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Abstract

This topical group focuses on searches for signals from physics Beyond the Standard Model
(BSM), both from a theoretical and experimental perspective, including neutrino-related BSM
and searches for BSM in other sectors using neutrino facilities.

∗This report is based on the contributed whitepapers [1–7].
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Executive Summary

The arrival of the “precision era” in neutrino physics comes with both challenges and opportunities.
One of these opportunities is the ability to search for evidence of physics Beyond the Standard Model
(BSM), expanding the physics scope of current and future experiments well beyond the measurement
of three-flavor neutrino oscillations. In fact, while the SM describes with great accuracy most of the
phenomena observed in high-energy physics, a number of fundamental scientific questions still need
to be answered:

1. Is the dark sector as complex and phenomenologically rich as the visible sector? How does the
dark sector interact with the visible sector?

2. What are the properties and interactions of neutrinos, and how many are there? What is the
explanation behind the observed anomalies in short-baseline neutrino experiments?

3. What is the mechanism responsible of neutrino mass generation? Are lepton and baryon numbers
fundamentally conserved, or just accidental symmetries?

4. What is the mechanism responsible for the matter antimatter asymmetry of the Universe?

5. Do all the forces unify? If so, at what energy scale?

Current and future neutrino experiments are in an excellent position to test a wide variety of BSM
models not only in the neutrino sector, but in other sectors, as well. In particular, the high-intensity
proton beams and massive precision detectors enable BSM physics searches at future experiments
whose primary goals are to measure neutrino oscillation parameters, providing the possibility to
expand their physics reach in a way that is complementary to Energy Frontier experiments. This
report summarizes those opportunities in BSM physics searches, divided into two main categories as
follows:

• Neutrino-related BSM scenarios

– Heavy Neutral Lepton Searches [1]. These include searches for the HNL decay products
at colliders and extracted beamlines, as well as similar searches using neutrinos from atmo-
spheric, solar, and conventional neutrino beams. Competitive bounds can also be derived
from nuclear decay searches, and from the impact of HNL on cosmological observables,
among others. The Electron-Ion Collider can also play a key role in probing HNLs [8].

– BSM Effects on Neutrino Flavor [2]. Precision measurements of neutrino oscillations,
as well as measurements of the flavor composition and spectra of astrophysical neutrinos,
allow precision tests of the three-neutrino paradigm. These can be used to derive powerful
constraints on a variety of BSM scenarios, including non-unitarity of the leptonic mixing
matrix, large extra dimensions, non-standard neutrino interactions and light mediators,
long-range forces, neutrino decay, decoherence, CPT and Lorentz violation. Neutrino-dark
matter interactions may also lead to visible effects in oscillation experiments.

– BSM Effects on Neutrino Scattering. Neutrino self-interactions [3] via light mediators
can lead to observable effects in supernovae, high-energy astrophysical neutrino spectra,
and measurements of neutrino scattering. The existence of light mediators coupled to neu-
trinos can also lead to significant modifications in cosmological observables. The recent
observation of Coherent ν-Nucleus Elastic Scattering (CEνNS) [4] has opened new oppor-
tunities to search for new physics in the neutrino sector, especially regarding the existence
of new neutrino interactions.
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• Non-neutrino BSM scenarios

– Baryon Number Violation Searches [5]. The use of very massive detectors in neutrino ex-
periments enables strong constraints on proton decay and neutron-antineutron oscillations.
Both searches can shed light onto the mechanism behind the matter antimatter asymmetry
of the Universe and onto the question of unification of forces.

– Cosmogenic Dark Matter and Exotic Particle Searches [6]. A non-minimal dark sector
may lead to a wide range of phenomenological observations, including boosted dark matter
signals, events from up-scattering and decay of dark sector particles, neutrino lines from
dark matter annihilation in the Sun, or scattering signals from slow-moving dark matter.

– Beam-Originating Dark Sector Particle Searches [7]. The use of high-power proton
beams may allow production of weakly coupled states together with the neutrino beam.
Possible signals include the decays of long-lived-particles into a variety of visible final states,
an excess of elastic and/or inelastic scattering with detector electrons or nuclei, or neutrino
up-scattering into heavy states followed by their visible decays.

– Milli-charged particles [7]. Milli-charged particles may be produced in the atmosphere
or in fixed target experiments and lead to an excess of scattering events in atmospheric
detectors or near detectors in conventional beam experiments.

A summary of the main phenomenological scenarios described in this document, together with the
most relevant experimental signatures for each of them, is provided in Tab. 1. For reference, we also
include a list of some of the planned/proposed experiments where such signals may be investigated
(see the provided references for further details).

Exploring BSM physics in neutrino experiments has traditionally been impractical, if not impos-
sible, in the past. The major challenge that neutrino facilities face in order to be able to set reliable
constraints on BSM scenarios concerns the large systematic uncertainties stemming from our imprecise
knowledge of both neutrino fluxes and neutrino interaction cross sections. In this sense, the program
of supporting measurements in the neutrino frontier (including hadron production measurements for
neutrino flux predictions and measurements to improve modeling of neutrino-nucleus interactions) is
as important for BSM searches as it is for the standard three-flavor neutrino oscillation measurements.

In spite of the difficulties mentioned above, neutrino facilities offer a broad range of opportunities
for an expansive and strong BSM physics program. Thus, in order to fully exploit their physics
reach, BSM searches need to be considered among their main goals since this may impact their
design and optimization. Future advances in this direction will also require a joint effort between
the experimental and theoretical communities. In this sense, data release efforts have empowered
the theoretical community in the past to derive new constraints on a wide landscape of BSM models
and/or to propose new experimental searches and strategies. In addition, the use of model-independent
frameworks and parameterizations to constrain new physics models (a common example is the use of
effective operators at low energies, an approach commonly used in other areas of particle physics as
well) allows to recast different experimental constraints easily.

It, however, is equally important that these frameworks are also matched onto viable models, so
that the bounds from neutrino experiments can be contrasted with those obtained in other Frontiers
of particle physics. A closer collaboration across particle physics frontiers would also be desirable, as
many BSM searches at neutrino facilities are complementary to BSM searches in other areas. More-
over, improved simulation tools will be needed to compute the expected BSM signals and backgrounds
for which a closer collaboration with the nuclear physics community would be required.

