growth of algorithmic
advances and formal understandings, the next decade we will likely witness a leap in the applica-
tion of the lattice-gauge-theory methods to all these critical areas of research, as explained in this
report.

Importantly, lattice methods also provide a powerful numerical laboratory to explore the nature
of strongly-interacting quantum field theories, both quantum chromodynamics (QCD) and hypo-
thetical new-physics sectors. Strongly-coupled new physics may have properties and experimental
signatures which cannot be reliably predicted using perturbative methods, and extrapolation from
QCD (the only strongly-coupled gauge theory for which we have experimental data so far) may not
be a reliable guide. Lattice calculations have provided concrete predictions for composite Higgs and
composite dark-matter models, narrowing the experimental parameter space where they might be
found, or hinting at new dynamical mechanisms such as the emergence of a light “pseudo-dilaton”
bound state. Lattice calculations have tested our understanding of the larger space of field the-
ories through constructions such as the large-Nc expansion and by confirming the existence of
four-dimensional systems with emergent conformal symmetry. They have also provided nonper-
turbative explorations of theoretical models to inform our understanding of supersymmetric field
theory, string theory, and quantum gravity. In the coming decade, continued lattice study of new
strongly-coupled theories with drastically different behavior than the familiar example of QCD will
require the development of new algorithms and methods, which may feed back to improve the
study of QCD itself or lead to new ideas for physics beyond the Standard Model.

The Particle Physics Community Planning Exercise, a.k.a. “Snowmass”, provides an opportunity
for the community to identify and document a scientific vision for the future of particle physics
in the U.S. and its international partners [6]. Snowmass2021 (the completion of which was de-
layed to 2022 due to the COVID pandemic) includes various scientific “Frontiers” such as Energy
Frontier, Neutrino Physics Frontier, Rare Processes and Precision Measurement Frontier, Cosmic
Frontier, Theory Frontier, Computational Frontier, and Community Engagement Frontier among
others. Each Frontier consists of various topical working groups, each targeting specific research
and development areas within the larger program, along with a number of liaisons who facilitated
the coordination among frontiers with overlapping scientific agendas. The topical group in “Lattice
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Figure 1: The lattice-gauge-theory program touches on many areas of research in HEP as clas-
sified within the topical Frontiers of Snowmass2021 (TF: Theory Frontier, NF: Neutrino Frontier,
RPF: Rare Processes and Precision Measurement Frontier, EF: Energy Frontier, and CompF: Com-
putational Frontier). Areas with high impact and/or high levels of innovation along with select
examples are highlighted in the figure.

Gauge Theory” (TF05) belongs to the Theory Frontier; nonetheless, given the broad application
of lattice field theory in various scientific frontiers in HEP, as well as its close synergy with the
computational research, it was well represented in four other Frontiers.
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The lattice-gauge-theory community engaged in the planning exercise by submitting nearly 60
Letters of Interest to TF05 as primary or secondary category, and nearly 15 whitepapers with major
focus on the role of lattice gauge theory in the HEP research and on new theory and computing
approaches. A number of workshops and conferences were co-organized by the lattice gauge the-
orists within the Snowmass process on topics such as rare processes and precision measurements,
heavy-flavor physics and CKM matrix elements, and neutrino-nucleus scattering. TF05 also or-
ganized dedicated sessions and talks at the (virtual) Snowmass Community Planning Meeting in
October 2020, at the Theory Frontier Conference at the Kavli Institute for Theoretical Physics in
Santa Barbara, CA in February 2022, and at the Snowmass Community Summer Study Workshop
at the University of Washington, Seattle, WA in July 2022.

This report is an attempt to summarize the many conclusions arrived in the Snowmass2021
planning exercise by a vibrant community of lattice gauge theorists in particular, and high-energy
physicists in general, on the critical role of the lattice-field-theory research on the experimental
program in HEP, on the state-of-the-art computational paradigms, and on workforce and career de-
velopment.2 Substantial discussions in this report are drawn directly from a number of whitepapers
that were co-solicited by the TF05 conveners and by the USQCD Collaboration [7–23], along with a
number other important whitepapers and Letters of Interests as referenced throughout the report.
For further details, analysis, and references, the reader should consult these community-driven
studies.

2 Enabling precision quark- and lepton-flavor physics with lattice QCD

2.1 Muon anomalous magnetic moment and tau decay

The current disagreement between experimental measurements [24, 25] and theoretical predic-
tions [26] for the anomalous magnetic moment of the muon aµ (also known as “muon (g − 2)”) is
one of the most significant outstanding tensions with the Standard Model, with a current statisti-
cal significance of 4.2σ [7]. The experimental uncertainty will reduce significantly with additional
data taking by the Fermilab Muon (g − 2) Experiment, with the potential for further reductions by
future experiments at J-PARC [27], PSI [28], or at Fermilab [7]. Further reductions in theory error
are and will continue to be essential to bound, or potentially discover, the presence of new physics
beyond the Standard Model in muon (g − 2).

The present theory error is dominated by uncertainties in two sets of contributions which de-
pend on hadronic physics: hadronic vacuum polarization (HVP), and hadronic light-by-light scat-
tering (HLbL). Each of these contributions may be estimated using a “data-driven” approach, which
uses dispersive analysis to relate the HVP and HLbL to experimental measurements of e+e− annihi-
lation to hadrons and other measured properties of specific hadronic states, predominantly pions.
However, there are tensions between results from the BaBar and KLOE experiments which must be
resolved by new experiments and further study, in order to reach the precision goal of below 0.3%
for the HVP contribution by 2025. Since the magnitude of the HLbL contribution is smaller than
HVP by more than a factor of 50, a 10% precision goal in HLbL contribution will be more than
commensurate with the HVP precision goal.

Lattice gauge theory provides an essential complement to the data-driven approach, allowing
calculation of the HVP and HLbL contributions ab initio without direct reliance on experimental

2Various applications of lattice gauge theory in HEP and planned developments are additionally covered in Topical
Reports within the Energy Frontier, the Neutrino Frontier, the Rare Processes and Precision Measurement Frontier, and
the Computational Frontier of Snowmass2021.
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inputs. Lattice-QCD results are projected to reach similar precision levels to the data-driven ap-
proach by 2025, below 0.5% for HVP and 10% for HLbL. Results from the two approaches may be
combined to obtain a final theory result with the best possible precision, as has already been done
for the HLbL contribution in Ref. [26]. HVP results can also be improved by such a combination,
but this was not done in Ref. [26] as the lattice-QCD calculations are not yet precise enough com-
pared to the data-driven results for the combination to be useful. Reaching these precision goals
will require improved statistics as well as good control over various sources of systematic uncer-
tainty, including continuum extrapolation (which can be improved by calculation at smaller lattice
spacings, although this requires a resource-intensive computational effort), strong isospin breaking
(as most high-statistics lattice-QCD calculations are carried out at mu = md, a small correction is
needed), and infinite-volume extrapolation (which is complicated by long-distance contributions
from two-pion states, although these may be studied independently by exclusive-channel calcula-
tions). For HLbL, the primary systematic effect of concern has to do with volume dependence in
treatment of the photon IR modes. At this point, results from independent groups using different
methods for the photon are in good agreement, and the overall lattice-QCD results are in agreement
with the data-driven estimate.

There is some tension between the most precise current lattice-QCD determination of HVP by
[29] and the world-average data-driven result from Ref. [26], with the lattice-QCD result agreeing
more closely with the experimental result for aµ. It will be crucial for more lattice collaborations to
perform independent calculations of HVP with similar precision to clarify the situation.

For comparisons between lattice-QCD results, the use of Euclidean-time windows which restrict
the analysis to an intermediate time range are extremely useful. This removes the largest contri-
butions from lattice discretization (at short times) and finite-volume effects (at long times) and
allows for the most precise comparisons between independent calculations. There is a mild tension
between some current lattice-QCD results for intermediate-time window for HVP, with further re-
sults forthcoming from additional groups, see Ref. [7] for a summary of the current situation, with
more recent lattice-QCD results for the intermediate window in Ref. [30–33]. Aside from facili-
tating comparisons between lattice-QCD results, the use of time-window results may also provide
an ideal way to combine lattice-QCD and data-driven results over the complementary time/energy
ranges where they are most precise [34].

On a longer time horizon, it will continue to be important for lattice-QCD calculations to pursue
higher precision with uncertainties below the 2025 uncertainty goals, in order to fully leverage the
Fermilab (g-2) result as well as to prepare for future muon (g−2) experiments. This will be achieved
through a combination of increased computational power which should allow for calculations at
even larger physical volumes and smaller lattice spacings, and improved methods and algorithms
for gauge-ensemble generation and measurement with reduced statistical noise.

Aside from muon (g − 2), another leptonic process for which lattice QCD can provide crucial
input is the hadronic decay of τ leptons. The CKM matrix element |Vus| can be determined via study
of inclusive τ decays [35, 36]. Lattice study of the inclusive process is done using a calculational
setup which is very similar to the muon (g − 2) HVP. Study of τ decays can also be useful in
searching for possible new physics [37], where in addition to the inclusive processes it is useful to
study exclusive processes such as τ → (π/K)ν and τ → (π/K/η)πν. The former processes rely
on lattice-QCD determinations of fπ,K , while direct calculations of form factors on the lattice for
the latter processes could help to reduce theoretical uncertainty. Finally, there is also a connection
between τ decays and muon (g − 2), where τ → ππν can be related to e+e− → π+π− by way of
lattice-QCD calculations that correct for the different isospin of the two-pion states [38].

9



Report of the Snowmass 2021 Topical Group on Lattice Gauge Theory

2.2 Quark masses and strong coupling constant

Quark masses, beyond their inherent value as fundamental parameters of the Standard Model, are
also highly interesting in certain physics contexts. The up-quark mass is especially relevant in the
context of the strong CP problem, wheremu = 0 has been proposed as a potential solution [39, 40];
however, lattice-QCD simulations [36] have now determined mu 6= 0 to very high confidence. The
bottom and charm quark masses also determine the associated Yukawa couplings of the Higgs
boson, and so are essential inputs for precision study of H → bb and H → cc decay modes at
current and future colliders [41]. Current lattice-QCD efforts have led to percent-level precision on
both mb and mc, which is sufficient to meet the needs of even future proposed Higgs factories; see
Refs. [17, 21] for further details.

The strong coupling constant at the Z-pole, αs(MZ), is also an important input for high-
precision determination of the Higgs boson couplings, as well as a variety of other theoretical
predictions such as the hadronic width of the Z boson. Although the current determinations of αs
are likely sufficient for the LHC Higgs program, future studies at “Higgs factory” lepton colliders
may require further improvements in αs(MZ) to make full use of the experimental reach [21]. The
current lattice world average determination for αs(MZ) reported by the Flavor Lattice Averaging
Group (FLAG) has a precision of about 0.7% [36]. Improvement of this precision in the future
is limited by systematic errors, primarily associated with perturbative matching at relatively low
energy scales. Further development of “step-scaling” methods may provide a way to obtain lattice
results at higher energies and obtain αs at a level of precision below 0.5% [8].

2.3 Light-quark flavor physics

Light-quark flavor physics is a notable example of the importance of lattice-QCD research at the
intensity frontier, impacting the search for new physics at very high energies. Deriving a theoretical
prediction of decay and mixing of pions and K mesons in the Standard Model from the quark-
level CKM theory has been one of the most active areas both in experimental and lattice-QCD
communities. While the results of calculations of simple physical quantities have been improved
in accuracy, more involved calculations such as those involving multi-hadron states, which were
previously very difficult, have become possible with the development of computational methods,
techniques, software, and hardware.

