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ABSTRACT

This is a personal perspective on data sharing in the context of public data
releases suitable for generic analysis. These open data can be a powerful tool
for expanding the science of high energy physics, but care must be taken in
when, where, and how they are utilized. I argue that data preservation even
within collaborations needs additional support in order to maximize our science
potential. Additionally, it should also be easier for non-collaboration members
to engage with collaborations. Finally, I advocate that we recognize a new type
of high energy physicist: the ‘data physicist’, who would be optimally suited
to analyze open data as well as develop and deploy new advanced data science
tools so that we can use our precious data to their fullest potential.

This document has been coordinated with a white paper on open data com-
missioned by the American Physical Society’s (APS) Division of Particles and
Field (DPS) Community Planning Exercise (‘Snowmass’) Theory Frontier [1]
and relevant also for the Computational Frontier.

Submitted to the Proceedings of the US Community Study
on the Future of Particle Physics (Snowmass 2021)
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1 Introduction and Overview

There is increasing interest across many disciplines in “open science”. This can refer to
sharing analysis code, data, experimental machinery, or protocols with people other than
the scientists who did the original work. It can be motivated by a desire to archive the
data for later re-analysis, to drive a faster pace of discovery by involving more scientists,
or to ensure reproducibility and transparency in science. How to produce policies from
these arguments is an ongoing challenge – one in which modern high energy physics (HEP)
experiments can be instructive∗, as they offer extreme examples of dataset and collaboration
size.

Typical HEP experimental papers have hundreds to thousands of authors. We have this
tradition because data “collection and curation” includes detector design and operation,
simulation development, pattern recognition, and calibration, and is a significant part of
our collective work and is highly integrated with data analysis. While the growing divide
between “theorists” and “experimentalists” is worrisome for the future of HEP, it currently
has important implications for funding and career advancement. The HEP model is different
from nearby fields with a tradition of open data. For example, the researchers who build
and operate detectors in astronomy are often not the people who analyze the data.

It is also worth noting that our field has a long history of data sharing, where anyone in
the collaboration (a considerable fraction of all HEP physicists) has access to the raw data.
We also have advanced procedures for collaborating with external scientists and sharing data
for targeted usage via tools such as HepData [2]. While this setup has been very successful, it
is being challenged by the recent public release of data suitable for generic data analysis by
the CMS collaboration [3] (to be followed by the other LHC experiments [4]). Henceforth,
“open data” will refer to data suitable for generic data analysis and not a derived data
product like digitized figures or tables. I will also mostly be referring to open data in the
context of running experiments, although I will explore the connection with legacy data
analysis as well.

The motivation for open data seems to be two-fold: ensuring data preservation and
increasing the chances for discovery. Data preservation is of paramount importance and is
critically understaffed for ongoing and finished experiments. Releasing and stress-testing
data during the lifetime of an experiment is certainly one way to achieve data preservation.
However, this is not the only way. Data preservation can also be accomplished within the
collaboration by ensuring that all older data can be analyzed. This can be stress-tested
automatically with continuous integration workflows or manually by performing physics
analysis on older data, as was done in the case of the recent W boson mass measurement
from the ATLAS collaboration using early Run 1 data [5]. It is not a given that older
data are readily accessible internally; in fact, I would be surprised if any new graduate
student on ATLAS would be able to readily interrogate the data from Run 1 as data
formats and software tools have changed significantly. This is a serious problem that should
be addressed independent of data releases. Some studies with the CMS open data [6, 7, 1]
have discussed the challenges with using these data. These stories sounded painfully familiar

∗See Ref. [1] for a brief historical context.
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of the typical graduate student struggle. While most students do not get to write a paper
about this struggle (it usually does not even make their thesis), their challenge is no less
important and indicative of a serious challenge for data access and preservation internal
to experimental collaborations. This does not have to be a necessary part of the graduate
student experience.

In terms of discovery, having more “eyes on the data” is not obviously a problem for
our field - the collaborations at the Large Hadron Collider (LHC) have many thousands of
scientists and there are well-tested mechanisms for external scientists (including theorists)
to join for generic (by becoming an author) or limited-scope projects. Proposals for new
ideas can be readily carried out with simulations (even “open simulations” if the situation
calls for it).