Finally it is worthwhile emphasizing here that, while the Snowmass 2013 neutrino working group
report [9] did include a section on BSM opportunities, it was largely focused on resolving the short-
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baseline anomalies through the addition of an eV-scale light sterile neutrino. Since then, the commu-
nity has made a significant effort in pushing the boundaries and the potential of neutrino experiments
to test for BSM models widely, and expanding searches to non-minimal BSM scenarios in the neu-
trino sector. For example, several extensions beyond a standard eV-sterile neutrino have been put
forward in the past few years, which are able to reconcile some of the short-baseline anomalies [10]
and may lead to additional signals elsewhere. At the same time, the community is heavily exploring
the potential of neutrino facilities to test for new physics outside the neutrino sector, which often
comes as a result of a close interaction between theorists and experimentalists, as demonstrated in
a Ref. [11]. Just to give a couple of examples of this effort in the past few years: strong constraints
on non-minimal dark matter scenarios have been set using MiniBooNE data taken in the so-called
beam-dump mode [12], improving over bounds from direct detection experiments in the light mass
regime; and new bounds on milli-charged particles have been set by the ArgoNeuT experiment [13].

The present report is the first of its kind, which summarizes a wide range of opportunities to search
for BSM physics using neutrino facilities, including dark sector particles produced in conventional
neutrino beams or the Sun, heavy neutral leptons with masses at or below a few GeV, and new
neutrino properties and interactions, among others.

1 Introduction and Motivation

Since the discovery of neutrino oscillations, neutrino physics has been a field driven by data, and with
the current and upcoming generation of neutrino experiments this will likely continue to be the case.
Since the last Snowmass process, we have seen the field flourish in several areas simultaneously, from
the large improvement of the precision at which we know neutrino oscillation parameters, with the first
hints for CPV and mass ordering emerging from global fits, to the emergence of Coherent ν-Nucleus
Elastic Scattering (CEνNS) measurements as a completely new field of research, thanks to the recent
developments in detector technology associated to dark matter direct detection experiments. We are
also witnessing the blooming of neutrino astronomy, with more and better measurements at Icecube
and KM3NeT, which have in turn triggered further initiatives to build neutrino telescopes worldwide.
In parallel, new bounds on the neutrino mass from KATRIN and cosmological observations are also
pushing down the upper bounds on the value of neutrino masses, and very recent measurements by
KamLAND-Zen are already entering the region expected for neutrinoless double-beta decay if light
neutrino masses follow an inverted ordering scheme.

On the oscillation front, while T2K and NOνA continue accumulating data and will provide very
useful hints on the remaining neutrino oscillation parameters, new and more capable facilities will be
needed to reach a high significance. These will require more powerful neutrino sources and larger,
massive detectors, which unavoidably demands an excellent control of systematic uncertainties, given
the large statistics expected. New facilities (such as DUNE, T2HK, and JUNO) are expected to
improve the determination of neutrino mixing angles and mass splittings significantly. As we enter
this precision era, one of the main goals of such experiments should be to thoroughly test and probe
the three-neutrino paradigm, something which has been out of reach for the neutrino community thus
far. In fact, while we are aware of the need to extend the Standard Model to account for non-zero
neutrino masses, the possible phenomenological consequences of such extensions are endless. Beyond
the Standard Model (BSM) effects in the neutrino sector may lead to significant alterations in the flavor
composition and spectra of neutrinos produced across energy scales and in neutrino sources differently,
and therefore an exploration on multiple fronts is crucial. For example, conventional neutrino beams
offer the possibility to use a pulsed neutrino flux and to characterize the neutrino spectra with the
aid of a near detector before any oscillations have taken place. On the other hand, the observation of
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BSM Scenario Sources Signatures Example Experiments

HNL [1]

Colliders HNL decay ATLAS, CMS, FASER, Belle II, ...
Nuclear decays Nuclear decay kinematics KATRIN/TRISTAN, HUNTER ...
Fixed target HNL decay DUNE ND, SHiP, ICARUS, ...

Atm. & solar νs
Distorted recoil spectrum

DUNE, HK, IceCube/DeepCore, ...
HNL decay, double bangs

Early Universe Cosmological parameters (Neff) Simons Observatory, CMB-S4, ...
Non-unitarity [2] Beam & Atm. νs Deviations from 3-ν mixing (ND & FD) DUNE, ESSνSB, HK, ...

LED [2]
Reactor νs

Distortion of oscillated spectra (FD & ND)
JUNO, TAO,...

Beam νs DUNE, ...
Atm. νs Anomalous matter effects Icecube, KM3NeT, ...
Reactor & Spallation sources Distortion of CEνNS rate COHERENT, CONNIE, CONUS, ...

NSI & light Solar, Beam, Atm & SN νs Anomalous matter effects DARWIN, DUNE, T2HKK, HK, IceCube, ...
mediators [2, 4] Beam νs Anomalous appearance, ν − e− scattering, tridents DUNE ND, T2HK ND, IsoDAR, ...

Collider νs Distortion of CC spectrum FASERν, ...
Long-range Solar & Atm ν Anomalous matter potential HK, JUNO, DUNE, ...
forces [2] UHE Astrophysical nus Distorted flavor ratios HE Neutrino Telescopes

ν-DM interact. [2]
Reactor & solar νs Distorted oscillated spectra, or JUNO, ...
Beam ν time-dependent oscillation params. DUNE, ...
UHE Astrophysical νs Distorted flavor ratios & spectra HE & UHE Neutrino Telescopes
SN νs SN extra energy loss, distortion in neutrino spectra DUNE, HK, JUNO, ...

ν self UHE Astrophysical νs Distorted spectra HE & UHE ν telescopes
interact. [3, 14] Early Universe Effects on CMB, BBN, & structure formation CORE, PICO, CMB-S4

Beam & Collider νs Missing energy & pT in ν scattering DUNE ND, Forward Physics Facility, ...