From experimental results on leptonic and semileptonic decays of pions and kaons, precise esti-
mates of the CKM matrix elements |Vus| and |Vud| can be obtained, providing important constraints
on new physics through tests of the unitarity of the CKM matrix. This requires precise theoretical
determinations for decay constants fK/fπ and the semileptonic vector form factor f+(0). After
decades of efforts by lattice-QCD researchers, these quantities have been determined with a very
high precision of about 0.2% [36]. At this level of precision, it is essential to maintain control over
systematic effects such as corrections due to quantum electrodynamics (QED) [42]. Surprisingly,
the FLAG world average currently reported is in approximately 3 σ tension with CKM unitarity,
warranting further cross checks and future improvements.

The direct (parametrized by ε′) and indirect CP violation (ε) in KL → ππ decay involving all
three generations of quarks have great sensitivity to possible new sources of CP violation and, at
the same time, need significant advances in lattice-QCD calculation [9]. The progress of the cur-
rent state-of-the-art lattice-QCD calculations of ε′/ε have achieved about 40% precision [9, 43] and
is consistent with experimental results from NA28 and KTeV. The calculation relies on chiral lat-
tice quarks (domain wall fermions, DWF), the theoretical treatment of multi-hadron processes in
Euclidean finite-volume spacetime (Lellouch-Lüscher formalism), and the use of operator renormal-
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ization and matching between lattice and continuum (RI/SMOM nonperturbative renormalization).
The final ππ state of the kaon decay on a finite-volume lattice is prepared in two complementary
ways: as a lowest-energy state of two pions obeying G-parity boundary conditions, and as an ex-
cited state with periodic boundary conditions.

The very small mass difference between KL and KS , ∆MK = 3.482(5) × 10−12 MeV, gives a
possibility to constrain new physics at very high scales, O(1000) TeV. A Standard-Model calculation
of ∆MK with lattice QCD implementing the important charm quark loop and GIM mechanism was
reported with 40% precision [9, 44, 45] together with the closely related long-distance contribution
to ε. This research identified and removed the unwanted contribution from K,π, ππ, η intermediate
states between two electroweak operators, an artifact of Euclidean spacetime which appears in
many other important processes involving multi-hadron intermediate states.

Future plans for ε′/ε calculation include improvements of the discretization error using fine
lattice spacings (with∼ 3, 4, 5.5 GeV lattice cutoffs), incorporating virtual charm quarks, theoretical
and computational studies of the effect of isospin breaking, which is enhanced by the ∆I = 1/2 rule,
and higher-order perturbative-QCD calculations for the four-point quark operators in the effective
electroweak Hamiltonian. The next decade should see a reduction of the current uncertainty by a
factor of about 4, with estimated computational cost required being approximately 2000 exaflop-
hours. The lattice-QCD community further plans to extend the light-quark studies to rare Kaon
decays and to inclusion of electromagnetism in various light-flavor processes to meet the required
precision goals in various searches for deviations from the Standard Model.

2.4 Heavy-quark flavor physics

Electroweak decays of bottom and charm quarks provide fertile experimental ground for rigorous
tests of the Standard Model, with the potential to uncover new physics. There have been persistent
tensions between theory and experiment for several years, most prominently in decays involving
B mesons [46–48]. Although no single deviation is significant enough to provide unambiguous
evidence of new physics, anticipated improvements from ongoing and future experiments such as
Belle II, LHCb, ATLAS, CMS, and BES III may lead to the discovery of new physics in these channels.
However, the possibility of discovering new physics will require simultaneous improvements in
theoretical precision. Lattice QCD has played a central role in theory predictions related to a wide
range of electroweak decay processes involving charm and bottom quarks, in several cases at levels
of precision smaller than current experimental uncertainties. A detailed review of lattice QCD and
heavy-flavor decays can be found in a recent Snowmass whitepaper [19].

Systematic improvement of existing calculations, as well as development of altogether new
methods to access processes which have not yet been explored on the lattice, will be crucial for un-
derstanding the nature of these anomalies in the years to come. For processes such as B → µ+µ−

or D → K`ν, theory errors are already well under control, and future improvements will rely
on tackling small sources of systematic uncertainty such as strong-isospin breaking and QED ef-
fects. Improvements of the precision of lattice calculations for B-meson semileptonic decays are
still required to match the precision of Belle II; here, smaller lattice spacings and high statistics
can have a large impact. Other decays with current anomalies such as B → K∗`+`− with unstable
hadrons in the final state will require further work, but should yield useful lattice-QCD results in
the near future. The required methodology to treat 1 → 2 hadronic processes in lattice QCD has
been fully developed as demonstrated by the results for K → ππ (discussed above), but the pres-
ence of multiple final states due to the kinematics of heavy-meson decays makes such calculations
significantly more challenging. Finally, some channels for understanding B anomalies require new
methods at the forefront of theoretical understanding. For example, tensions between inclusive and
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exclusive determinations of CKM matrix elements can be probed directly if lattice-QCD calculations
of inclusive decay processes could be done. Such a calculation is equivalent to extraction of the
(Minkowski-spacetime) spectral density from (Euclidean-spacetime) correlation functions, which is
theoretically difficult, but the new ideas proposed in recent years [49–54] provide a path forward.

Although the B anomalies and other potential searches for new physics provide an interesting
and timely motivation for the study of heavy-quark decays, these decay processes are also of critical
importance for determination of fundamental parameters of the Standard Model: the CKM matrix
elements. Precise calculations of form factors and decay constants from lattice QCD are essential
in using experimental results to extract the CKM matrix elements. A wide array of heavy-quark
processes are relevant in this context, including neutral B meson mixing and lifetimes, leptonic
and semileptonic decays of B and D mesons, radiative decays (including real photons in the final
state), and decays of baryons containing heavy quarks. As in the specific examples given above,
future progress will rely on a mixture of refinement of existing calculations to higher precision, and
new theoretical developments to enable calculations of more complex decay processes from lattice
QCD.

3 Uncovering new-physics signals in nucleons and nuclei with lattice
QCD

3.1 Neutrino-nucleus scattering for neutrino phenomenology

Neutrino oscillation experiments have provided direct evidence that neutrinos have nonzero masses
arising from new BSM interactions. Future accelerator neutrino experiments such as Deep Un-
derground Neutrino Experiment (DUNE) and Hyper-Kamiokande aim to determine the mass and
mixing parameters governing neutrino oscillations to unprecedented precision, shed light on the
neutrino mass hierarchy and the presence of CP violation in the lepton sector, and search for poten-
tial signals of new physics. The analyses of these experiments require as input the incident neutrino
energy, which is a priori unknown. Precise predictions of neutrino-nucleus cross sections are, there-
fore, necessary input to neutrino event generators that are used to reconstruct the neutrino energy,
and to estimate the expected event rates [55]. As the experimentally-common target media are
nuclear isotopes such as carbon, oxygen, and argon, deep knowledge of the underlying nuclear
physics of response of nuclei to electroweak probes is crucial. Unfortunately, such knowledge is
currently incomplete for both nucleonic and nuclear-level quantities that enter the description of
relevant cross sections [10]. Only a concerted effort in combining methods such as lattice QCD,
nuclear effective theories, phenomenological models, and ab initio nuclear many-body theory can
ensure that reliable cross sections are provided to the event-generator community. Lattice QCD will
play a crucial, and in some instances complementary, role in this theoretical endeavor.

Drawing conclusions from recent community whitepapers [10, 56], one can enumerate the
essential quantities in this program that can be accessed via lattice QCD. Depending on the neutrino
energy, Eν , several different reaction channels can contribute to the final-state event rates, each
demanding certain nonperturbative quantities to be evaluated:

– When Eν . 100 MeV, the main interaction channels are “coherent elastic neutrino-nucleus
scattering” (CEvNS) and exclusive inelastic processes involving nuclear excited states. The
nucleon electric and magnetic form factors that contribute coherently to CEvNS cross sections
are known precisely from electron-scattering experiments [57], and the largest uncertainties
arise from nuclear structure functions including neutron distributions; see [10] for more de-
tails. Lattice-QCD calculations of nucleon axial form factors and of multi-nucleon correlations
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and currents could reduce other subdominant but significant uncertainties in low-energy cross
section calculations.

– When Eν ∼ 0.1 − 1 GeV, the dominant reaction mechanism is “quasielastic scattering”, in
which the nucleus transitions to another state but the final state includes a lepton and a
nucleon that can be detected in experiment. Both vector and axial-vector currents make
significant contributions to quasielastic scattering. Nucleon axial and induced pseudoscalar
form factors are, therefore, crucial ingredients to calculations of charged- and neutral-current
neutrino-nucleus scattering cross sections within nuclear many-body models and neutrino
event generators. Lattice-QCD calculations are already reaching competitive precision with
experimental determinations of axial form factors [58–63].

– When 1–3 GeV . Eν . 3 GeV, reaction mechanisms involving resonance production domi-
nate the cross section and interactions with correlated pairs of nucleons also contribute signif-
icantly. This is called the “resonance–production region”. Precise determinations of ∆, Roper,
and other N∗ resonance properties and transition form factors from lattice QCD would in-
form models of resonant neutrino scattering by providing results that will be complementary
to experimental pion-nucleon and neutrino scattering data. Lattice QCD has come a long way
over the past decade to enable accessing the physics of resonances and excited spectrum of
QCD, as noted in Sec. 4. Preliminary calculations of nucleon-pion scattering and transition
form factors have been reported [64–67], and realistic calculations of the relevant transitions
in the neutrino-nucleus scattering in this kinematic range could be in reach.

– When Eν ∼ 3− 5 GeV, multiple pions and a variety of N∗ resonances can be produced in the
final state, a process which is called “shallow inelastic scattering”. It is presently computation-
ally infeasible to include the multitude ofNπ, Nππ, Nπππ, and other multi-hadron scattering
states in the calculations. Besides the complexity of correlation functions that need to be con-
structed and evaluated, a dense multi-particle spectrum in the finite volume of lattice-QCD
calculations makes controlling uncertainties associated with excited-state effects challenging.
Furthermore, the existing formalisms that connect scattering and resonant properties to the
lattice-QCD output are complex, and the generalization of such formalisms, or EFT-based
matchings, for more than three-hadron systems are not well developed. Formal progress in
this area is expected over the next decade. On the other hand, lattice-QCD calculations of
nucleons’ hadron tensors could give access to inclusive cross sections when decompositions
into exclusive channels are infeasible. First efforts at computing this quantity using lattice
QCD have been reported [68, 69], but further progress is challenged by the need to solve an
ill-posed inverse problem to relate the computationally accessible Euclidean hadron tensor
to its experimentally relevant Minkowski counterpart, see Sec. 4.1. Advancing solutions to
this problem will likely constitute an active area of research in the coming years, and could
bridge the existing gap between the shallow- and deep-inelastic regions in neutrino-nucleus
scattering.

– When 5 GeV . Eν , one enters the “deep inelastic region”, where the underlying physics de-
scription is simplified by the factorization of hard scattering amplitudes calculable in pertur-
bative QCD and nonperturbative PDFs. As discussed in Sec. 4.1, parton distribution functions
are not directly accessible in lattice QCD since they are defined via a Minkowski light-cone
matrix element of partonic-level operators in the nucleon while lattice-QCD computations are
performed in Euclidean spacetime. PDFs can, however, be accessed indirectly via resorting to
a Mellin-moment expansion of the PDFs, where lattice QCD can provide the first few moments
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by computing matrix elements of local operators that are insensitive to the time signature of
spacetime. PDFs can also be accessed via quasi-PDFs (or related quantities that are Euclidean
counterparts of the Minkowski PDFs) that are evaluated in the large-momentum frame of the
nucleon and can be matched to the true PDFs in the limit of infinite momentum perturba-
tively. Significant progress has been reported in recent years in this problem, see Sec. 4.1,
and it is expected that over the next few years, reliable lattice-QCD determinations of nucleon
isovector unpolarized and polarized PDFs at intermediate Bjorken-x parameter will provide
important inputs for neutrino-nucleus scattering cross sections in the deep-inelastic scattering
region.

