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Abstract

The 2021 particle physics community study, known as “Snowmass 2021”, has brought together particle
physicists around the world to create a unified vision for the field over the next decade. One of the areas
of focus is the Underground Facilities (UF) frontier, which addresses underground infrastructure and the
scientific programs and goals of underground-based experiments. To this effect, the UF Supporting Capabil-
ities topical group created two surveys for the community to identify potential gaps between the supporting
capabilities of facilities and those needed by current and future experiments. Capabilities surveyed are dis-
cussed in this report and include underground cleanroom space size and specifications, radon-reduced space
needs and availability, the assay need and other underground space needs as well timeline for future exper-
iments. Results indicate that future, larger experiments will increasingly require underground assembly in
larger, cleaner cleanrooms, often with better radon-reduction systems and increased monitoring capability
for ambient contaminants. Most assay needs may be met by existing worldwide capabilities with organized
cooperation between facilities and experiments. Improved assay sensitivity is needed for assays of bulk and
surface radioactivity for some materials for some experiments, and would be highly beneficial for radon
emanation.
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1 Introduction

Underground experiments require significant supporting capabilities, including above-ground and under-
ground cleanrooms, radon-reduction systems, and low-background assay systems. These capabilities are
required to create and maintain low-radioactive environments for the operation of radiation-sensitive exper-
iments such as those described in other Underground Facility reports for neutrino physics and dark matter.
To assess the needed supporting capabilities for future experiments, a survey was sent to all current and
planned underground experiments with SNOWMASS white papers. Concurrently, a survey was sent to all
current and planned underground facilities. Tables 1 and 2 list all survey respondents. Based in great part
on the responses, Sections 2–4 below describe facilities’ supporting capabilities and the needs of future ex-
periments.

*corresponding author:akamaha@physics.ucla.edu
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Table 1: Survey respondents: List of Experiments

Current Experiments
CANDLES [1] DM-Ice [2] NEXT-100 [3]
CDEX [4] Hyper-Kamiokande [5] PandaX [6, 7]
COSINE-100 [8] KamLAND-Zen [9] Super-Kamiokande [10]
CUPID [11, 12] Majorana Demonstrator [13] SNO+ [14]

Planned Experiments
Argo [15] DARWIN [16, 17] NEXT w/Ba-Tagging [18, 19]
COSINE-200 [20] Kton Xe TPC for 0νββ [21] NuDot [22, 23]
CUPID-1T [24] LEGEND [25] PIRE-GEMADARC [26, 27]
CYGNUS [28, 29] nEXO [30] SBC [31, 32]
DarkSide-20k [15] NEXT-CRAB [18, 19] Snowball [33]
DarkSide-LowMass [15] NEXT-HD [18] 50-ton bubble chamber [34]
A possible neutrinoless-double beta-decay extension to DUNE [35]

Table 2: Survey respondents: List of Facilities

Berkeley Low Background Counting Facility, U.S. [36] Boulby, UK [37, 38, 39]
Canfranc, Spain [40, 41, 42] Gran Sasso, Italy [43, 44]
JinPing, China [45, 46] Kamioka Observatory, Japan [47]
KURF, VA, U.S. (not available due to COVID) [48, 49, 50] LAFARA, French Pyrénées [51]
LLNL Nuclear Counting Facility, U.S. Modane, France [52, 53, 54]
Pacific Northwest National Laboratory, U.S. [55] SNOLAB, Canada [56]
SURF, SD, U.S. [57] Y2L / Yemilab, Korea [58, 59, 60]
U. Alberta, Canada [61] SD Mines, SD, U.S. [62, 63]

2 Facilities for Low-Radioactivity Fabrication and Assembly

A general need for most underground experiments is space for low-radioactivity fabrication and assembly.
Cleanrooms (as described in Sect. 2.1) and radon-reduced air environments (as described in Sect. 2.2) are
important supporting facilities to mitigate exposure to ambient background sources.