ν decay [2]

Reactor & DAR νs
Distortion of oscillated spectra

JUNO, IsoDAR, ...
Beam νs DUNE, MOMENT, ESSνSB, HK, ...
Atm. νs INO-ICAL, KM3NeT-ORCA, ...
UHE Astrophysical νs Distorted flavor ratios & spectra HE & UHE Neutrino Telescopes

CPT violation [2]
Beam νs

Different ν and ν̄ osc. params.
DUNE, ESSνSB, HK, ...

Atm. νs IceCube, DUNE, ...
UHE Astrophysical νs Distorted flavor ratios & spectra HE & UHE Neutrino Telescopes

Lorentz violation [2]
Beam νs

Sidereal modulation of event rate
DUNE, ESSνSB, HK, ...

Atm. νs IceCube, DUNE, ...
UHE Astrophysical νs Distorted flavor ratios & spectra, velocity dispersion HE & UHE Neutrino Telescopes

Quantum decoh. [2]

Reactor & DAR νs
Distortion of oscillated spectra

JUNO, IsoDAR, ...
Beam νs DUNE, ...
Atm. νs KM3NeT, IceCube, HK, ...
UHE Astrophysical νs Distorted flavor ratios HE Neutrino Telescopes

B violation [5] Detector mass Nucleon decay, n− n̄ oscillations DUNE, HK, JUNO, ...

Dark Matter [6, 7]

DM annihilation, DM decay Excess of νs from Sun or Earth
HK, DUNE, IceCube ...

Boosted DM, slow-moving DM Scattering, or up-scattering & decay

Fixed target
Decay

DUNE, T2HK, SBN, FASERν, ...
Scattering, or up-scattering & decay

Milli-charged particles [7]
Fixed target

Scattering
DUNE ND, T2HK ND, ...

Atmosphere DUNE, HK, JUNO, ...

Table 1: Summary of the most significant experimental signatures for the BSM scenarios covered here. Example experiments sensitive to each scenario are also provided (see references
for the full list). Abbreviations: Atm.=Atmospheric, B=Baryon number, CC=Charged Current, CEνNS=Coherent Elastic ν-Nucleus Scattering, DM=Dark Matter, FD=Far Detector,
HE=High Energy, LED=Large Extra Dimensions, ND=Near Detector, NSI=Non-Standard Interactions, SN=Supernovae, UHE=Ultra-High Energy, DAR=Decay at rest.
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neutrinos from supernovae would allow us to test our knowledge of neutrino interactions with matter
in extremely dense environments and to probe neutrino self-interactions which otherwise would be
inaccessible in the laboratory. Similarly, ultra-high energy astrophysical neutrinos reach our detectors
after traveling extremely long distances and probe neutrino interactions in a very different energy
regime.

Due to the very elusive nature of the neutrino, neutrino experiments typically rely on massive
detectors, a powerful source, or a combination of the two. The high-intensity proton beams that are
required, in conjunction with powerful combinations of precision near detectors, provides opportunities
to search for rare processes that were inconceivable in previous generations of neutrino experiments.
The use of underground neutrino detectors enable searches of particles from cosmogenic sources or
produced in the upper layers of the atmosphere, thanks to their sheer target mass. In addition, the
improved capabilities of the detector will greatly enhance signal-to-background discrimination. This
allows the use of neutrino experiments to probe weakly coupled sectors and has motivated the com-
munity to exploit them as diverse tools to push the BSM physics in the Intensity Frontier forward
as much as possible, complementing the phase space covered by Energy Frontier experiments. In
this sense, the theoretical and phenomenological communities have embarked on a dedicated effort
to design new strategies to probe models for dark sectors, which often result in stronger limits than
dedicated direct detection or collider searches for dark matter. This is something that had already
begun at the time of the last Snowmass process, and that has been widely expanded and pursued since
then. Finally, leveraging the fundamental nature of these rare processes also broadens the opportu-
nities for collaborations with the nuclear physics community, starting from precision measurements
of neutrino-nucleus interaction cross-sections to utilization of rare-isotope facilities for dark sector
particle searches.

This report summarizes the BSM opportunities that will become available at the next genera-
tion neutrino facilities, leveraging their capabilities. We present summaries of several topical areas of
BSM physics, classified in two distinct categories: BSM physics opportunities in the neutrino sector
(stemming from the existence of new neutrino interactions, and/or heavy neutrino states); and op-
portunities at neutrino facilities to explore and constrain BSM scenarios in other sectors (e.g. dark
sectors). Each of these topics takes advantage of different aspects of future neutrino experiments,
which are emphasized in each sub-topical whitepaper [1,2,4–7]. Our report concludes with an outlook
of the exploration of BSM physics topics and a successful strategy for ensuring a continued pursuit of
these goals.

2 Neutrino BSM Opportunities

2.1 Heavy Neutral Lepton Searches

Heavy Neutral Leptons are right-handed neutrino partners to the Standard Model active neutrinos.
Their existence can provide elegant solutions to present open questions in fundamental physics such
as the origin of neutrino masses, the nature of dark matter and the observed matter antimatter
asymmetry in the Universe. These HNLs, named as such because they are significantly heavier than
the Standard Model active neutrinos, are (quasi) sterile and are produced through mixing with the
active neutrinos. The allowed mass range for these putative particles is unknown and spans any value
between a fraction of an eV up to the GUT scale. Hence HNLs are searched for with a large number
of complementary experimental approaches, from oscillations and nuclear decays to energy frontier
experiments. In this report, we refer to searches for HNL with masses above the eV scale, while for
lighter states we refer the interested reader to the Snowmass whitepaper [10] and to the NF02 Topical
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2.1 Heavy Neutral Lepton Searches 7

Report [15]. In the mass range between keV and TeV, a number of existing and new opportunities
stand out for the hunt for HNLs in the coming decades, as outlined below. In addition to examining
HNLs which only interact via neutrino mass mixing, we have also surveyed the phenomenological
consequences of non-minimal HNLs which have additional interactions. The current and future status
of HNL searches can be found in the recent Snowmass whitepaper [1].