Not only can lattice QCD provide critical single-nucleon input, it can also crucially inform the
nuclear many-body calculations of experimentally relevant nuclei by illuminating and quantifying
nuclear effects relevant for neutrino interactions. Nuclear EFTs characterize systematically single-
, two-, and higher-body effects in form factors, transition amplitudes, and structure functions in
terms of a number of low-energy constants in interactions and currents, whose values can be con-
strained by matching to lattice-QCD calculations in light nuclei (when experimental input is lim-
ited). Proof-of-principle studies of nuclear effects, including: in electroweak transition amplitudes
of light nuclei [70–75]; in (the zero-momentum-transfer limit of) their vector, axial, scalar, and
tensor form-factors [76]; and in their partonic momentum fractions [77] have emerged in recent
years, and improved calculations with better-controlled uncertainties are planned over the next
decade. Constraining the corrections dominantly arising from two- and higher-body current inter-
actions with correlated pairs of nucleons using lattice QCD will be another important contribution
to the neutrino-nucleus scattering program.

For both nucleon and multi-nucleon calculations, an important remaining challenge is to con-
trol and isolate contaminating excited-state contributions at earlier Euclidean times in the face of
an exponentially degrading signal-to-noise in nucleonic correlation functions at later times. The de-
velopment and application of variational techniques in accessing spectral and transition amplitudes
in lattice QCD [78–80] will continue in the coming years to systematically address these effects.
Notably, constraints on the resonant transition amplitudes in the resonant-production region enable
the quantification of the excited-state effects due to these resonances in the elastic and quasielastic
regions. Hence, lattice-QCD calculations of various quantities stated above are complementary to
advancing this program.

3.2 Electric dipole moments for probing CP violation

Successful calculations of the contributions of CP-violating operators to the neutron, proton, and
nuclear electric dipole moments (generically called nEDM here) using lattice QCD are necessary to
understand and quantify the fundamental nature of CP violation, a promising way to elucidate new
physics beyond the TeV energy scale, including the mechanism for baryogenesis. Lattice QCD can
provide the matrix elements of quark- and gluon-level operators such as the vacuum angle θ, quark’s
(chromo-) EDM, Weinberg three-gluon and four-quark operators, etc., within hadronic states. The
community envisions [11] deriving the contribution of physics beyond the Standard Model to nEDM
by combining these lattice-QCD calculations with their coupling strengths at the hadronic scale
obtained using EFT methods. To fully utilize the predictive power of planned experimental limits
realizable in the next decade, e.g., 10−28 e·cm for neutron EDM [81, 82] and 10−29 e·cm for proton
EDM from the storage-ring experiments [83], a minimal target uncertainty of ∼ 25% is required
for the CP-violating part of the matrix elements of the operators with mass dimensions up to 6 [84],
whereas currently some of them are known to only an order of magnitude.

14



Report of the Snowmass 2021 Topical Group on Lattice Gauge Theory

In the past decade, a great deal of progress has been made in the calculations of the EDM of the
nucleon. Computations include those for the dimension-4 vacuum angle θ (the strong CP problem),
the quark EDM and quark chromo-EDM operators at dimension-5, and the dimension-6 Weinberg
three-gluon operator. New techniques and formalism to correctly extract the CP-violating part of
their matrix elements within the nucleon ground state, i.e., the form factor F3(Q

2), are now devel-
oped [85–87]. Despite the progress, the contribution of the θ-term to nEDM remains unresolved,
primarily due to the smallness of the coupling between the gluonic topological charge and spin
dynamics of the nucleon, which vanishes in the chiral limit. Furthermore, possible lattice artifacts
such as the contributions of light Nπ multi-hadron excited states can be large and are not yet fully
resolved. Currently, the statistical uncertainties from the Monte-Carlo simulations at the physical
light quark masses, as well as the systematics of the chiral extrapolations from larger masses, re-
main leading sources of uncertainties [88]. The situation is much better for the contribution of
the quark-EDM operator, which is given by the flavor-diagonal tensor charges, and results with a
total uncertainty of < 5% are available [36]. The quark chromo-EDM operator and the Weinberg
three-gluon operator have complicated renormalization and mixing structures [89, 90], and as of
now, only preliminary calculations exist [87, 91]. The CP-violating four-quark operators have not
yet been investigated using first-principles techniques like lattice QCD.

Interpretation of experimental results on atoms and nucleons also needs nuclear- and atomic-
physics calculations using as inputs the CP-violating electron-nucleon and nucleon-nucleon cou-
plings, the important long-distance part of the latter being mediated by the CP-violating pion-
nucleon coupling. Of these, calculations in the last decade have provided the matrix elements
necessary for the leading CP-violating electron-nucleon couplings at a few to 10% level [36]. Meth-
ods have also been proposed for the calculation of the CP-violating pion-nucleon couplings [87, 91],
but no results are available yet. These calculations will continue to progress and mature over the
next decade to support a vibrant EDM experimental program [92].

3.3 Baryon and lepton number/flavor nonconservation

3.3.1 Lepton-number nonconservation and neutrinoless double-β decay

Searches for lepton-number-violating interactions leading to neutrinoless double-β (0νββ) decay
probe fundamental questions about the nature of neutrino masses and will provide complementary
insights to neutrino-oscillation experiments. The search for a 0νββ decay will intensify with the
forthcoming commissioning of ton-scale experiments in the U.S. and worldwide [93–95]. A poten-
tial discovery will have profound implication for our understanding of neutrinos, i.e., whether they
are of a Dirac or Majorana type, and will elucidate the existence of one or more plausible lepton-
number-violating (LNV) scenarios at high-energy scales. Nonetheless, given that such a decay is
only expected for a handful of medium- and high-mass atomic isotopes, deciphering any potential
decay signal and tracing it back to the underlying LNV mechanism demands a multi-faceted and
concerted theoretical campaign that involves both high-energy and nuclear physicists. As argued in
a recent Snowmass whitepaper [12], an overarching goal of this program is to compute 0νββ rates
with minimal model dependence and quantifiable theoretical uncertainties by advancing progress
in particle and nuclear EFTs, lattice QCD, and nuclear few- and many-body ab initio methods.

By matching BSM models of 0νββ to hadronic EFTs, a systematic expansion of the 0νββ rates is
possible in the few-nucleon sector [96–101], but these EFTs need to be complemented with values
for low-energy constants (LECs). With the lack of experimental input, lattice QCD, which computes
the relevant matrix elements directly, is the only way to determine these LECs with quantifiable
uncertainties. Currently, the first computational targets for lattice QCD are the nn → pp matrix
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elements in various LNV scenarios. These matrix elements can be classified into two categories:
i) matrix elements of local quark-lepton-level operators that have resulted from LNV scenarios
involving a high mass which has been integrated out down to the QCD scale, and ii) matrix elements
of nonlocal quark-lepton-level operators that involve the propagation of a Majorana neutrino of
either low mass (referred to as the minimal extension of the Standard Model) or sterile neutrinos
with a mass that cannot be integrated out at the QCD scale.

The necessary lattice-QCD calculations for both classes proceed in three stages. First, two-
nucleon spectra and elastic scattering amplitudes need to be computed and constrained, then the
QCD two-nucleon matrix elements in the relevant scenario are determined and computed, and fi-
nally the physical infinite-volume, Minkowski-space transition amplitudes are extracted, via direct
or indirect mapping to the EFT descriptions that feed into the nuclear many-body calculations. With
the latter step being partly developed for various matrix-element classes in recent years [102–105]
and continuing to be advanced, the challenge in the coming years would be to achieve accurate and
precise determination of the two-nucleon spectra and matrix elements. Lattice-QCD calculations
of two-nucleon spectra and scattering are necessary for ensuring that operators that couple well to
the physical two-nucleon systems are identified for the use in nn→ pp processes, systematic uncer-
tainties are identified and sufficiently controlled for NN observables, and infinite-volume transition
amplitudes can be extracted from finite-volume matrix elements, a process that requires access to
NN finite-volume energies and energy-dependence of the NN scattering amplitudes near transi-
tion energies. The two-nucleon spectroscopy even at unphysically large quark masses has proven
challenging given a severe signal-to-noise degradation issue and a dense excited-state spectrum as
discussed in Sec. 4, but the use of variational techniques which have begun in the NN sector [78–
80] and increased computing resources in the exascale era may resolve the situation in the near
term. First calculations in simpler pionic systems are complete [106–109], and the required pre-
cision on the NN spectra and matrix elements from lattice QCD to impact the nuclear many-body
calculations of experimentally relevant nuclei are identified in a minimal extension of the Standard
Model [110]. Such studies will continue to guide the computational effort in the coming years.

The community has further identified the next stages of the program, once the first and yet
challenging goals stated above are achieved [12]. These include the evaluation of a range of
matrix elements (for example those involving both pions and nucleons) relevant for constraining
contributions at higher orders in the pertinent hadronic EFTs, hence allowing for tests of the EFT
power counting, as well as evaluating the nn → pp matrix elements in light nuclei to quantify
multi-nucleon effects, guiding the EFT descriptions.

3.3.2 Baryon-number nonconservation, proton decay, and n− n̄ oscillation

There is a long history of experimental searches for baryon-number-violating interactions that lead
to proton decay. Current experimental bounds from Super-Kamiokande will be significantly im-
proved by upcoming searches at DUNE and Hyper-Kamiokande. To constrain BSM theories that
predict observable proton decay, matrix elements of three-quark operators between experimentally
relevant initial and final states are needed. Several lattice-QCD calculations of these matrix ele-
ments have been computed using a proton initial state [111–115], including recent calculations
with approximately physical quark masses. A challenge for future studies will be to consider nu-
clear effects on proton-decay matrix elements and provide further QCD input to nuclear many-body
calculations of proton decay in nuclei.

Complementary to the searches for baryon-number (B) violation in proton decay and lepton-
number (L) violation in 0νββ decay, neutron-antineutron (n− n̄) oscillations probe the violation of
baryon number by 2 units (∆B = 2), and can directly probe breaking of the Standard Model con-
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served quantity B-L (unlike proton decay, which conserves B-L.) Constraints on the oscillation time
from experiments can test several low-scale baryogenesis scenarios [116–118], and are therefore
extremely valuable. The best limits on the oscillation time come from oscillation detection in nuclei,
and are expected to be further improved in DUNE. Constraints also arise from cold neutron-beam
experiments [119] and more sensitive searches will be performed at a proposed experiment at the
European Spallation Source [120]. These measurements are theoretically clean and can be related
to constraints on the BSM physics directly using lattice-QCD results. In a Standard Model EFT, the
n− n̄ oscillations proceed via a set of six-quark operators whose matrix elements can be evaluated
in the pertinent states using lattice QCD. If the initial and final states are set to the neutron and
its antiparticle, the results can directly apply to the neutron-beam experiments. Such results have
emerged in recent years with relatively large statistical uncertainties but reasonably well-controlled
systematic uncertainties [121]. They point to up to an order of magnitude enhancement in the ex-
pected rate compared with quark-model estimates, hence improving the reach of current and future
experiments into the BSM parameter space. While these calculations will improve in precision in
the coming years, other feasible studies such as those involving higher-dimensional six-quark op-
erators with electromagnetic current insertions can be pursued—a scenario that is motivated by
candidate models of (B-L)-violating n − n̄ oscillations not suppressed by the presence of magnetic
fields [122].