2.1 Cleanroom Capabilities

Dust on or in sensitive detectors can compromise their operation (e.g. by causing electrical shorts or spark-
ing [64]) and increase their radioactive backgrounds since dust particulates may contain 238U, 232Th and
40K [65, 66, 67, 68, 69]. Dust may also emanate radon into detector active volumes after detector assem-
bly [67]. It is therefore often critical to minimize exposure of detector materials to dust at all stages of
storage, handling, and detector assembly. The higher level of mine dust in many underground spaces in-
creases the level of contamination of the detector surfaces by these particulates compared to above ground
if dedicated cleanroom spaces are not used.

Detectors for underground experiments have often been assembled in cleanroom laboratories above
ground and then transported underground to finalize the assembly. As the need for bigger detectors arises
for the future of these experiments , larger underground clean areas will be needed for detector assembly, as
transport of very large assembled detectors from the surface will become too difficult. Furthermore, stricter
background requirements will limit the amount of time materials can be at the surface, suffering cosmo-
genic activation. Underground clean areas will also be increasingly needed for material storage, screening
facilities, and detector development such as crystal growth for solid state detectors [70, 71].

The standard cleanroom ISO-6–7 (class 1000–10000) currently available in different facilities across the
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Figure 1: Cleanroom class requested by future UG experiments

world is sufficient for many experiments but not for all experiments. Some experiments require improving
these cleanrooms to ISO-5 (class 100) for further suppression against dust fallout onto the detector material
surfaces during the assembly stage, as shown in Figure 1. Table 3 lists the cleanroom sizes and ISO classes
available in underground and surface laboratories worldwide.

For these future detectors’ development and assembly, multiple-sites monitoring of the dust concentration
within the cleanrooms as well as the dust fallout rate over time is also recommended. Particulate detectors
should be distributed in strategic areas to sample the air within the room over time with prompt feedback.
Collection vials or Witness plates should also be distributed in these areas to be measured with ICP-MS
or optical and/or x-ray fluorescence microscopy to enable an accurate modelling and tracking of the dust
content within the room and its deposition onto the detector materials (which can be confirmed later with
tape-lift measurements). The lowest requirements on dust fallout rate is at the level of 100 ng/cm2 over the
duration of experiment assembly for inner detector surfaces with a requirement of ∼10−17 g (U,Th) /cm2 on
U and Th from dust. These requirements are modestly lower than the sensitivity of the current microscopy
techniques for dust deposition but may be met for long-lived isotopes using ICP-MS [72].

2.2 Radon-reduced Cleanrooms and Other Spaces

Radon-daughter plate-out onto detector surfaces during storage, handling, or detector assembly provides
additional long-lived radioactive contamination for underground experiments. Contamination with 210Pb
(t1/2 = 22.3 year) contributes to experimental backgrounds long after the initial plate-out via its beta de-
cay [73, 74, 75, 76], alpha decay [77, 78, 69, 79] and recoiling daughters [73, 80, 81, 82, 83, 69, 84].
Due to nuclear recoil momentum, decay daughters are generally embedded tens of nm into the detector
material surfaces after the initial parent depositions. The contaminants are therefore not easily removed
with remedial cleaning after the assembly is complete. Techniques such as acid etching or electropolishing
may be performed in some cases with relatively good efficiencies at removing some of the implanted radon
daughters (210Pb, 210Bi, 210Po) [85, 86, 87, 88, 79, 89]. The best approach remains mitigation against the
deposition of radon daughters onto the detector material surfaces.