A novel approach to searching for HNLs involves exploiting energy-momentum conservation in
nuclear reactions in which an electron neutrino or electron antineutrino is involved, such as beta
decay and electron capture processes. Proposed new experiments to probe these processes in the next
decade will provide valuable handles to make a direct search for heavy neutral leptons in the full
keV HNL mass range, with coupling sensitivities that will improve the present experimental reach by
several orders of magnitude, in particular when including the envisaged potential upgrades of these
experiments.

Present, future, and upgraded short-baseline experiments have a window to improve the sensitivity
for HNL searches in the mass region of 1-10 MeV. The challenge for these experiments will be to have
good handles on the background control, and ensure dedicated triggers for HNL decays in flight,
which would allow coverage of a substantial extension of the present search region in that mass range.
We strongly recommend the reactor experiment community to study and invest in this particular
opportunity.

The prospects for discovering HNLs in the coming one or two decades in fixed-target experiment
environments have been examined. This broad category includes many currently-operating and next-
generation experiments, each with various approaches and physics goals (many of which are orthogonal
to these beyond-the-Standard-Model searches). These can be broadly categorized based on their
experimental equipment deployed, and can be used to divide these into searches from rare kaon
decays, beam-dump setups, and searches in neutrino-beam environments. Complementarity among
the different fixed-target probes is evident, but also when comparing with the other types of searches
discussed e.g. for colliders as discussed below. Fixed-target searches offer some of the most promising
sensitivity to discovering HNLs in the tens of MeV to few GeV range in the near future.

The LHC and possible future high energy colliders will offer excellent opportunities to search for
heavy neutral leptons. With the full high-luminosity event statistics the CMS and ATLAS experi-
ments can potentially reach values of couplings in the minimal HNL model on |VeN |2 and |VµN |2 down
to or below 10−7 − 10−8, in the mass region mN of 5-20 GeV. LHCb will extend the range to lower
masses. One of the issues hindering the reach to smaller couplings at small mass hypotheses is the
decreasing acceptance of the central detectors due to the correspondingly increasing HNL lifetimes.
Current proposals for new experiments at the LHC, made to overcome this limitation, are grouped in
transverse and forward type of detectors. The transverse detector proposals encompass the MATH-
USLA, CODEX-b, AL3X, ANIBUS and MAPP-LLP experiments. These are typically experiments
optimized for searches for observing new weakly interacting neutral particle decays, and placed at
distances of tens to more than a hundred meters away from the new particle production point. For-
ward detectors, such as FASER, SND@LHC, the Forward Physics Facility and FACET, are located
along the direction of the LHC beam line and are mostly sensitive to the production of new neutral
particles originating in decays of mesons.

These additional detectors will cover an important part of the HNL parameter space, mostly for
masses mN less than 5 GeV, and will be complementary to experiments at high intensity fixed target
experiments. The sensitivities will be reaching values of |VeN |2 and |VµN |2 roughly down to 10−8−10−9,
possibly even lower values, in a mass region between 100 MeV and 5 GeV.

In the more distant future, a facility like the FCC project could be realized. In terms of searches
for HNLs, the FCC in its different complementary stages, can probe very large areas of the parameter
space in the tens of GeV mass region, due to the copiously produced heavy bosons (Z’s at the FCC-ee
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2.1 Heavy Neutral Lepton Searches 8

Z-factory and W’s at a high luminosity FCC-hh hadron collider) that are large sources of neutrinos,
and cover regions that are not constrained by astrophysics or cosmology, and are complementary to
beam dump and neutrino facilities. Heavy neutrinos with masses larger than 10 TeV can be searched
for at the high energy frontier at the FCC-hh.

In the event of an HNL discovery, it will be important to study the HNL’s (or HNLs’) properties.
This includes, but is not limited to, studying the mixing pattern(s) and flavor structure of the HNL(s)
to determine if there is a connection to the observed light neutrino masses, as well as determining
whether Lepton Number is conserved or violated, or equivalently, whether neutrinos and HNLs are
Dirac or Majorana fermions. Either of these observations would revolutionize particle physics. In
particular fixed target experiments would be in excellent position for such measurements if the HNLs
happen to live in their covered parameter space, but present and future collider detectors will prepare
for this too.

In addition to the terrestrial bounds discussed above, the Snowmass whitepaper [1] also surveyed
the landscape of constraints arising from solar, atmospheric, astrophysical, and cosmological consid-
erations. The solar and atmospheric neutrino fluxes are large sources of naturally occurring neutrinos
which can be utilized for HNL searches. These turn out to lend themselves particularly well to pro-
viding strong constraints on non-minimal HNLs such as those interacting with a transition magnetic
moment. Likewise, the presence of HNLs in the early universe can potentially destroy the success of
big bang nucleosynthesis. These cosmological constraints provide complementary sensitivity to HNLs,
reaching lower mixing angles than any existing terrestrial constraint. At the same time, to the extent
that terrestrial and cosmological sensitivities overlap, there is the possibility of detecting HNLs which
could require modifications to cosmology.

For most of the future options and proposals given in Ref. [1] – both for the near and more distant
future – first estimates on the sensitivity for HNL discoveries have been made, and demonstrate the
potential HNL parameter space coverage. Certainly further studies e.g on detector optimization are
strongly desirable and needed for this important physics target. Such studies are encouraged to go
beyond the simplest version of the HNL models, covering non-minimal scenarios.

We finish this section with the following suggestions in the interest of the community:
Suggestion 1: We strongly suggest the experimental program to pursue new ideas and make

proposals for HNL sensitive experiments at the current existing accelerator facilities, as well as continue
to explore the hunt for HNLs with already existing detectors and/or upgrades. Some facilities were
perhaps not designed for BSM particle hunt studies per se, but thanks to their high intensity proton
source and the newly planned near detectors that will have excellent resolutions and efficiencies,
these will become very competitive, and one should exploit this superb opportunity to “upgrade” the
searches for such new particles to become a key part of these experiment’s baseline physics program.

Suggestion 2: It is suggested that future collider facilities take into account from the start the
strong interest and need for searches for long lived particles in their infrastructure plans. Detector
designs should from the start take searches for HNLs and LLPs in general as part of their main physics
goals.