If nucleon conversion occurs in nuclear media, the obtained rates in vacuum can only be con-
trasted with experiment upon an EFT or model matching to nuclear many-body calculations. As
argued in a recent community whitepaper [23], challenging calculations for lattice-QCD physi-
cists will be the matrix elements of the same operators in light nuclei to inform the EFT analysis.
The challenge, besides a severe exponential signal-to-noise degradation and enhanced excited-
state contamination, is in the production of multiple final-state hadrons, which complicates trans-
lating the Euclidean matrix elements to physical oscillation amplitudes. Nonetheless, given the
progress in multi-hadron physics from lattice QCD as reported in Sec. 4, and motivated by the
experimental searches using deuterium [123] that are augmented by a recently-developed EFT de-
scription [124, 125], the lattice-QCD community is set to explore possibilities for calculations of
six-quark matrix elements in two-nucleon systems that would provide unknown EFT inputs, and
would inform power-counting choices, in the upcoming years.

3.3.3 Lepton-flavor nonconservation and muon to electron conversion

While the discovery of neutrino oscillations establishes the violation of lepton-flavor conservation
in Nature, in minimal extensions of the Standard Model that include only neutrino masses and
mixing, branching ratios for lepton-flavor-violating (LFV) decays of charged leptons are small (<
10−54) [126, 127]. Processes such as µ → e, µ → eγ, and µ → eee in nuclei are expected to
probe other LFV mechanisms at scales up to 103 TeV in the current and future experiments, with
sensitivities to branching ratios in the range 10−13 − 10−16. Great enhancements are expected,
in particular, in next-generation experiments such as Mu2e at Fermilab and COMET and DeeMe
at J-PARC, as discussed in a recent Snowmass whitepaper [128]. The success of future searches
of µ → e conversion for the underlying LFV mechanisms depends upon accurate matrix elements
of the associated operators in relevant nuclei such as aluminum and carbon. Again lattice QCD
enters by providing the nonperturbative matrix elements in the nucleon for two sets of operators at
dimension six: i) a range of LFV two-quark–two-lepton operators, and ii) quark bilinears coupled
to an electromagnetic field which in turn converts the muon flying by to an electron. Lattice QCD
can also compute the matrix elements in light nuclei to inform the EFTs that are used in nuclear
many-body calculations to predict conversion rates in the isotopes of relevance in experiment.
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The needed coupling of the external probe (quark density) to single nucleons are in turn a set of
nucleon form factors (scalar, vector, axial, tensor, and pseudoscalar) where the relevant momentum
transfer to nucleon is set by the mass of the muon. While controlled few-percent precision for the
zero-recoil limit of the form factors, or namely charges, have been achieved with the lattice-QCD
technique, calculations of various form factors will still need to be completed in the coming years
with a full account of uncertainties [36, 129–139].

As argued in a recent whitepaper [23], a key challenge is reaching the low-momentum-transfer
region of the form factors by enlarging the lattice volume or the use of appropriate boundary
conditions. Furthermore, for the proposed LFV Higgs-mediated processes [140, 141], a set of scalar
form factors as well as the matrix elements of gluonic operators are needed. Additionally, for spin-
dependent mechanisms, other tensor structures, especially the flavor-diagonal axial form factor,
become relevant [142]. These are computationally more challenging, generally requiring higher
statistics, but recent developments have allowed quantities of this type to be reliably estimated
with lattice QCD [36]. An even more challenging endeavor in the coming years is constraining
the form factors in light nuclei in an attempt to quantify the nuclear modifications to the single-
nucleon responses. Preliminary lattice-QCD calculations for nuclei with atomic number A < 4 at
large values of the quark masses point to large (∼ 10%) nuclear modification in the scalar matrix
element at zero recoil [76], which may become significant in larger nuclei. This motivates the need
for robust lattice-QCD constraints in light nuclei at the physical values of the quark masses.

3.4 Precision β decay for searches of new physics

Besides the avenues listed above that use nucleons and nuclei in searches for violations of the
Standard Model and searches for new physics, there are other more conventional measurements
that have reached the level of precision required to probe potential BSM effects, provided that the
theoretical Standard-Model predictions can become competitive with the experimental uncertainty.
A prominent example is the single-β decay of nucleons and nuclei, where measurements of rate at
the 0.1% level or better will provide competitive constraints for certain BSM scenarios compared
with the LHC [143–145]. This will constrain the five dimensionless couplings parameterizing the
various BSM couplings of the left-handed lepton current, namely a correction to the usual Standard
Model left-handed quark current operator (εL), a right-handed quark-current operator (εR), and
the three chirality-flipping scalar, pseudoscalar, and tensor quark operators (εS,P,T ) [143–145]. The
matrix elements of the corresponding operators in the nucleon, namely isovector nucleon charges,
provide key inputs into matching to the nucleon- and nuclear-level EFTs that are used to calculate
the rate—quantities that lattice QCD can compute.

As stated in a recent community whitepaper [142], to compete with the LHC in constraining εS,T
at the few ×10−4 level, which would probe effective scales of new physics close to 10 TeV, lattice-
QCD calculations of scalar and tensor charges of the nucleon should reach < 10% precision—a
goal that has been already achieved in several studies [146–150]. Furthermore, a 0.2% − 0.3%
knowledge of the axial charge of the nucleon, gA, will improve the model-independent bounds on
possible right-handed currents [143, 151]. The lattice-QCD results on this quantity have started
to reach few- to percent-level precision [36, 150, 152], but sub-percent-level precision will likely
require substantial exascale resources in the coming years. Such precise calculations may also help
resolve the current ∼ 4% discrepancy in the results of neutron lifetime experiments using magnetic
bottle and beam techniques [153].

Lattice QCD can also help resolve the current puzzle in the apparent few-sigma deviation in the
CKM unitary test arising from radiative corrections in β decays [154]. For example, lattice-QCD
constraints on the time-ordered product of weak and electromagnetic currents between neutron
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and proton at several momenta can calibrate the input into these calculations. Additionally, lattice
QCD can directly compute the radiative corrections by computing the neutron to proton conversion
in the presence of QED interactions. Both of these calculations are challenging but recent formal
developments and numerical demonstrations in similar problems have paved the way to obtaining
reliable estimates [155, 156].

3.5 QCD calculations for dark matter

3.5.1 Dark-matter cross sections with nucleon and nuclei

While gravitational signatures have confirmed the existence of dark matter in the universe, unrav-
eling its nature remains an active area of research in HEP. In particular, directly detecting dark
matter through its interactions with ordinary matter is the subject of great experimental efforts
in the U.S. and elsewhere, as emphasized in a recent Snowmass whitepaper [157]. The lack of
observation to date has greatly reduced the parameter space of candidate models such as weakly
interacting massive-particle (WIMP) models. It is expected that experiments planned over the next
decade [157] will be able to probe the WIMP-nucleus cross section down to the “neutrino floor”,
below which direct detection of dark matter will become much more challenging. Once again,
accurate nuclear matrix elements are required to reliably convert limits on the cross sections to the
WIMP mass or the parameters of other plausible models, and hence improve the confidence in the
theoretical implications of the experimental outcomes. The various dark-matter candidates can be
described systematically using Standard-Model EFT methods, and at dimension six and seven, these
induce quark-bilinear operators of various Dirac structures. The role of lattice QCD is to constrain
the matrix elements of these operators in nucleons and light nuclei that can then be incorporated
into nucleon/nuclear EFTs that supplement nuclear many-body calculations in experimentally rel-
evant targets such as xenon [158–166].

Notable progress has been reported over the last decade in approaching few-percent-level pre-
cision in single-nucleon matrix elements of zero-momentum-transfer flavor-diagonal scalar, tensor,
pseudoscalar, and axial currents with up, down, and strange quark contents as reported in the pre-
vious sections. Enhanced control of uncertainties in the determinations of various form factors will
also be feasible in the coming years. As pointed out in a recent community whitepaper [142], to go
beyond a naive impulse approximation in which nuclear effects are ignored, a few-percent precision
on the relevant matrix elements in light nuclei may be required using lattice QCD—a challenging
goal that may only be achieved with sufficient exascale resources. Nonetheless, proof-of-principle
calculations of the relevant matrix elements in light nuclei have started in recent years, aiming to
shed light on the relative importance of nuclear effects with various currents, albeit at unphysically
large quark masses [76].

There are many other possibilities for dark-matter interactions with Standard-Model particles
beyond the scalar portal. For example, spin-dependent and velocity-dependent dark-matter inter-
actions have been proposed, and constraining these models using experimental searches requires
the knowledge a range of other nucleon- and nuclear-level matrix elements to be computed via
lattice QCD, including PDFs, the progress in which is discussed in Sec. 4.1. Lattice-QCD determina-
tions of the nonperturbative dynamics of dark-matter–nucleus scattering will, therefore, continue
to contribute to the multi-scale matching between low-energy experiments and dark-matter models
over the next decade.
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3.5.2 QCD properties and axion cosmology

The QCD axion has been proposed as a dynamical solution to the strong CP problem, which in
certain regions of parameter space can also serve as a dark-matter candidate; see Ref. [167] for
further discussion. An alternative solution which was considered for some time was the possibility
that the up quark is massless. This hypothesis is now strongly disfavored by lattice-QCD calcula-
tion showing a nonzero up-quark mass [36], see also the more direct probe of topological mass
contributions using lattice QCD in Ref. [168]. Because of its connection to the strong CP problem,
certain properties of the axion (and therefore, potentially, of dark matter) are related to dynamical
properties of QCD.

In particular, the axion mass ma can be related to the QCD “topological susceptibility” χ, the
second derivative of the free energy with respect to the CP-violating θ parameter. This relationship
is not sufficiently constraining to predict a unique value for ma, but the dependence of ma on the
temperature T is relevant for predicting the relic density of axion dark matter. Lattice calculations of
the temperature dependence of χ(T ) have already been carried out [169–171] at θ = 0. However,
since the value of θ is dynamical in the early universe, understanding of axion cosmology in full
generality requires knowledge of the dependence of χ on both T and θ. Lattice simulation of QCD
at finite θ suffers from a sign problem, and calculations of χ at arbitrary values of θ will require
new approaches such as quantum simulation [20].

4 Elucidating hadron structure and spectrum for High-Energy Physics

4.1 Parton distribution functions

Hadrons are boosted to relativistic energies in collider experiments, such as in the LHC. Hadron-
hadron collisions produce a plethora of events in particle detectors that are analyzed to test Stan-
dard Model predictions and to search for signs of new physics beyond the Standard Model. At
these energies, the scattering proceeds via the partonic constituents of the hadron, and hence a
set of universal PDFs is required to predict the rates of the various processes. These distributions
are best determined by “global fits” to all the available deep inelastic scattering and related hard
scattering data [172]. Unfortunately, these phenomenological extractions are subject to an inverse
problem. To solve this, one can resort to a factorization of the cross sections into hard scattering
amplitudes, which can be calculated perturbatively, and nonperturbative PDFs. One then proceeds
to introduce parameterizations of the PDFs that are fit to reproduce simultaneously the various
cross sections. Since there is more than one such parametrization that can describe the data within
uncertainties, this procedure introduces a systematic error. Additionally, there are significant un-
certainties on the PDFs in the low-x and large-x kinematics, where x refers to the fraction of the
hadron momentum carried by the struck parton in the hadron’s infinite-momentum frame. Another
area where the global fits are unable to produce reliable predictions due to lack of pertinent experi-
mental data is the flavor separation of unpolarized and polarized PDFs – particularly in the strange
sector, which plays an important role in precision electroweak physics such as the determination
of the W -boson mass.3 First-principles determinations of the PDFs based on QCD are, therefore,

3Furthermore, the precision with which the spin-dependent PDFs such as helicity and transversity PDFs can be in-
ferred is limited relative to upolarized PDFs and these are needed to gain insight into the spin structure of the nucleon.
Other important quantities such as transverse-momentum-dependent PDFs and generalized PDFs that allow a three-
dimensional picture of the hadron to be elucidated have also remained largely unconstrained experimentally.
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a critical task for the lattice-gauge-theory program as the LHC enters a high-precision era over the
next decade [13, 173, 174].