The air in underground laboratories typically has a high radon concentration (∼100 Bq/m3) [90, 91],
although some underground sites (such as Boulby and KURF) have low radon concentrations similar to out-
doors (∼5 Bq/m3) throughout their entire facilities. Many experiments require cleanroom areas for detector
fabrication and assembly with radon concentrations below that of outside air. Larger future detectors re-
quiring lower levels of radon-daughter plate-out will also necessitate larger cleanrooms underground with
even lower radon concentrations. Table 4 lists the current low-radon cleanrooms worldwide along with ad-
ditional spaces with radon concentrations reduced to lower than outside air. In general, these facilities have
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Table 3: Cleanroom spaces for underground facilities

Depth CR Areas CR ISO
Laboratory (mwe) (m2) Class
Boulby, UK. 2805 800 ISO 7
Canfranc, Spain [40, 41] 2400 70, 30 ISO 5-6
Gran Sasso, Italy 3100 13 ISO 7
Gran Sasso, Italy 3100 86, 32 ISO 6
Gran Sasso, Italy 0 325 ISO 6
Gran Sasso, Italy 0 62 (in progress)
SNOLAB, Canada 5890 4924 ISO 6-7
SNOLAB, Canada 5890 3159 ISO 6-7
SURF, SD, U.S. 0 37 ISO 6
SURF, SD, U.S. 0 55 ISO 5-6
SURF, SD, U.S. 4300 120, 56, 55, 41 ISO 5-6
SURF, SD, U.S. 4300 52, 18.3 ISO 6-7
SURF, SD, U.S. 4300 286, 125, 38, 34 ISO 7
SURF, SD, U.S. 4300 90 ISO 8
Y2L, Korea 1750 46, 46 ISO 7
Yemilab (under construction), Korea 2800 23 ISO 5
Yemilab (under construction), Korea 2800 80, 20 ISO 7
Kamioka Observatory, Japan 2700 66 Not relayed
PNNL, U.S. 38 5×19-60 ISO 6-7

been built to meet the needs of specific near-term experiments. Future experiments described above, such
as liquid noble detectors, tend to need reduced-radon cleanrooms with areas 100–200 m2, while several
next-generation experiments (such as DarkSide-LowMass and future phases of NEXT) require lower radon
concentrations (1–5 mBq/m3) than are currently available. These lowest radon concentrations desired are
at, but not beyond, the capabilities of the most sensitive radon monitors so far produced.

Because the ultimate goal of reduced-radon cleanrooms is to ensure a low level of radon-daughter plate-
out onto detector surfaces is not exceeded, monitoring of the radon daughter plate-out is also needed in
many cases (especially since such plate-out rates depend not only on the radon concentration but also on the
material charge and geometry). Such monitoring is typically achieved through a distribution of witness plates
measured with low-background alpha detectors. Desired sensitivities for many experiments are lower than
0.1 mBq/m2 activity of 210Po during a full construction period, implying that monitoring that can provide
direct short-term feedback of use must be modestly better than the best sensitivity currently available. [93,
89]

Some experiments require lower radon concentrations in the air surrounding their detectors (often in
gaps within shielding layers). Modane supplies air with a concentration of 15 mBq/m3 to its experiments,
while Canfranc supplies 220 m3/hr air with 1 mBq/m3 [40]. Y2L provides purge gas with a concentration of
1 Bq/m3 to its HPGe detectors. Several experiments use liquid nitrogen boil-off as described above.

3 Assay needs

Underground experiments including dark matter searches and neutrinoless double beta decay experiments
continue to require extreme detector radiopurity. Of particular interest are the primordial radionuclides,
40K, 232Th, and 238U which are present in most raw materials. For each of these experiments, materials are
carefully screened and selected to comprise the detectors and their shielding. Once materials are selected,
accurate and precise characterization is an important component in the modeling and analysis of their data.
A complementary suite of assay capabilities, including High Purity Germanium (HPGe) Gamma-Ray Spec-
troscopy, Inductively Coupled Plasma Mass Spectrometry (ICP-MS), alpha screening, and radon emanation
is required to determine which radionuclides are present in a material and at what levels, especially since
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Table 4: Radon-reduced spaces for underground facilities