Suggestion 3: In order to facilitate apples-to-apples comparisons, and for simplicity, we encourage
experimental analyses to examine sensitivity to the electron-, muon-, and tau-HNL mixing angles
separately. Of course if time allow, other flavor assumptions are worth exploring, and possibly even
more realistic. For example, a discussion of such new benchmarks is ongoing in the context of the
FIPS workshop series [16].

Suggestion 4: The keV mass scale can be covered using nuclear processes, and the proposed
experiments are very important. We should also make sure to capitalize on the existing and planned
(upgraded) reactor experiments to cover the low MeV mass range.

Suggestion 5: In the aftermath of HNL discovery, the most immediate question will be the
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2.2 BSM Effects on Neutrino Flavor 9

experimental determination of HNL properties. One would like to extract the data-preferred mixing
angles and HNL mass, determine the nature of the quantum statistical nature of the new particles
and perhaps stress-test the assumption that the detection is consistent with minimal HNL couplings.
We suggest experiments also consider how best to exploit the ability of their data to determine such
observables in the case of a discovery.

2.2 BSM Effects on Neutrino Flavor

Neutrinos offer one of the most promising places to search for Beyond the Standard Model (BSM)
effects. On the theoretical side their elusive nature, combined with their unknown mass mechanism,
seems to indicate that the neutrino sector is indeed opening a window to new physics. On the ex-
perimental side, several long-standing anomalies have been reported in the past decades, providing a
strong motivation to thoroughly test the standard three-neutrino oscillation paradigm. This can be
done in three main ways. First, neutrino oscillations experiments are very precise interferometers,
sensitive to subleading effects from new physics affecting neutrino flavor transitions. On a separate
front, neutrino telescopes provide a unique avenue to probe BSM effects, given the very long distances
traveled by the detected neutrinos (which range from the Earth radius to several gigaparsecs), as
well as their ultra-high energies. Finally, astrophysical observations (such as a nearby core-collapse
supernovae) in the upcoming decade will provide invaluable information and allow us to test neu-
trino propagation in extremely dense environments. The Snowmass white paper [2] summarizes the
main BSM scenarios that can lead to new signals affecting neutrino flavor transitions and neutrino
oscillations.

Until now neutrino physics has been driven by data, from the postulation of the neutrino by
Pauli to the discovery of neutrino oscillations, which was awarded the Nobel Prize in 2015. While
the upcoming generation of oscillation experiments aims to measure the leptonic CP phase and the
neutrino mass ordering, it will also test the standard picture with an unprecedented level of precision.
For the community to succeed in this goal, a rich experimental program is required, an effort which
should be complemented with a similar one by the community working in phenomenology and theory.
Here we highlight interesting and new opportunities to discover the presence of new physics affecting
neutrino flavor transitions in the next two decades, as well as some of the challenges that will have to
be faced in order to succeed in such a goal.

Testing neutrino oscillations in different environments is extremely useful to break degeneracies
between standard and BSM parameters, and to make sure that the three-neutrino paradigm is robust.
This entails contrasting the oscillation pattern in matter and vacuum, as well as on different oscillations
channels, and/or for experiments relying on different detection mechanisms, among others. In fact,
since the last Snowmass process new data from T2K and NOvA have become available, enabling us
to test the consistency of the standard neutrino oscillation picture. In the future, DUNE, JUNO
and T2HK will continue this endeavor, with a much higher level of precision. This also extends to
non-neutrino experiments: as an example, dark matter direct detection experiments are sensitive to
BSM effects on the neutrino floor. With this goal in mind, it is worthwhile stressing the importance
of global fits to neutrino data. In the past two decades these have proven to be extremely powerful to
unveil subleading effects in the oscillation probabilities (providing evidence for a non-zero θ13 before
it was determined experimentally); similarly, they will be critical to unveil new physics effects on
neutrino flavor.

Experimental collaborations are already working on joint fits for the determination of the neutrino
mixing parameters (between T2K and NOvA, ongoing), and analogous efforts have been carried
out by reactor experiments searching for eV-scale sterile neutrinos. It would be highly desirable to
extend these to constrain other new physics models as well, to extract the most out of the available
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2.3 BSM Effects on Neutrino Scattering 10

data. However, it is also important for collaborations to facilitate information to the public, so the
whole community may analyze their data to look for BSM signals. Two notable examples in this
context are the Icecube and COHERENT collaborations: their data release efforts have empowered
the theoretical community to reinterpret their results and to derive new bounds on BSM scenarios, or
to propose new experimental searches to unlock their full potential. In this effort the use of general
(model-independent) parametrizations is critical, as it allows to easily recast the obtained experimental
bounds to specific BSM models, and to extend the applicability of the analyses performed with the
data. An example is the use of effective operators to include possible effects from new interactions
at low energies, a similar approach also employed in other areas of particle physics (for example, in
collider searches for BSM signals). Additional frameworks of special relevance in the neutrino sector
include the parametrizations used to describe deviations from unitarity in the leptonic mixing matrix,
or SME coefficients in scenarios where Lorentz symmetry is violated. Nevertheless, this needs to be
complemented with an effort on the theory side, to make sure that the bounds on effective parameters
are correctly interpreted, and matched onto viable models.

Finally, it is worthwhile stressing that, so far, new physics has been evading our main avenues to
search for it, and thus it could yield unexpected signals. Because of this, experiments should be flexible
and not single-purposed, and those experiments still in their designing stages should aim to expand
their scope as much as possible. For example, at long-baseline oscillation experiments, strong emphasis
is placed on the charged-current measurements for the standard oscillation program; however for BSM
searches neutral current measurements are equally important. Also, experimental data may reveal
new discoveries in new and unexpected ways. For example, at long-baseline oscillation experiments
the neutrino flux measurements at the near detectors are assumed to be unoscillated so they can be
used to extract the oscillation parameters at the far detector. However, near detectors themselves are
sensitive to certain BSM effects; thus, unexpected anomalies (e.g. on the event rate normalization
at near detectors) should not be completely dismissed. In fact, new generation neutrino oscillation
facilities feature beams of unprecedented luminosity which, when observed by their near detectors, will
provide a very powerful tool to explore new physics effects. However, given the very high statistics, the
bottleneck for the sensitivity to such searches is often the level of understanding of the signal sample.
That is, systematic uncertainties are critical and must be evaluated and modelled thoroughly in order
to derive reliable constraints; a supporting program of flux and neutrino interaction measurements
will also be needed. Similar restrictions apply to BSM searches using neutrino telescopes, which are
subject to large uncertainties stemming from our poor knowledge of neutrino fluxes and cross sections
at such high energies. At neutrino telescopes, improving neutrino flavor identification will be key in
order to improve their capabilities to test for BSM effects.