To understand the role of lattice QCD and its reach and limitations in the PDF program, it is
important to first recognize that the lattice-QCD methodology in its present form does not allow for
a direct evaluation of the PDFs, which are Fourier transformations of Minkowski-space light-cone
correlations of quark and gluon fields in the hadron. This is because lattice-QCD calculations are
preformed in Euclidean spacetime in order to enable a well-defined Monte Carlo sampling of the
QCD path integral. In an operator product expansion of the hadron tensor, the DIS region can be
described by matrix elements of local twist-2 operators at leading order which are accessible via
the lattice-QCD method. These matrix elements give access to Mellin moments of distributions,
from which the collinear PDFs can, in principle, be obtained from an inverse transform. Lattice
QCD calculations of the lowest moment of PDFs have been successfully carried out over the years,
see Refs. [173, 174] for reviews, but they are often limited to the first two moments due to a
power-divergent operator-mixing issue resulting from reduced lattice symmetries compared with
the continuum. New ideas to extend the reach of lattice QCD to higher moments are proposed [175,
176] and will continue to be tested in the coming years.

A full reconstruction of the PDFs requires many moments to enable a reliable inverse trans-
form. Since only a few moments have so far been constrained, this method only gives access to
momentum-space “global” information about partons, which makes it challenging to connect di-
rectly to a particular experiment in which particles of definite momentum are measured. This has
promoted a range of alternative approaches that provide “local” information in momentum space
by enabling direct access to the x-dependence of PDFs. A class of approaches that go beyond in-
dividual moments express the hadron tensor in the DIS region in terms of a Compton amplitude,
and more generally current-current correlators in Euclidean space [68, 177–185]. These methods
typically use either a large momentum transfer to the currents that generate an operator prod-
uct expansion or short-distance factorization directly in coordinate space. Lattice-QCD data on a
range of coordinate-space correlations can be used to constrain PDFs through solving the inverse
problem, either through a parametrization, neural network fit, or other Bayesian approaches such
as the use of Backus-Gilbert and maximum-entropy methods [68, 186–191]. Another increasingly
popular approach which has generated promising results in recent years is the so-called quasi-
PDFs method, which can be directly calculated on a Euclidean lattice [192]. This method does
not involve solving an inverse problem, giving access to the PDFs via an ordinary time-independent
momentum distribution function of a quark in the hadron. The connection only holds in the infinite-
momentum frame of the hadron, nonetheless an effective theory named large-momentum effective
theory (LaMET) enables systematically characterizing the corrections to this picture in an in expan-
sion in Λ2

QCD/(xP )2 and Λ2
QCD/((1 − x)P )2, where P denotes the finite momentum of the hadron

along the Wilson-line direction [193, 194].
As argued in a Snowmass whitepaper [13], computing the matrix elements relevant for parton

physics from lattice QCD faces a number of specific challenges: i) The need for a large momentum
necessary in hadron/Compton-tensor currents or in hadron states in the quasi-PDF approach leads
both to higher excited-state contamination and to an exponentially degrading signal-to-noise ratio
in the correlation functions as a function of the time separation between the hadronic source and
sink. Other scenarios with a poor signal are gluonic observables, correlation functions at large
distances, and multi-variable matrix elements such as GPDs and TMDs. ii) Relevant to approaches
that involve Wilson-line operators is precise renormalization, since these operators have linear
divergences requiring high-precision control of UV physics. iii) The long-range correlations in co-
ordinate space are necessary to reconstruct the PDFs from quasi-PDFs at a full range of x values
but due to confinement, such correlations decay exponentially with distance and require unprece-
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dented precision to isolate them. iv) In extracting x-dependent PDFs in short-distance factoriza-
tion approaches, reliably estimating systematics associated with the inverse problem is challenging
given the discrete nature of data with finite statistics.

The lattice-QCD program in parton physics will be pushing forward in the upcoming years to
control excited-state contamination, operator matching and renormalization, continuum extrapo-
lation, and quark-mass and finite-volume extrapolations. Calibration with experimental data when
present as well as benchmarking moment-based and nonmoment-based methods against each other
will also be pursued. It is encouraging that even at this early stage, some lattice-QCD calculations,
particularly for spin-dependent quantities, are competitive with experimental data. This has led to
a hybrid QCD global analysis combining lattice and experimental data [187, 188, 190, 195, 196].
According to the Snowmass whitepaper, if the agreement is met for both unpolarized and helicity
isovector PDFs with 5% precision, which is an achievable goal with exascale resources, lattice-QCD
predictions can be used with high confidence for the transversity PDFs, as well as for PDFs in
regions of x or for parton flavors where experimental constraints are currently poor.

4.2 QCD exotica and resonance physics

The quest for establishing the existence of hadronic states that do not fit in the conventional or-
ganization of meson and baryon states continues to this date [197, 198]. Exciting experimental
evidence for the tetraquark, qq̄qq̄, and pentaquark, qq̄qqq, states has emerged in recent years at
the LHCb, Belle, BESIII, and elsewhere [199–202]. In fact, approximately thirty exotic hadrons
have been discovered and most of them contain at least one heavy quark [203]. The nature of
these color-singlet states, e.g., whether they are compact quark bound states or molecular states of
two hadrons (or perhaps a superposition of these or other possibilities), generally remains incon-
clusive [204]. Additionally, the existence of hybrid hadrons, those that include valence gluons, is
postulated, and such states are being searched for in various hadronic-physics facilities such as at
Jefferson Lab [205, 206]. Finally, both the neutrino-nucleus cross sections for neutrino-oscillation
experiments and a number of hadronic decays measured at the LHC that hint new physics in-
volve final-state resonances. As the QCD spectrum is generated by nonperturbative dynamics,
first-principles calculations based in QCD using the lattice-QCD technique is the most rigorous path
to theoretical predictions for such exotic states and resonances.

Presently, many of the states that are stable under strong interactions are determined with
lattice QCD at a sub-percent statistical precision, with all systematic uncertainties quantified [36].
Several calculations even incorporate small isospin-breaking effects due to QED and the difference
in the light-quark masses [36]. The associated energies are obtained by spectral decomposition
of the two-point Euclidean correlation functions constructed from one or a set of operators that
overlap with the desired states. The extracted energies can be reliably extrapolated to infinite
volume since the mass of a stable hadron in a finite volume receives exponentially small corrections.
However, the majority of states observed in experiment are not eigenstates of the QCD Hamiltonian,
but rather resonances in the pertinent multi-hadron channels. This means that the determinations
of a resonance’s mass, decay width, and structure properties such as its form factors depend upon
the calculation of a scattering amplitude in the relevant kinematic range. As there are no asymptotic
states in a Euclidean finite lattice, the notion of a scattering S-matrix is ill-defined, hence indirect
methods are sought to access S-matrices with lattice QCD.

A powerful methodology based on Lüscher’s work [3, 207] and generalizations gives access
to scattering amplitudes of two-hadron elastic channels, of multiple coupled two-hadron inelastic
channels, and of three-hadron channels including coupled two- and three-hadron processes, see
Refs. [204, 208–210] for recent reviews. Development of these formalisms, along with extensions
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to local and nonlocal transition amplitudes (see Ref. [75] for a review) and corrections due to
Coulomb interactions [211, 212], mark significant formal milestones in the lattice-QCD commu-
nity in recent years. High-precision low-lying finite-volume spectra in a range of flavor channels
are obtained using the lattice-QCD method and these are used as inputs into the mapping for-
malisms. The application of these formalisms has led to impressive results in recent years involving
constraints on multiple two-hadron coupled channels in both light- and heavy-quark sectors, vec-
tor and scalar resonances, resonances involving three-hadron channels, and even resonance form
factors and transition rates; see e.g., Refs. [204, 208, 210] for recent reviews.

Despite this progress, the QCD resonance physics program still needs to overcome a number
of challenges to be able to reach further above the strong-interaction thresholds, as identified in
a Snowmass whitepaper [14]. While Lüscher’s method for a single two-hadron elastic channel
provides a straightforward one-to-one mapping between scattering amplitudes and finite-volume
energies, for multi-channel or higher-body scattering this one-to-one mapping is lost, and the de-
termination of the full scattering amplitudes often requires a parametrization of the amplitude or
associated kernels. Abundant and precise energy eigenvalues in a given kinematic range are needed
to robustly constrain these multi-parameter forms, with systematic uncertainties that need to be
carefully quantified. As the calculations move toward physical values of the light quark masses, the
multi-hadron thresholds move towards lower energies and the number of kinematically allowed
hadronic channels that need to be included in the determination of scattering amplitudes is in-
creased substantially, making it much more challenging to achieve the desired constraints. Over
the next decade, the community will seek novel methods to circumvent some of these challenges.
For example, it would be valuable to get access to higher-lying lattice-QCD spectra without the
need to constrain the lower-lying energies in the process. Furthermore, novel techniques that do
not rely on Lüscher’s approach can be explored, such as indirect evaluation of the amplitudes via
an inverse transform from Euclidean to Minkoswki space under controlled conditions, as proposed
in Ref. [213].

In light of the challenges, what is the best way to proceed to complement the experimental and
theoretical campaigns in the coming years? Highlighting the community consensus [14], several
important directions can be enumerated:

– First, it is necessary to identify channels and energy regions that feature certain exotic hadrons
that can be reliably investigated with both lattice QCD and experiment. These provide clear
targets both for validation of lattice-QCD methods, between lattice-QCD groups and against
experimental information, and for reliable predictions that offer quantifiable systematic un-
certainties.

– Second, it is important to note that the lattice-QCD studies of resonances can provide insights
into the internal structure of the exotics in a way that is not accessible to experimental probes.
For example, if a hadron mass is seen to remain near the threshold as the quark mass is
varied, this could be interpreted as an indication of a sizable molecular component [214].
The structure of resonances can also be explored by evaluating the matrix elements of the
currents that probe the charge or energy densities of a given flavor in momentum or position
space, but the multi-particle nature of resonant states must be accounted for in such studies.

– Third, lattice-QCD resonance physics has important applications in electroweak physics. With
the current stage of developments and with sufficient computing resources, lattice QCD
should be able to extract the electroweak transitions of nucleons to its resonant excita-
tions, providing input to the resonance-production region of the neutrino-nucleus scattering
cross section, as discussed in Sec. 3.1. Furthermore, lattice-QCD studies of the weak decay
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B → K∗l+l− to an elastic resonance K∗ → Kπ and any lepton pair l = e, µ, τ will be valuable
given that the experimental measurements hint to a possibility of new physics when compar-
ing rates for various leptons in the final state [215, 216]. Similarly, as the experimental rates
for the decay B → D∗lν̄ to unstable D∗ → Dπ indicate the violation of the lepton-flavor
universality [217–219], lattice-QCD studies of this process should be given priority.