Depth CR Area CR ISO Rn Concentration Other
Laboratory (mwe) (m2) Class (mBq/m3) Areas
Canfranc, Spain [42] 2400 70 ISO 5-6 <5 1 mBq/m3 to experiments
Gran Sasso, Italy 3100 13 ISO 7 10
Gran Sasso, Italy 3100 86 ISO 6 50
Gran Sasso, Italy 3100 32 ISO 6 50
Gran Sasso, Italy 0 325 ISO 6 (in progress)
Gran Sasso, Italy 0 62 ISO 6 (in progress)
Kamioka Obs., Japan 2700 50 mBq/m3 to SuperK tank
Modane, France [92] 4800 16 (planned) 15 mBq/m3 to experiments
SNOLAB, Canada 5890 ISO 6 (in progress)
SURF, SD, U.S. 4300 45 ISO 7 100
SURF, SD, U.S. 0 55 ISO 5-6 500
Y2L 1750 46 ISO 7 1000 HPGe array room
Yemilab (planned) [59] 2800 23 ISO 5 planned planned
Yemilab (planned) [59] 2800 80 ISO 7 planned planned
U. Alberta, Canada [61] 0 100 ISO 5 100
SD Mines, U.S. [62, 63] 0 15 ISO 5-6 20

decay chains are often not in secular equilibrium. [67, 94].
The surveyed current and planned experiments relayed a variety of needed sensitivities for sample assays,

with most next-generation experiments aiming for ∼100 nBq/kg assay capability for inner detector materials.
However, KAMLAND-ZEN related their requirement of achieving on the order of 1 nBq/kg.

3.1 High-Purity Germanium Gamma-Ray Spectroscopy

Gamma-ray spectroscopy using HPGe detectors has historically been the workhorse of low-background ef-
forts. These detectors are located in numerous underground lab around the world. Low-background counting
of gamma rays to determine the radionuclides embedded within materials is sensitive down to 10 µBqkg−1

levels. Counting times for these detectors are routinely on the order of 1–2 weeks, with some up to a month
in duration. Samples must be of sufficient mass to collect emission statistics but also must fit within the
shielding of the detectors, which vary in size. HPGe is a non-destructive assay technique, so it can be used to
assay final components.

For samples of smaller mass and activity, Neutron Activation Analysis (NAA) sometimes may be used [95].
Samples are first activated in a reactor, and then analyzed over a few weeks using HPGe detectors. This
technique is effectively destructive to a low background sample as the sample is unusable after it is activated.

As shown in Table 5, there are currently over 60 HPGe detectors serving underground experiments world-
wide (and there are numerous HPGe detectors at additional underground laboratories not listed). If each
detector counts a sample for two weeks and each detector requires four weeks of calibrations and background
checks per year, the world-wide capability for ultra-low background counting is approximately 1,400 samples
per year. Many experiments need on average 100 samples counted per year. However, limits of sensitivity
for currently available HPGe may not reach the levels required by the most inner materials in the next gen-
eration of dark matter and neutrinoless double beta decay experiments. Current detector limits are on the
order of 10 µBqkg−1, about two orders of magnitude worse than needed for some materials. HPGe detectors
with improved sensitivity (such as multiple-crystal detectors [112]), or other assay techniques with improved
sensitivity, will be needed to provide assays for next-generation experiments. Furthermore, we cannot realize
the full efficiency of having all world-wide detectors subscribed with the current model of each experiment
“owning” detectors. World-wide collaboration among low background counting labs is needed to fully realize
the potential.
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Table 5: Current Low Background HPGe systems. Some sensitivities in our survey were not recorded.