2.3 BSM Effects on Neutrino Scattering

Neutrinos are a fundamental ingredient of the SM of particle physics and cosmology. Due to their
neutrality and weak interactions, however, their properties are the least understood among the SM
particles. In particular, neutrinos can serve as a portal to BSM physics, imbuing them with new
interactions. Remarkably, these interactions can be significantly larger than those provided by the
electroweak (EW) gauge bosons, suggesting that multiple new observable phenomena may be enabled
by such interactions.

New neutrino interactions with SM matter fields would impact neutrino oscillations in presence of
matter, as discussed for example in Ref. [2]. However, such interactions may also be tested directly in
the laboratory, through precise measurements of neutrino scattering on electrons and nuclei. Among
these efforts, the recent observation of Coherent Elastic neutrino-Nucleus Scattering (CEνNS) should
be highlighted in the context of BSM searches. CEνNS is a process in which neutrinos scatter
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coherently with a whole nucleus. Although the total cross section is large by neutrino standards,
CEνNS has long proven difficult to detect, since the deposited energy into the nucleus is ∼ keV.
Since its first observation in 2017 by the COHERENT collaboration, the detection of CEνNS has
spawned a flurry of activities in high-energy physics, inspiring new constraints on BSM physics,
especially regarding the existence of new neutrino interactions since it provides constraints that are
complementary to those derived from oscillation data. Interesting connections also exist between
CEνNS and dark matter detection experimental programs: while solar CEνNS signals in future dark
matter detectors constitute an important background to dark matter searches, its observation can
also be used to extract bounds on new neutrino properties and interactions.

The CEνNS process has important implications not only for high-energy physics, but also as-
trophysics, nuclear physics, and beyond. The main terrestrial sources of neutrinos used for CEνNS
experiments include stopped-pion sources, nuclear reactors, 51Cr sources, and next-generation neutrino
beams. Astrophysical sources of neutrinos can also be used to detect CEνNs, including solar neutri-
nos, atmospheric neutrinos, and supernova neutrinos. A recent whitepaper [4] discusses the scientific
importance of CEνNS, highlighting how present experiments such as COHERENT are informing the-
ory, and also how future experiments will provide a wealth of information across the aforementioned
fields of physics.

In the deep-inelastic regime, additional probes of new neutrino interactions are available: at high
energies, BSM interactions may not only increase the size of the neutrino-nucleon cross section, but
they may also affect the inelasticity distributions and provide significant deviations from the SM ex-
pectation. At energies above ∼ 10 TeV, the neutrino-nucleon cross section is measured by observing
neutrino absorption in the Earth using data from neutrino telescopes. With current experiments such
as Icecube, the total cross section has been measured up to 1 − 10 PeV. Future radio-detection ex-
periments, as well as the Icecube Gen2 upgrade, will aim to extend the energy range up to 1020 eV.
Currently, inelasticity measurements have been obtained by Icecube using neutrino data up to 500 TeV;
future radio-detection experiments may be able to extend this to substantially higher energies. How-
ever, it should also be stressed that in order to provide significant BSM constraints, the uncertainties
in SM processes, including nuclear corrections and non-DIS processes, should be reduced with respect
to present values.

Finally, while non-standard interactions with charged SM fermions are in some cases straight-
forwardly tested with traditional neutrino scattering and oscillation experiments, it is remarkable
that neutrino self-interactions, νSI, may also be probed through a variety of methods. Neutrino
self-interactions arise in multitude of BSM scenarios, including models addressing neutrino mass gen-
eration or the production of dark matter in the early Universe, as well as gauge extensions of the
SM, among others. Below the scale of EW symmetry breaking, νSI can usually be described by a
schematic interaction like ννφ where φ is a scalar or vector mediator particle. However, since neutrinos
are part of an EW doublet, an ultraviolet (UV) completion is required to consistently embed such an
interaction within the SM. The related Snowmass whitepaper [3] focuses on νSI and discusses both
the theoretical motivation and the physical systems in which they may lead to observable phenomena.

Experimentally, neutrino self-interactions may be probed in cosmological and astrophysical en-
vironments as well as in the laboratory, providing important and complementary constraints across
a broad range of parameter space: at relatively low scales (roughly between ∼eV and ∼MeV), νSI
would impact cosmological observables including light element abundances, the Cosmic Microwave
Background (CMB), and the matter distribution in the Universe; for higher self-interaction scales up
to O(100 MeV), supernovae and other astrophysical sources of neutrinos provide the strongest limits;
finally, laboratory experiments can access the broadest range of self-interaction scales all the way up
to O(100 GeV). In order to thoroughly test the existence of νSI, it is imperative that the community
considers all of these domains simultaneously. The whitepaper [3] demonstrates how several future
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experiments will further probe νSI, including theoretically well-motivated targets.

3 Non-Neutrino BSM Opportunities

3.1 Baryon Number Violation Searches

The stability of ordinary matter has long been a subject of both theoretical and experimental interests.
The electron is stable because of electric charge conservation. On the other hand, the stability of the
proton is guaranteed in the Standard Model by the accidental global symmetry of baryon number.
In models of quark-lepton unification, such as the Grand Unified Theories (GUTs), baryon number is
necessarily violated. As a result, the proton is no longer stable, and dominantly decays into e+π0 (for
non-supersymmetric theories) or K+ν̄ (for supersymmetric theories). This ‘smoking gun’ prediction of
GUTs which are otherwise inaccessible to laboratory experiments motivated the construction of large-
scale water Cherenkov detectors like Kamiokande (later upgraded to Super-Kamiokande). Although
there is no direct evidence of proton decay so far, but only stringent lower limits on the proton
lifetime, it is important to continue the searches for proton decay and other baryon number violating
(BNV) processes in general. In fact, the observed matter-antimatter asymmetry suggests that baryon
number must be violated at some level. It is also important to keep in mind that the same experiments
originally constructed to search for proton decay have now become truly multi-purpose experiments.
In particular, they have played a major role in neutrino physics, starting with the serendipitous
detection of SN1987A neutrinos, as well as the discovery of neutrino oscillations.