4.3 Multi-nucleon systems and synergies between HEP and Nuclear Physics

HEP experiments that are searching for new physics in rare processes often use large atomic nu-
clei to enhance signal rates, among other reasons as discussed in Sec. 3. Furthermore, the physics
output of long-baseline neutrino experiments depends on the knowledge of neutrino-nucleus cross
sections to analyze and interpret the oscillation signals. This fact highlights the role of understand-
ing and constraining Standard-Model and BSM interactions in nuclear media, and implies that only
a coherent theory effort involving physicists in both high-energy and nuclear physics disciplines can
lead to reliable results for the experimental program. To infer if an experimental measurement is
consistent with the predictions of a proposed BSM scenario relies on performing a renormalization-
group matching from high scales (TeV scale) down to the the low-energy nuclear-level scale (MeV
scale). In particular, nuclear many-body theorists evaluate matrix elements of pertinent currents
in experimentally relevant nuclei, nuclear EFTs construct and organize the ab initio nucleon-level
interactions and currents in the few-nucleon sector for use in larger nuclei, lattice-QCD physicists
determine the quark- and gluon-level matrix elements in light nuclei to constrain the EFTs, and
high-energy physicists match the matrix elements in the high-scale scenario down to the QCD scale,
making use of factorization of perturbative and nonperturbative physics. An important role of the
lattice-QCD program is, therefore, to go beyond constraining single-nucleon observables, and to
provide critical input on the matrix elements in the two- and few-nucleon sectors.

Lattice-QCD calculations of baryonic systems are more challenging than their mesonic coun-
terparts, due to the more complex quark-level construction of the correlation functions as well as
exponential degradation of the signal resulting from lighter-than-baryon degrees of freedom that
contribute to the noise correlator. Nonetheless, first lattice-QCD results for spectra of light nuclei
and hypernuclei with atomic number A < 5 have been reported [220–223], albeit at unphysically
large quark masses and without full control of systematic uncertainties such as discretization and
potential excited-state effects. Under similar conditions, the first calculations of electromagnetic
and weak reactions in the two- and three-nucleon systems have been performed, and the response
of light nuclei to gluonic, scalar, vector, axial, and tensor external currents have been studied; see
Ref. [75] for a review. The corresponding low-energy coefficients of EFTs were constrained in sev-
eral instances [75]. EFTs further used to calculate properties of larger nuclei, including Carbon
and Oxygen, using many-body nuclear techniques [224–226]. These early calculations represent a
demonstration of the matching program between QCD, EFT, and nuclear many-body theory, setting
the stage for future complete lattice-QCD results at physical quark masses.

The use of the variational technique in discerning the lowest-lying spectra of two-baryon sys-
tems has gained momentum in recent years with increased computational resources [78–80], and
will further mature in the coming years. Additionally, the use of Lüscher’s methodology to con-
strain the scattering amplitude of two-baryon systems has generated valuable qualitative results at
a range of quark masses as reviewed in, e.g., Refs. [14, 75, 227], which have been used to con-
strain hadronic interactions in the relevant EFTs, see e.g., Refs. [228, 229]. Nonetheless, these
studies need to be refined when a full account of uncertainties is possible over the next decade.
The first determinations of the three-hadron forces have become feasible using threshold expan-
sions [230, 231] or nonperturbative matching relations [232–234], but it is likely that matching to
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EFTs in a finite volume will be the most straightforward approach as the atomic number increases
or processes become more complex [224–226, 235–237].

In summary, given the evident role of accurate nuclear-level constraints based in QCD on the
HEP program, the nuclear theory, lattice-QCD, and HEP communities will continue to push the
frontier of this important program collectively over the next decade.

5 Reaching beyond QCD with lattice field theory

Many proposed theories of new physics beyond the Standard Model involve strongly-coupled gauge
interactions in some way (in the present context, we focus primarily on strongly-coupled Yang-
Mills theories which are asymptotically free.) As with QCD in the Standard Model, strong coupling
prevents the use of perturbation theory for predicting low-energy properties of the new sector. Low-
energy effective theories such as chiral perturbation theory or other phenomenological models can
be used to gain some understanding, but here there is an additional challenge: without a concrete
theory like QCD to match on to experimentally, these models appear to have a large number of free
parameters and are difficult to validate.

Lattice gauge theory calculations provide a unique window on the physics of these proposed
theories. While extrapolation of QCD-based phenomenology may be difficult, in a lattice simulation
we can directly alter the underlying characteristics of the theory: the number of colors Nc, the
number of light fermion species Nf , or more exotic possibilities such as adding fermions in other
gauge representations, charged scalars, or using gauge groups other than the special unitary group.
As a result of these additional variations, the parameter space for lattice studies of BSM physics is
vast compared to lattice QCD. Choosing a specific theory (number of colors, fermions, etc.) to study
can often be motivated by matching on to a specific BSM model (the focus of Sec. 5.1 below.) In
other cases, we may attempt to use lattice calculations to study classes of theories and make general
statements (Sec. 5.2), for example studying the large-Nc expansion. Finally, lattice techniques can
be used beyond the familiar territory of gauge theories, to study more exotic physical systems at
strong coupling (Sec. 5.3).

Although the division of topics below is an effective way to organize this discussion, we em-
phasize that most lattice work in this overall area of research is exploratory and cross-cutting,
and there are many overlaps and synergies. A lattice calculation targeting a specific BSM model
also gives new information about the behavior of strongly-coupled field theory in general, even if
the model chosen is later ruled out. Likewise, general information about the parameter space of
strongly-coupled theories and their dynamics can inform new ideas for BSM models.

5.1 Strongly-coupled extensions of the Standard Model

5.1.1 Composite dark matter

Most of the visible matter in the universe is composite, hence it is natural to take into account the
possibility of a composite dark sector. Theories with a strongly-coupled hidden sector can natu-
rally give rise to composite dark-matter candidates. Such theories are common in BSM scenarios,
including composite Higgs, neutral naturalness, and grand unification—but composite dark matter
is also interesting and well-motivated in its own right. Compositeness can lead to distinctive dark
matter properties, such as stability through accidental symmetry (similar to the proton) and direct
interactions with light and other Standard-Model force carriers at high energies (analogous to the
neutron). For a more detailed review of composite dark matter and connections to lattice, see
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Ref. [238]; for more on the outlook for lattice calculations in particular, see the USQCD whitepa-
per [22].

Lattice calculations can provide several quantities of direct interest for composite dark matter
models. Form factors of composite states are required inputs for the interaction rates of dark
matter with ordinary matter; the electromagnetic and Higgs interactions are typically dominant,
so information about scalar and vector form factors is generally the most useful. There have been
several lattice studies of such interactions for dark baryons or mesons in specific theories [239–
243]. The spectrum of bound states is also an essential model input that is readily provided by
lattice calculation. A generic prediction of composite dark matter models with Standard-Model
charges is the existence of charged bound states that can be searched for directly at colliders [244–
246], providing indirect bounds on the dark matter mass if their mass ratio is known.

There are several physical questions of great interest in the context of composite dark matter
which will require new calculations and, in some cases, the development of new methods in or-
der to study them. One important question relates to dark matter self-interactions, as reviewed
in Ref. [247]. Self-interactions may help to explain certain astrophysical tensions between ob-
served structure and predictions of cold, collisionless dark matter, but they are also constrained by
observations at cluster scales. Composite dark matter scattering can naturally show the velocity
dependence required to explain the small-scale anomalies while satisfying other bounds. Lattice
calculations of hadron scattering interactions using Lüscher’s method [248] have already been car-
ried out for mesons in theories other than QCD [249–252]. Extensions of these studies to baryon
scattering using methods and code developed for the study of nuclear physics in QCD should be
straightforward. The possibility of “dark nucleosynthesis”, the formation of larger dark nuclei in
the early Universe, can also be informed by binding energy results from the exact same lattice cal-
culations and may be explored further by lattice studies of binding of light nuclei in BSM theories
in the coming decade.

Turning to early-universe cosmology, the study of dark hadron interactions can also be impor-
tant for calculation of dark matter relic abundance. However, such a calculation includes annihila-
tion processes (including two-to-many inelastic annihilation), which are extremely challenging to
study on the lattice and will require new developments in formalism over the coming decade. An-
nihilation is also a crucial input for “indirect” detection of dark matter through detection of gamma
rays or other Standard-Model products. Another important feature of composite dark matter sec-
tors in the early universe is the finite-temperature “dark confinement” phase transition. Although
this transition is a crossover in QCD, it may be strongly first-order in other confining theories. A
first-order transition provides departure from thermal equilibrium and could be a crucial ingredient
in explaining baryogenesis; finite-temperature lattice calculations can determine which strongly-
coupled theories have a first-order transition. If a first-order thermal transition does occur, it can
source a primordial gravitational wave signal [253–255] that can provide a novel signature of dark
matter. Lattice calculations of the finite-temperature properties of the theory e.g., Ref. [256] across
the transition can allow for quantitative predictions of the gravitational wave spectrum, so that the
reach of future experiments can be estimated (or conversely, if a discovery occurs, knowledge of
how the spectrum is related to the parameters of the underlying theory can allow the dark sector
to be characterized directly from such a signal.)

5.1.2 Composite Higgs

In the decade following the Higgs boson’s discovery, there have been no further signs of new physics
at the electroweak scale from the LHC so far. Despite this experimental success of the Standard
Model, theoretical questions such as the Higgs naturalness problem [257] remain unanswered.
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New-physics models which appear near the electroweak scale can resolve the electroweak hierarchy
puzzle and other outstanding questions in HEP. Composite Higgs theories, in which Higgs-sector
naturalness is addressed by positing a new strongly-coupled theory from which the Higgs appears
as a bound state, remain a viable and interesting possibility for BSM physics [258–262]. However,
stringent constraints from the LHC point to a scale separation between the Higgs boson and other
new composite states, which indicate that the most viable models are those in which the Higgs is
a pseudo-Nambu-Goldstone boson (PNGB). This includes models where it is identified as a PNGB
associated with chiral symmetry breaking (like the pion in QCD), as well as models with a pseudo-
dilaton 4, a PNGB associated with scale-symmetry breaking.

If the Higgs is indeed composite, because it must be well-separated from the confinement en-
ergy scale, the first experimental evidence will likely be fully described by a low-energy effective
theory whose structure is dictated by symmetries, and thus does not require a lattice calculation to
formulate. However, such an effective theory has many (in principle, infinite) parameters, the low-
energy constants (LECs). These are not free parameters; as with chiral perturbation theory in QCD,
all of the LECs are determined by strong dynamics and a small number of underlying parameters.
Lattice calculations of LECs from first principles can thus severely constrain the available parameter
space of a composite Higgs model, allowing for more concrete predictions for experiments. It is
also possible for lattice calculations in unfamiliar regimes to reveal unexpected dynamical surprises
that lead to the construction of novel effective theories, such as the dilaton EFT (discussed further
in Sec. 5.2.2, along with the challenges for lattice studies of such systems.)

For a specific composite Higgs theory, if the ultraviolet (UV) completion (i.e. the underlying
strongly-coupled gauge interaction) is specified, then lattice calculations can provide a number of
useful inputs to constrain the phenomenology [22]. In terms of LECs, details can vary by the-
ory but relevant physics targets of interest include the S and T parameters, contributions to the
Higgs potential, and to the top Yukawa coupling. The mass spectrum of bound states is also of
interest, allowing for prediction of the scale at which new resonances will appear in experiment.
Further work by phenomenologists on classification of UV-complete composite Higgs models, as in
Refs. [263, 264], can guide future lattice calculations to the most promising theories; conversely,
lattice results combined with experimental bounds may disfavor certain models, isolating those
which are most interesting to study phenomenologically.

Although there is much progress that can still be made with current lattice methods, some of
the more interesting questions related to composite Higgs models are presently inaccessible. Four-
fermion interactions are typically an essential ingredient of composite Higgs models, for example as
a way to give rise to Standard-Model fermion masses. If these interactions are weakly coupled, their
effects may be included perturbatively. But numerical study of the more general case is obstructed
by the appearance of a sign problem when a generic four-fermion operator is included in the lattice
action. Innovations related to the sign problem relevant for other areas of study in lattice QCD may
be adapted here over the next decade in order to explore the general effects of such interactions.