Sensitivity
Depth Number [U], [Th]

Facility (mwe) HPGe (mBq/kg)
Berkeley Low Background Counting Facility, U.S. [96] 15 1 6 – 24
Boulby Underground Laboratory, UK [97] 2805 6 < 0.1 – 1
Canfranc, Spain [98] 2400 7 0.1 – 1
China Jinping Underground Laboratory [45] 6720 3 1
Gran Sasso, Italy [99, 100] 3100 8 0.016 – 15
Kamioka Observatory, Japan [101, 102] 2700 5 < 1
LAFARA underground laboratory, French Pyrénées [51] 220 5 Not relayed
LLNL Nuclear Counting Facility, U.S. 10 3 Not relayed
Modane, France [103, 104] 4800 2 0.4 – 4
Pacific Northwest National Laboratory, U.S. [105, 55] 38 14 Not relayed
SNOLAB, Canada [106] 5890 5 0.04 – 0.35
SURF, SD, U.S. [107] 4300 6 0.05 – 0.7
Vue-des-Alpes Laboratory, Switzerland [108, 109, 110] 620 1 < 0.1
Y2L / Yemilab, Korea [111, 59, 112] 1750/2500 3 0.05 - 0.5
SD Mines, U.S. 0 2 200 – 2000

3.2 Mass Spectrometry

Complementary to HPGe screening are various forms of mass spectrometry. Inductively Coupled Plasma Mass
Spectrometry (ICP-MS) provides some of the lowest detection limits (sub-ppt, or 0.01 µBqkg−1) [113, 114,
115] available for 232Th and 238U as well as other isotopes of interest to the low-background community [116,
117]. While ICP-MS can also detect 40K, interference effects with Ar species produced in the Ar plasma tend to
reduce its sensitivity, with ppm levels achieved typically and state-of-the-art instrumentation able to achieve
ppb to ppt levels [118].

One advantage of ICP-MS over HPGe detectors is in the measurement speed. Once the sample is prepared,
ICP-MS takes minutes to analyze one sample, whereas the HPGe detector may take weeks. Additionally,
smaller sample sizes are required with ICP-MS. If laser ablation is utilized, ICP-MS can be a location-specific
technique, although this mode of operation requires more complicated calibration techniques typically in-
cluding the development of certified matrix-matched standards [119, 120].

A disadvantage of ICP-MS is in the preparation of the sample (if laser ablation is not used). Optimizing a
sample preparation technique for each new material can be time-consuming. Since digestion or ablation are
required, the technique is destructive.

Most of the underground facilities surveyed either have 1–2 ICP-MS systems on site at their surface
facilities, or have relationships with nearby labs for use of their ICP-MS systems. Most of these ICP-MS systems
are located in cleanroom facilities with dedicated sample-preparation areas. The experiments surveyed either
plan to use these systems or have located other systems within their collaborating institutions.

3.3 Alpha Screening

Many alpha detectors have negligible backgrounds reduced by operation underground, but backgrounds of
the most sensitive detector for α screening, the XIA UltraLo-1800 [121], with a sensitivity to surface 210Po <
0.1mBqm−2 [89] are reduced by operation underground by about a factor of 3 [93]. Despite this fact, rela-
tively few underground sites (Boulby, Kamioka, PNNL, and Y2L [122]) have underground XIA detectors; one
will be moved underground at SNOLAB soon. Most experiments require surface-alpha sensitivity that may
be achieved with the XIA, but improved sensitivity is needed by Argo and is important for many experiments
wishing to ensure that assembly occurs within the background requirements, rather than resulting in a need
to etch or replace materials after assembly.

6



3.4 Radon Emanation Assays

As described in [123], emanation of radon provides an important radioactive background for most under-
ground physics experiments, so screening candidate materials for Rn directly [124, 125, 126] is an im-
portant support for such experiments. Although radon emanation assays do not have improved sensitivity
underground, many experimental systems requiring emanation assays are too large and/or fragile to move
to an above-ground site for assay, and assaying as-built systems underground may be advantageous (see
e.g. [67]). For these reasons, several underground laboratories, including Kamioka, SNOLAB, Boulby, and
Canfranc, have radon emanation systems on-site, while SURF has the capability to harvest radon on-site for
measurement nearby at South Dakota Mines [67].