Therefore, the significance of current and next-generation neutrino experiments simultaneously
searching for baryon number violation and studying neutrino properties cannot be overemphasized.
While the main focus of the BNV experiments is on proton decay searches, there also exist other
equally important baryon and/or lepton number violating processes, such as dinucleon decays and
neutron-antineutron oscillations which must be studied as well along with their experimental detection
prospects. Possible connections of BNV observables to other beyond the Standard Model physics,
such as neutrino mass, baryogenesis, dark matter, flavor physics, and gravitational waves are also
being explored. The recent lattice developments for the relevant nucleon and nuclear matrix elements
of effective BNV operators are also crucial for reducing the theoretical uncertainties in the BNV
predictions.

Experiments have long sought evidence of the decay of the proton as proof of physics beyond the
Standard Model. The lower limit on the proton’s lifetime is currently of order 1034 years. Experimental
searches that seek to probe beyond this limit therefore need a huge source of protons and years of
exposure. The large mass and long operation times of detectors used for observation of neutrino
oscillations make them well-suited for searches for baryon number violation, including nucleon decay
and neutron-antineutron oscillations. The Super-Kamiokande neutrino experiment, which uses a
22.5 kton water Cherenkov detector and has been in operation since 1996, has published leading
limits on 30 baryon number violating processes. Next generation neutrino detectors, such as DUNE
(40 kton liquid argon TPC), Hyper-Kamiokande (190 kton water Cherenkov), and JUNO (20 kton
liquid scintillator), all include baryon number violation searches as a major component of their physics
programs and hope to improve upon the limits set by Super-Kamiokande, if not observe baryon number
violation for the first time.

Detector mass is a crucial characteristic in next-generation baryon number violation searches.
For small detectors, the exposure required to improve upon limits already set by Super-Kamiokande
can exceed the likely lifetime of the experiment. Clearly Hyper-Kamiokande has the advantage in
that respect. That being said, detector technology is also extremely important; DUNE’s excellent
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imaging capabilities and JUNO’s superb timing resolution offer advantages in some channels over
Hyper-Kamiokande’s larger mass. NOvA, a currently-running neutrino experiment with a 14 kton
segmented liquid scintillator detector, is developing a search for neutron-antineutron oscillations that
could potentially have sensitivity comparable to current limits. Theia is a proposed water-based
liquid scintillator detector that would combine the advantages of the large mass of a water Cherenkov
detector with the good resolution of a liquid scintillator detector. With this worldwide program,
should a baryon number violation signal be observed by any one detector in the next generation,
confirmation from other detectors using different technologies would provide powerful evidence of
physics beyond the Standard Model.

In addition to detector mass and technology, simulation and analysis techniques can also affect the
potential of these searches. As with neutrino interactions, the experimental community has come to
understand how important nuclear effects are in predicting the characteristics of final state particles.
Final state interactions in the nucleus alter the multiplicity and momenta of final state particles.
Uncertainties in modeling final state interactions therefore introduce uncertainties into the signal
efficiency estimates and lifetime limits. Furthermore, analysis techniques are continually improving.
For example, Super-Kamiokande made improvements to the search for proton decay via p → e+π0

by reducing backgrounds via neutron tagging. Potential improvements to searches in a liquid argon
TPC could come from tagging of nuclear de-excitations.

The experimental neutrino physics community has long been conducting searches for baryon num-
ber violation using neutrino detectors. The next generation of neutrino detectors will allow the con-
tinued pursuit of this goal, with massive detectors and continually improving analysis techniques [5].

3.2 Cosmogenic Dark Matter and Exotic Particle Searches

Signals from outer space and their detection have been playing an important role in particle physics,
especially in discoveries of and searches for physics beyond the Standard Model (BSM); beyond the
evidence of dark matter (DM), for example, the neutrinos produced from dark matter annihilation are
important for indirect DM searches. Moreover, a wide range of new, well-motivated physics models
and dark-sector scenarios have been proposed in the last decade, predicting cosmogenic signals com-
plementary to those in the conventional direct detection of particle-like dark matter. Most notably,
various mechanisms to produce (semi-)relativistic DM particles in the present universe (e.g., boosted
dark matter) have been put forward, while being consistent with current observational and experi-
mental constraints on DM. The resulting signals often have less intense and more energetic fluxes, to
which underground, kiloton-scale neutrino detectors can be readily sensitive. In addition, the scatter-
ing of slow-moving DM can give rise to a sizable energy deposit if the underlying dark-sector model
allows for a large mass difference between the initial and final state particles, and neutrino detectors
are excellent places to explore these opportunities.

Detectors based on different technologies are complementary for probing diverse models and sce-
narios. For example, water Cherenkov detectors normally have large mass, nanosecond-level time
resolution, and MeV-level detection thresholds for electrons, leading to the most stringent limits as
of today on boosted dark matter originating from the Galactic Center and Sun [17–20] as well as on
“dark cosmic rays” of DM accelerated in astrophysical sources. While long-string water Cherenkov de-
tectors are uniquely suitable for TeV-scale signals, liquid-argon time-projection chambers (LArTPCs)
may have an advantage searching for hadronic boosted DM interactions, owing to their moderately
large nuclei and the capability of detecting protons with kinetic energy down to a few tens of MeV.
As various neutrino experiments are currently collecting data or will be operational in the future, a
vast swath of parameter space will soon be explored.