5.1.3 Other examples of strongly-coupled new physics

Strongly-coupled new physics sectors can manifest in a number of other ways, distinct from the
composite dark matter and composite Higgs proposals. One framework which has attracted grow-
ing interest in recent years is the idea of neutral naturalness [15]. In neutral naturalness models, a
broken discrete symmetry relates the Standard Model to a “twin” or “mirror” hidden sector in order

4This case has been strongly informed by lattice studies of a near-conformal phase in many-fermion gauge theories,
with proposals of a dilaton EFT following in the wake of lattice calculations that revealed the emergence of a light scalar
state. This phase and the development of dilaton EFT is discussed further in Sec. 5.2.2.
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to address the Higgs naturalness problem. This generically leads to the existence of a hidden-sector
SU(3) gauge interaction, similar to QCD—but not identical, due to the required breaking of the
mirror symmetry.

There are many ways in which lattice calculations can contribute to the study of neutral nat-
uralness models. Typically, the Higgs vev in the mirror sector is higher, so that some or all of the
mirror quark masses will be heavier than their Standard-Model counterparts. Lattice QCD results
at unphysically heavy quark masses can be highly relevant, and there are many such results from
older QCD calculations where extrapolation to the physical point was required; see Ref. [265] for
a review.

Other composite models for which lattice studies may be useful, but for which there has been
little work to date, include theories of composite right-handed neutrinos [266–270] and composite
axions [271–275] (where compositeness can provide a solution to the “axion quality problem”.)
It may be interesting to consider lattice calculations targeting these types of theories, which could
indicate novel directions to explore in theory space compared to the current set of lattice studies.
Finally, there may be cross-cutting aspects of the phenomenology of various types of composite
theories. For example, dark showers [276] are a distinctive phenomenological signature of hid-
den sectors with confinement, and lattice studies of the heavy-quark potential, string breaking,
and PDFs at unphysically heavy quark masses may inform studies of hidden-sector hadronization
independent of the specific model of interest.

5.2 Understanding the theory space of strong dynamics

5.2.1 Large-Nc expansion

Large-N limits are recognized in many areas of physics as a useful way to simplify the description
of a theory or phenomenon. For SU(Nc) gauge theories at strong gauge coupling, taking Nc → ∞
gives an alternative way to expand perturbatively using 1/Nc as a small parameter. This has been
used to give qualitative insights into QCD, even though Nc = 3 is not quite large enough for the
expansion to be obviously convergent. In the broader context of understanding strongly-coupled
gauge theory, large-Nc formulas can be a guide to the larger parameter space, providing important
input for BSM model-building. Lattice calculations can be used to validate large-Nc scaling formulas
and quantify the size of deviations from scaling. Lattice results also allow direct estimation of
the coefficients appearing in large-Nc scaling formulas, allowing for more accurate estimates in
different theories5. For detailed reviews of large-Nc expansion in the context of lattice studies, see
Refs. [278, 279].

In the well known ’t Hooft limit [280], Nc → ∞ while the number of light fermions Nf is
held fixed. The effects of the fermions generally decouple in this limit, and lattice studies of the
corresponding pure-gauge theories have been carried out in substantial detail. Detailed results for
the finite-temperature phase transition and the spectrum of glueball masses at SU(Nc) are available
at multiple values of Nc, and good agreement with the predicted Nc scaling is seen [281, 282].
These existing lattice results have already been used as valuable input for a broad range of BSM
models in which hidden-sector glueball states appear. For such model applications, in addition
to the glueball spectrum, it would be very interesting to explore glueball decay matrix elements
and glueball scattering states in large-Nc pure-gauge theory; although these are very challenging

5Using lattice results to determine large-Nc expansion coefficients is especially useful for sub-leading corrections of
order 1/Nc or Nf/Nc (where Nf is the number of light fermions, discussed below) - such corrections can be extremely
difficult to calculate from first principles, and are highly important for some processes e.g. K → ππ decay [277, 278]
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calculations with few results available currently, a systematic study will likely be feasible with
advances in computing and methodology over the next few years.

Another interesting frontier in the study of large-Nc gauge theories is to move away from the
’t Hooft limit to the Veneziano limit, in which the ratio Nf/Nc is held fixed as Nc → ∞ so that
the fermions do not simply decouple. In analogy to early lattice QCD calculations, this can be
compared to moving from the quenched limit (in which quark contributions are neglected) to
the more challenging case of fully dynamical quarks. Although theoretical calculations including
fermion contributions are much more challenging, lattice calculations with dynamical fermions
are relatively straightforward, and Nf/Nc corrections to ’t Hooft scaling formulas can be obtained
phenomenologically by carrying out fits to lattice data. Further study of Nf/Nc corrections in large
Nc on the lattice [283, 284] may not only aid in making more reliable predictions for BSM models,
but can also enable quantitative applications of large-Nc results to QCD [285, 286].

5.2.2 Emergent conformal symmetry

Conformal field theories are a highly important and interesting class of theories in particle physics,
as well as in other areas such as condensed matter physics. These theories obey conformal symme-
try, which implies the existence of scale invariance (i.e. the theory is self-similar at all length/energy
scales.) Conformal theories are interesting in their own right, with deep connections to the physics
of renormalization and quantum phase transitions, as well as to quantum gravity as the latter half
of the AdS/CFT correspondence. They are also of interest as key parts of certain BSM models,
such as in composite Higgs models where approximate scale invariance allows for construction of
realistic models which give rise to the Standard-Model fermion masses.

It is well known that within the space of Yang-Mills gauge theories coupled to fermions, there is
an emergent infrared-conformal phase when the number of fermions is large enough; see Refs. [287–
290] for recent reviews in the context of lattice simulations. Although the existence of this phase
was established with perturbation theory shortly after the discovery of asymptotic freedom in
QCD [291, 292], lattice calculations are required to explore the transition itself, which occurs at
strong gauge coupling. Despite significant efforts on lattice simulations of many-fermion theories6,
the precise location and order of the conformal transition remains unknown to date. The study of
these theories is extremely challenging; lattice simulations require several sources of explicit scale-
symmetry breaking which can be difficult to control, and the presence of lattice-phase transitions
at strong bare coupling has obstructed access to the infrared limit in theories near the transition.

Nonetheless, there have been significant discoveries from lattice studies of the conformal tran-
sition. Spectrum calculations by multiple groups [293–304] have revealed the presence of a rela-
tively light scalar bound state with JPC = 0++ quantum numbers in multiple theories, making it a
candidate for a pseudo-dilaton associated with scale symmetry breaking. The lattice results led to
substantial theoretical work on formulation of a “dilaton EFT”, which is able to explain the emer-
gence of such a state near the conformal transition as scale symmetry is approximately restored.
Further lattice studies of the spectrum, pion scattering, and other observables in candidate theories
such as SU(3) with Nf = 8 can further inform theoretical studies and help to distinguish between
different formulations of the dilaton EFT [305–312].

In the next decade, continued study of the conformal transition and the emergent CFTs that
result must be a high priority for lattice field theory. Beyond the study of the transition itself, the
properties of the CFT such as anomalous dimensions of operators are of great interest for classifying

6The majority of these efforts have been concentrated in SU(3) with Nf fermions in the fundamental representation,
due to the ease of repurposing QCD software—but there are now many exploratory studies of infrared-conformal gauge
theories where the number of colors and gauge representation are varied as well.
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and understanding the CFTs themselves, as well as for application to BSM models such as composite
Higgs (where large anomalous dimensions for the fermion mass operator are an essential ingredient
in generation of realistic quark masses.) New methods for studying renormalization-group (RG)
transformations, such as gradient flow RG [313–315], can be helpful in enabling such calculations.
Moreover, the study of new RG techniques can feed back into lattice QCD, where they might be used
for other applications [316]. Further advances in lattice actions to enable simulation at stronger
coupling [317], or radial quantization methods which exploit a conformal mapping of the theory
onto a curved space [318–321], may enable much more accurate studies of the infrared-conformal
limits and thus allow more precise answers about the conformal transition.

5.3 Pushing the boundaries of particle theory

Going beyond simple extensions from QCD, there are other, more exotic theories that can also
be studied nonperturbatively using lattice methods. In addition to the examples listed here, it is
worthwhile to consider how lattice results can contribute to more general studies. For example,
computing directly at strong coupling in specific theories may be helpful in understanding the
nature of dualities and generalized symmetries [322].

Supersymmetry is of broad interest to the theoretical particle physics community. Regardless of
whether it is realized in Nature near the electroweak scale, supersymmetry is a key part of hologra-
phy through the AdS/CFT correspondence, which has given essential insights into our theoretical
understanding of quantum field theory and gravity.

One supersymmetric theory of particular interest is N = 4 super-Yang-Mills (SYM) theory; see
Ref. [16] for a whitepaper on lattice calculations in this theory and Ref. [323] for further details.
Substantial work in recent years has gone into a lattice formulation of N = 4 SYM, which can be
done through a novel lattice formulation which preserves a subset of the continuum supersymmetry,
allowing recovery of the full continuum limit with little to no fine-tuning. Lattice calculations in
this theory so far agree well with holographic predictions—surprisingly, even for small numbers
of colors, even though the holographic correspondence holds in the large-Nc limit. Future work
may include tests of S-duality, calculation of operators which can be tested against the conformal
bootstrap, and numerical exploration of quantities corresponding to string-loop corrections via
holography.

A possible feature of the emergent infrared-conformal phase in gauge-fermion theories is the
presence of nontrivial ultraviolet fixed points; these would be examples of “asymptotically safe” sys-
tems [324–328], which could be relevant to models of quantum gravity [329–331]. If these limits of
many-fermion theories do exist, they may be discovered and explored in the next decade by lattice
studies. In the same context of the infrared-conformal phase transition, there have also been poten-
tial hints from lattice results of a symmetric mass generation phase [332–334]. The phenomenon
of symmetric mass generation is gathering new interest in the context of both HEP [335, 336] and
condensed matter physics [337], and a concrete example of such a system which could be studied
nonperturbatively could be very fruitful in understanding this mechanism.

6 Advancing theory and computation

6.1 Advancing computational algorithms and software

As experimental measurements become more precise over the next decade, lattice QCD will play
an increasing role in providing the needed matching theoretical precision. Achieving the needed

30



Report of the Snowmass 2021 Topical Group on Lattice Gauge Theory

precision requires simulations with lattices with substantially increased resolution. With finer lat-
tice spacing comes an array of new challenges. They include algorithmic and software-engineering
challenges, challenges in computer technology and design, and challenges in maintaining the nec-
essary human resources.

As a computational problem, lattice gauge theory is performed on structured Cartesian grids
with a high degree of regularity and natural data parallelism. The approach formulates the Feyn-
man path integral for QCD as a statistical mechanical sampling of the related Euclidean-spacetime
path integral. The computing landscape at this time displays an exciting proliferation of compet-
ing computer architectures, and the massive parallelism of lattice gauge theory is, in principle,
amenable to Graphical Processing Units (GPUs) and possibly other acceleration. This imposes a
significant additional programmer overhead. The most commonly-used packages receive sufficient
investment to use the complete range of modern accelerated supercomputers, and many of the
largest projects use allocations on Department of Energy’s (DOE’s) supercomputer resources. This
investment must continue to realize the scientific goals of the community. Interconnects are be-
coming an increasing bottleneck since accelerated computing nodes are becoming rapidly more
powerful while interconnect performance gains have not always matched pace.