The amount of radon emanation capacity worldwide appears sufficient for future experiments so long as
this capacity may be efficiently exploited. However, for many experiments, improved radon emanation assay
sensitivity would be useful, as many measurements of individual materials at the limit of sensitivity may
easily add up to total radon emanation higher than the experiment requirements. Furthermore, ambiguities
in interpretation from radon emanation measurements at room temperature when applied to experiments at
low temperatures provide a need for future facilities for radon emanation at low temperatures.

4 Other Underground Support Needs

Experiments require additional specialized underground support to allow fabrication and assembly of detec-
tors, or to allow experimental specifications to be met during operation. These support capabilities include
underground storage of materials, on-site (including possibly underground) machining, and glove boxes for
even cleaner detector assembly. These capabilities may require reduced radon environments, as may the
detector shielding configurations.

On-site underground fabrication facilities are necessary to prevent cosmogenic activation of completed de-
tector parts. Such facilities may provide benefit to multiple underground experiments at a site. Underground
electroforming of copper parts can produce >10× lower radioactivity than the cleanest commercially avail-
able copper, and so is planned for experiments such as CDEX, NEWS-G, LEGEND, NEXT, and nEXO. [30, 127]
Experiments such as SBD and SuperCDMS would also benefit from electroplating of clean copper onto pre-
machined copper pieces [128, 129]. Underground electroforming capabilities exist at SURF, Canfranc, and
PNNL, and facilities are planned for Boulby and SNOLAB. Additional underground crystal growth and fabri-
cation of Ge detectors (to reduce the cosmogenic production of tritium) would also be beneficial for multiple
experiments [26, 129, 130], but there are no such facilities currently due to their significant cost. Several labs
(at least SURF, SNOLAB, and Gran Sasso) have underground machine shops. More extensive underground
machine shops for general use would benefit future experiments.

Most underground sites have plenty of non-cleanroom space available for storage of materials that do not
need to be kept in clean conditions. Such long-term storage is important for letting cosmogenic activation
decay away in materials of detectors used for rare-event searches. Most experiments need only modest
storage within cleanroom spaces, with needs captured in the discussion in Sect. 2.1. Some of this storage
must be in low-radon volumes in order to reduce radon-daughter plateout onto parts. Such storage is most
easily achieved by bagging materials in radon-impermeable bags or vacuum-tight canisters, and/or placing
in gloveboxes or cabinets that are purged with low-radon gas, typically liquid nitrogen boil-off. Radon
concentrations at or below 0.1 mBq/m3 are achievable with such purges. [131, 132]

Several experiments require plants for water purification and radon removal (from the water), scintillator
purification and degassing, or chemical spaces with fume hoods. SNOLAB in particular has excellent facilities
for such liquid material purification. Finally, several experiments require isotopic purification, with some of
these needed to be sited underground, such as Te for SNO+.

5 Conclusions

The larger, lower-background experiments planned for the future will require larger support facilities that
also enable lower backgrounds than are currently available. Gaps between existing facilities and future needs
include the following:

7



• Some experiments require larger and/or cleaner cleanrooms than currently exist.

• Some experiments require larger and/or lower-radon reduced-radon cleanrooms than currently exist.

• Existing surface-screening methods for radon-daughter plate-out are not sufficient to inform experi-
ments during assembly as to whether their needs are met.

• Most assay needs may be met by existing worldwide capabilities with organized cooperation between
facilities and experiments.

• Improved assay sensitivity is needed for assays of bulk and surface radioactivity for some materials for
some experiments, and would be highly beneficial for radon emanation.

• More extensive underground machine shops for general use would benefit future experiments.
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[53] V. Palušová, R. Breier, E. Chauveau, F. Piquemal and P.P. Povinec, Natural radionuclides as
background sources in the Modane underground laboratory, J. Environ. Radioact. 216 (2020) 106185.

[54] D.V. Ponomarev, Z. Kalaninova, D.V. Medvedev, S.V. Rozov, I.E. Rozova, V.V. Timkin et al., Measuring
Low Neutron Fluxes at the Modane Underground Laboratory Using Iodine-Containing Scintillators,
Instrum. Exp. Tech. 62 (2019) 309.