Spanning over a wide energy range, the cosmogenic BSM searches broaden the physics cases at
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neutrino detectors and enhance the research and development of experimental techniques and analysis
strategies. Neutrinos from natural sources, such as solar, atmospheric, and astrophysical neutrinos,
contribute as the main background, and understanding of such neutrino fluxes and interaction cross
sections is crucial. Searches for MeV-scale signals also encounter the background sources from radio-
logical materials, which make recording such signals in real time challenging. Innovative development
on detectors, triggering systems, reconstruction algorithms, etc. will be helpful to comprehensively
collect and analyze physics activities of interest.

A recent white paper [6] is devoted to discussing the scientific importance of cosmogenic dark
matter and exotic particle searches, not only overviewing the recent efforts in both the theory and the
experiment communities but also providing future perspectives and directions on this research branch.
A landscape of technologies used in neutrino detectors and their complementarity is discussed, and
the current and developing analysis strategies are outlined.

3.3 Beam-Originating Dark Sector Particle Searches

The idea of a dark sector (also referred to as a hidden sector or secluded sector) implies the existence
of new states that are not charged under the known strong, weak, and electromagnetic forces, but
that are weakly coupled to the Standard Model via a mediator portal interaction. This concept is
well motivated from a variety of perspectives as dark sectors may provide novel answers to a some of
the big open questions in particles physics, including dark matter and neutrino masses, among others.
The portal concept, based on straightforward effective field theory reasoning, provides a systematic
framework for the theoretical and experimental investigation of dark sectors. Furthermore, a number
of creative dark sector models have been proposed to explain a variety experimental anomalies.

An expansive experimental program is emerging to explore the dark sector, and neutrino beam
experiments have a critical role to play in these investigations. Modern accelerator-based neutrino
experiments feature enormous proton beam-target collision luminosities, which can supply copious
secondary forward fluxes of dark sector particles. Contemporary neutrino detectors benefit from
large active masses and volumes, excellent particle identification and reconstruction capabilities, and
capacities for precision energy, spatial, and timing measurements, which can be leveraged to detect a
variety of rare dark sector signals and distinguish them from beam-related and/or cosmic backgrounds.
These experiments are particularly well suited to the study of hadrophilic and neutrinophilic dark
sector interactions. The coming decade and beyond promises to be an exciting era for dark sector
research, with a number of neutrino beam experiments already in operation and several ambitious
planned projects on the horizon.

The past decade has witnessed intense theoretical exploration of dark sector models and their
phenomenology, including the novel signatures and promising search prospects at neutrino beam ex-
periments. A recent whitepaper [7] reviews the status of a broad range of dark sector models, including
scenarios featuring the vector portal, Higgs portal, neutrino portal, axion-like-particle (ALP) portal,
dark neutrinos, and neutrino-philic interactions. Collectively, these theoretical scenarios motivate a
broad suite of searches, including long-lived-particle decays to a variety of visible final states, elastic
and/or inelastic scattering with detector electrons or nuclei, neutrino up-scattering to dark neutrinos
followed by visible decays, and modifications to neutrino scattering processes. Current and future
neutrino beam experiments will be able to probe large regions of uncharted parameter space.

A effective and robust dark sector search program necessitates accurate simulation tools for both
the myriad dark sector particle production channels and the rich array of detectable signatures. Sev-
eral challenges must be met in the development of these tools, including modeling the complex target
geometry and horn, an accounting of nuclear physics effects in production and detection, the capa-
bility for fast detector simulation, and the identification/reconstruction of unique signal topologies,

NF03 Topical Group Report Snowmass 2021



15

to name a few. So far, phenomenological studies have utilized a hodgepodge of publicly available
event generators in tandem with home-grown codes to simulate signals and backgrounds, design mock
analyses, and derive sensitivity estimates. However, in most cases this approach is not suitable for
experimental analyses, and the development of packages that can be readily integrated into the ex-
isting simulation frameworks used by the collaborations is one key direction that calls for immediate
effort. Furthermore, the development of novel reconstruction and analyses methods, perhaps including
the use of modern machine learning methods, is another important arena where improvement can be
anticipated.

An important aspect in the search for dark sector particles from beam interactions is precise un-
derstanding of the backgrounds from neutrino-nucleus interactions. For this, improving the neutrino-
nucleus interaction model based on experimental measurements and reflecting them into the simu-
lations tools are essential elements. To accomplish this, an effective way of collaborating with the
nuclear physics community must be sought and implemented in a timely fashion to strengthen our
understanding of backgrounds. Finally, the powerful and precision near detector complex is critical
for leveraging the full beam power at the future neutrino experiments, given that the dark sector
particles of interest are resulting from beam interactions in the neutrino target.

Neutrino beam experiments represent an important front in the quest to explore the dark sector.
Experiments currently in operation and those coming online over the next decade hold the promise to
significantly advance these studies, yet there is still much important work to be done to realize their
full physics potential, perhaps most notably in the development of robust and versatile simulation
tools. Given the exciting array of opportunities outlined in this section, dark sector searches will form
an exciting and even vital part of the broader physics program at existing and future neutrino beam
experiments.

4 Diversity, Equity, and Inclusion

As we have engaged with the broader community through the Snowmass process, we have taken steps
to ensure that a wide diversity of contributions are included. It is crucial that we build a diverse,
equitable, and maximally inclusive community of physicists across disparate domains. This goal has
been reflected in the authorship and editorship of the white papers within NF03’s purview.

5 Summary

This report has surveyed some of the high-priority BSM opportunities which can be explored at
upcoming neutrino experiments. For a quick guide to some of these, we refer the reader to Table 1.

To maximize coverage of the potential afforded by near-term experimental neutrino program, we
reiterate a few key points: (1) a variety of BSM physics can be powerfully explored at neutrino
facilities; (2) in order to extract their full potential, BSM searches need to be included among the
main experimental goals since this may have an impact on the experimental design of future facilities;
(3) it would be desirable for collaborations to derive BSM constraints in a way that is as model
independent as possible; (4) there is a clear and urgent need for improved simulation tools capable of
producing BSM signals and precisely predicting interactions of their backgrounds, including that of
neutrinos; and (5) finally, for the community to extract the most from facilities and their concomitant
data, a broader and closer collaboration with other particle physics frontiers and the nuclear physics
community would be required.
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