The Lattice QCD workflow is divided into two phases. First, a Markov Chain Monte Carlo
(MCMC) sampling phase generates an ensemble of the most likely gluon field configurations dis-
tributed according to the QCD action. The ensemble generation is serially dependent and repre-
sents a strong scaling computational problem. On the largest scales, this becomes a halo-exchange
communication problem with a very large interconnect bandwidth requirement since the local
data bandwidths vastly exceed those of inter-node communication. In the second phase, hadronic
observables are calculated on each sampled configuration where many thousands of quark prop-
agators (requiring inverting high-dimensional ’Dirac’ matrices) are calculated and assembled into
hadronic correlation functions. This has a high degree of trivial parallelism.

Present algorithms for both path integral sampling and Dirac solvers display growing limita-
tions as substantially greater ranges of energy scales are included in the problem, an algorithmic
challenge called critical slowing down. The development of numerical algorithms is a significant
intellectual activity that spans physics, mathematics, and computer science. The U.S. HEP program
is presently focused on the domain-wall and staggered approaches, and multigrid algorithmic gains
for staggered and domain-wall-fermion discretizations are a critical open research activity. A sec-
ond algorithmic direction is the critical slowing down of MCMC algorithms. These are being studied
under Exascale Computing and SciDAC projects and such support is critical to progress in the field.
The simulations at finer lattice spacing and larger volumes required to realize the community goals
introduce new challenges [17]:

– “Meeting them requires new algorithmic research, novel computer hardware design beyond
the exascale, improved software engineering, and attention to maintaining human resources.”

A recent Snowmass whitepaper [17] estimates that:

– “The simulation goals [of flavor physics, nucleon structure, neutrino scattering, and BSM
physics] clearly demonstrate a need for computers at least 10x more capable than the coming
Exaflop computers during the Snowmass period. Since the performance is required to be
delivered on a real-code performance basis... more than an order of magnitude improvement,
perhaps, from both algorithms and computing are required.”

Commonly used lattice-QCD software has been supported by the DOE SciDAC and Exascale
Computing Projects. These include GRID [338–340], MILC [341, 342], CPS [343], CHROMA [344],
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and QUDA [345]. This has enabled major packages to support the most advanced GPU accelerated
HPC computers using software interfaces such as HIP, SYCL, and CUDA APIs in addition to giving
good performance on several CPU SIMD architectures. Newer interfaces like OpenMP 5.0 offload
and C++17 parallel STL are planned to be adopted as and when appropriate.

For smaller projects, especially where rapid development and programmer productivity are at a
premium, it is better and more cost effective in terms of human effort to maintain access to a range
of CPU resources. USQCD institutional clusters at Brookhaven National Laboratory, Fermilab, and
Jefferson Laboratory have been instrumental in supporting the significant number of smaller and
exploratory projects that would not achieve the return on investment to justify bespoke software
development for multiple architectures.

Reference [17] notes the heavy reliance on HPC places a particularly large dependence on
highly-tuned bespoke software in this field. It was noted as important that flexible high-performance
software continues to be developed for a diverse range of architectures that tracks the DOE com-
puting program.

6.2 Machine-learning applications in lattice field theory

Machine learning (ML) methods have seen an explosion of interest in recent years throughout the
computational community, and broadly in theoretical particle physics [346]. In lattice field theory,
there has been rapidly growing exploratory work in applying ML to all aspects of the numerical pro-
cess: configuration generation, measurement of observables, and physics analysis [18]. Although
ML methods have yet to be widely adopted for large-scale lattice QCD calculations, they hold great
potential for algorithmic breakthroughs, ranging from significant speed-up of configuration gener-
ation to solutions to perform currently intractable calculations which suffer from sign problems or
ill-posed inverse problems.

Important similarities between ML and lattice-field-theory methods and practices give a unique
opportunity for collaborative development of methods at the intersection of the two fields. The
mathematical frameworks for algorithms in both ML and lattice field theory are based heavily on
statistics and linear algebra, allowing researchers to readily transfer specialized knowledge in one
field to similar problems in the other. There are also similarities in computational architectures
well-suited to both fields, highly parallel calculations of numerical linear algebra. ML applications
tend to require lower precision, but with the use of mixed-precision methods lattice calculations
can also exploit low-precision calculations (e.g. on graphical processing units) to accelerate their
calculations. The ability of common hardware to support cutting-edge calculations in both ML and
lattice field theory makes rapid progress at the intersection of the two much easier to attain.

Beyond application of existing ML methods to lattice field theory, the development of new ap-
proaches to ML inspired by physics problems may feed back into innovations relevant more broadly
for ML uses in academia and in industry. A prime example is the incorporation of symmetries into
ML architectures [347]. Although the use of symmetry is not unique to physics problems (most
famously, the use of convolutional neural networks which have translational symmetry has been
enormously successful in image processing), symmetry has always been a guiding principle in the-
oretical physics and the symmetry properties of physical systems are well studied. Incorporation
of symmetry principles into the architecture of a ML network can greatly improve performance,
as demonstrated for example in the use of SU(N) gauge equivariance in ML-based sampling algo-
rithms [348, 349].

There are significant obstacles remaining for widespread and routine deployment of ML meth-
ods in lattice-field-theory calculations. Incorporation of fermions into methods for flow-based con-
figuration generation has been demonstrated in toy problems [350, 351], but new methods will
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be needed for estimation of the fermion determinant in order to apply the method to realistic
lattice-QCD simulations. In general, interpretation of results and statistical control of uncertainty
estimates is a concern for any use of ML, due to the “black box” nature of many ML methods.
There are methods available to ensure that ML-obtained lattice-field-theory results are statistically
rigorous, but this is an important constraint on new techniques. Finally, successful development
of methods at the intersection of ML and lattice field theory requires both scientists and software
engineers with expertise in both domains. Therefore, workforce development and support will be
key, particularly in a field in which there is substantial demand for early-career researchers outside
of academia.

6.3 Hamiltonian-simulation methods and quantum computation

The lattice-field-theory technique conventionally relies on Monte Carlo importance sampling meth-
ods to evaluate QCD path integrals. Such a sampling is made possible by a Wick rotation to Eu-
clidean spacetime. However, this statistical feature has led to limited progress in several problems
including finite-density systems and real-time phenomena such as scattering processes, except for
those at low energies and low inelasticities that can be addressed by indirect methods, see Sec. 4.2.
A Hamiltonian-simulation approach does not encounter such issues, but the size of the required
Hilbert space scales exponentially with the system size, rendering the simulations impractical on
even largest supercomputers. In recent years, Hamiltonian-simulation methods based on tensor
networks have significantly advanced [352–354], targeting generally low-dimensional theories and
systems without volume-law entanglement. The progress in the applications of tensor networks to
lattice gauge theories in both the Hamiltonian and path-integral formulations will continue over
the next decade, as discussed in a Snowmass whitepaper [355] and recent reviews [356, 357].
Nonetheless, more general Hamiltonian-simulation methods are needed, particularly pertinent to
QCD and for real-time situations that exhibit an entanglement growth.

A natural method for realizing Hamiltonian simulation of quantum field theories is quantum
simulation. Quantum simulation refers to simulating a complex quantum system using a more
controlled quantum system, often as table-top experiments. The dynamics of an analog quantum
simulator can be engineered to closely follow those of the simulated theory, and can exhibit a
variety of degrees of freedom, from two- and higher-dimensional spins, to fermions, bosons, and
even continuous variables. On the other hand, a digital quantum simulator is agnostic to the
underlying physical architecture, and implements a set of universal and elementary operations on
an array of two-(few-)state quantum units, i.e., qubits (qudits). The two modes of the simulator can
also be combined to achieve more adaptability and efficiency. In the context of simulating quantum
field theories of Nature and beyond, as is argued in a Snowmass whitepaper [20], continuous
research and innovation in theory, algorithms, hardware implementation, and co-design are critical
to advance this field to the level that is needed for addressing the physics drives of the HEP program.

In particular, upon development of theory and algorithms, and provided robust large-scale
quantum hardware becomes a reality in the coming years, quantum simulation has the potential to
enable [20]: i) computations of full scattering processes for high-energy colliders, as well as first-
principles calculations of PDFs and other QCD matrix elements, ii) simulations of neutrino-nucleus
scattering cross sections crucial for supplementing the experimental programs such as DUNE and
other neutrino processes for astrophysics, iii) studies of nonequilibrium dynamics in particle colli-
sions, in inflationary phase of the universe, in CP-violating scenarios, and for models of dark matter,
and iv) elucidating bulk gravitational phenomena and accessing quantum gravity in table-top ex-
periments.

All these problems, in one form or another, involve simulating quantum (fundamental or ef-
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fective) field theories, hence lattice gauge theorists, given their computational expertise, are in
a prime position to leverage the potential benefits of the growing quantum-simulation hardware
and its algorithm/software/compiler/user ecosystem. In the next decade, several interconnected
problems will be addressed to make HEP problems accessible to quantum simulators [20]:

– Efficient formulations of gauge-field theories are needed within the Hamiltonian framework.
A main requirement is to turn the infinite-dimensional Hilbert space of quantum field theories
into a finite-dimensional one, via discretizing the space in a lattice formulation (as a common
but not unique option), and digitizing the field values. More research is required to deter-
mine the pros and cons of each formulation developed, particularly for gauge theories of the
Standard Model. Moreover, finding optimal ways to protect or utilize the symmetries of the
underlying theories, especially gauge symmetries, is an active area of research. Finally, sys-
tematic uncertainties of quantum simulations of quantum field theories, including those asso-
ciated with the truncations imposed on the infinite-dimensional bosonic-field Hilbert spaces,
and issues related to time digitization (in digital implementations), finite-volume effects, and
continuum limit and renormalization, need to be investigated carefully.

– Algorithmic research for both digital and analog simulations is required, rooted in theoreti-
cal understanding, and taking advantage of physics inputs such as locality, symmetries, and
gauge and scale invariance when present. For digital schemes, low-overhead and efficient en-
codings of degrees of freedom to qubits, and algorithms with tight and rigorous error bounds
are needed to come up with realistic resource estimates for the desired simulations. Further-
more, concrete protocols are needed for preparing nontrivial initial states and for measuring
the outcome relevant for a range of observables, from scattering amplitudes and structure
functions, to identifying phases of matter and its evolution under extreme conditions, through
quantum-information measures and other methods.

– Since certain problems might be more natural to implement on analog quantum simulators,
algorithms need to be developed to utilize analog quantum simulators for HEP problems.
This amounts to understanding how one can map given quantum field theories onto a variety
of analog quantum simulators, including atomic, molecular, optical, and solid-state systems,
each with distinct intrinsic degrees of freedom, native interactions, and connectivity proper-
ties. Enhanced modalities and advanced quantum-control capabilities must be co-developed
between lattice gauge theorists and hardware developers to enable simulating QCD and other
complex field theories in the coming years.

To ensure the feasibility of the simulation approaches, prevent a wide gap between theorists’
proposals and experimental realities, and tighten the theoretical algorithmic scalings by supple-
menting empirical observations, implementation and benchmarking using the near-term noisy
intermediate-scale quantum hardware will continue to be a critical path forward for the HEP com-
munity. Collaboration among universities, national laboratories, and private companies is essential
in this growing multidisciplinary field. Lattice gauge theorists will likely engage in a careful study in
the coming years to determine whether industry-developed quantum hardware satisfies the needs
of the HEP community or special-purpose hardware may need to be co-designed, following the de-
velopment and application of special-purpose HPC hardware/software in the lattice-QCD research
in the past [4, 5]; see also the Snowmass whitepaper on quantum computing systems and software
for HEP [358]. Additionally, lattice gauge theorists will find ways to leverage the current ad-
vancements on classical computation of field theories and augment them with quantum-computing
routines. Quantum computing and quantum technologies constitute another area with high de-
mand for experts outside academia, providing alternative career paths for young trainees in this
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field, but necessitating strategies for growing and retaining a diverse and engaged workforce at the
intersections of QIS and lattice field theory.
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