[55] M.E. Keillor et al., CASCADES: An ultra-low-background germanium crystal array at Pacific Northwest
National Laboratory, AIP Conf. Proc. 1412 (2011) 208.

[56] J. Hall, The SNOLAB underground laboratory, J. Phys. Conf. Ser. 1468 (2020) 012252.

[57] J. Heise, The sanford underground research facility, 2022. 10.48550/ARXIV.2203.08293.

[58] K. Park, The new underground facility in Korea, Yemilab, J. Phys. Conf. Ser. 2156 (2021) 012171.

[59] M.H. Lee, Radioassay and Purification for Experiments at Y2L and Yemilab in Korea, J. Phys. Conf. Ser.
1468 (2020) 012249.

11

https://doi.org/10.1016/j.astropartphys.2008.05.004
https://arxiv.org/abs/0805.3110
https://arxiv.org/abs/2203.13978
https://arxiv.org/abs/2204.14263
https://doi.org/10.3390/universe8020112
https://doi.org/10.1134/S1063779618040123
https://doi.org/10.1134/S1063779618040123
https://doi.org/10.1140/epjc/s10052-019-7247-9
https://arxiv.org/abs/1905.05512
https://doi.org/10.1088/1742-6596/2156/1/012170
https://doi.org/10.1088/1674-1137/ac66cc
https://arxiv.org/abs/2108.04010
https://doi.org/10.1140/epjp/i2012-12111-2
https://doi.org/10.1016/j.nima.2011.03.064
https://arxiv.org/abs/1007.0015
https://doi.org/10.1063/1.3579562
https://doi.org/101016/jjenvrad201210002
https://doi.org/101016/jjenvrad201210002
https://doi.org/10.1140/epjp/i2012-12110-3
https://doi.org/10.1016/j.jenvrad.2020.106185
https://doi.org/10.1134/S0020441219030084
https://doi.org/10.1063/1.3665316
https://doi.org/10.1088/1742-6596/1468/1/012252
https://doi.org/10.1088/1742-6596/2156/1/012171
https://doi.org/10.1088/1742-6596/1468/1/012249
https://doi.org/10.1088/1742-6596/1468/1/012249


[60] Y.S. Yoon, J. Kim and H. Park, Neutron background measurement for rare event search experiments in
the YangYang underground laboratory, Astropart. Phys. 126 (2021) 102533 [2102.07205].

[61] D. Grant, A. Hallin, S. Hanchurak, C. Krauss, S. Liu and R. Soluk, Low Radon Cleanroom at the
University of Alberta, in Topical Workshop on Low Radioactivity Techniques: LRT 2010, R. Ford, ed.,
vol. 1338 of AIP Conf. Ser., pp. 161–163, Apr., 2011, DOI.

[62] J. Street, R. Bunker, C. Dunagan, X. Loose, R.W. Schnee, M. Stark et al., Construction and
Measurements of an Improved Vacuum-Swing-Adsorption Radon-Mitigation System, in Topical Workshop
on Low Radioactivity Techniques: LRT 2015, J.L. Orrell, ed., American Institute of Physics Conference
Series, June, 2015 [1506.00929].

[63] J. Street, R. Bunker, E.H. Miller, R.W. Schnee, S. Snyder and J. So, Radon Mitigation for the
SuperCDMS SNOLAB Dark Matter Experiment, in Topical Workshop on Low Radioactivity Techniques:
LRT 2017, D.L. Leonard, ed., AIP Conf. Ser., Aug., 2017 [1708.08535].

[64] K. Lindley and N. Rowson, Feed preparation factors affecting the efficiency of electrostatic separation,
Magnetic and Electrical Separation 8 (1970) .

[65] D. Akerib, C. Akerlof, D.Y. Akimov, A. Alquahtani, S. Alsum, T. Anderson et al., The lux-zeplin (lz)
radioactivity and cleanliness control programs, The European Physical Journal C 80 (2020) 1.
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