While it may not be necessary for data preservation and for broadening HEP science,
open data could advance both of these areas. Along with these potential benefits, there
may also be potential costs. If the data are made available to those who are not involved
in the “collection and curation”, what is the incentive to take part in these important
activities? If the incentive to collect complex data is removed, the complex data may never
be collected. Furthermore, those not involved in the “collection and curation” will likely not
be able to perform accurate and precise experimental measurements because they are not
familiar with the intricate details of the data. Time delays are often a mechanism proposed
to protect the incentive to work on data collection and curation. However, any time delay
other than the lifetime of an experiment is a statement about what sort of science is most
“interesting”. Multi year delays would likely protect high profile, statistics-limited analyses.
Systematic uncertainty-limited analyses would not be protected (e.g. precision Standard
Model measurements). See Fig. 1 for the actual time delays between data collection and
paper completion - there is a clear shift between searches and measurements with a heavy
tail to the right for the latter. It has also not been long enough since the end of Run 2 to
know what the true tail will look like in the future.

It is often stated that open data would level the playing field and make HEP science
more equitable. However, open data may also have the opposite effect. Large collaborations
have membership from a diverse set of institutes who do not all have the same local re-
sources. Analyzing HEP data requires significant resources (computational and otherwise).
Working within a HEP collaboration ensures that all members have a chance to analyze
these data. In contrast, open data is only analyzable by wealthy groups (where ‘wealth’ has
multiple meanings). There is also the unfortunate reality that researcher diversity decreases
with seniority (see e.g. Ref. [8]) while the bulk of the collection and curation work within
collaborations is performed by relatively early career researchers.

Lastly, open data may reduce the integrity of HEP science if analysis scope and reviewer
expectations are not clear and calibrated. The release of CMS open data has already cre-
ated at least one incident where a paper from a collaboration was initially rejected from
a journal because the reviewers believed the analysis had already been done by theorists
working on CMS open data [9]. Open data makes it “easy” to compare predictions to data,
but if those data are not carefully corrected for detector effects or if uncertainties are not
quantified, then the comparison may not be meaningful. A study comparing uncorrected
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Figure 1: A histogram showing the time between the end of data taking and the posting of
a paper to arXiv for physics papers from the ATLAS Collaboration, scraped from https://

twiki.cern.ch/twiki/bin/view/AtlasPublic. ‘Searches’ include publications from the
SUSY, Exotics, and HDBS groups while ‘Measurements’ includes publications from the
Standard Model, Top Quark, and B Physics groups. Datasets less than 1 fb−1 are excluded.
There are 703 papers in the above histogram.

data with predictions is not the same as a proper “measurement”. The word “measure-
ment” is in quotes because it carries a certain gravitas with “experimentalists” that it often
does not with “theorists”. This could be addressed with a more integrated training of “ex-
perimentalists” and “theorists” in the future (see below). It is also worth noting that many
applications of open data could simply use simulation (or even open simulation) - the data
themselves do not add to the scientific aspect of the research. Once again, this is often the
case for papers that propose new methods. There is also a difference between ‘performance
studies†’ (e.g. Refs. [10, 11]) and ‘measurements’ (e.g. Refs. [12, 13]).

†It is unfortunate that these studies are often only findable on collaboration wiki pages or at best, the
CERN Document Server. This is changing with many studies findable on Inspire, but it would increase
idea sharing across the community to also post them to arXiv.
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2 Experience with Diverse Open Data Models

This section briefly illustrates my personal experiences with different models of data sharing.

ATLAS. ATLAS does not yet make data available for generic data analysis, although a
number of datasets are available for outreach [14] and a growing number of open simulations
have been published (see e.g. Ref. [15]). The goal of this section is to describe the experience
(from the “experimentalist” perspective) of “theorists” working directly with ATLAS. This
is done through short term associate (STA) positions that are approved by the collaboration
management [16]. I have worked with STAs on a number of occasions [12, 17]. The threshold
to set up one of these positions is quite low and readily allows for the “theorist” to interact
with internal data/simulation. This was highly effective. It would be useful to hear the
perspective from the “theorists” to see if their experience was as positive.

CMS. I do not have any direct experience analyzing CMS Open Data, but I would com-
pletely believe the stories in Refs. [6, 7, 1] about how difficult it is to analyze them from the
public releases (despite the impressive effort by CMS to make it as easy as possible). On the
other hand, the simplified data formats made available through the EnergyFlow package
(https://energyflow.network) make it very simple to access these data after some pro-
cessing. I have used the corresponding simulations in a number of studies [18, 19, 20], where
having full detector simulations was actually necessary to make a point. The EnergyFlow

package is a great service to the community and certainly lowers the barrier to entry for
Open Data/Open Simulation studies.

HERA/H1. Unlike the e+e− experiments at the Z pole (LEP/SLD), the deep inelastic
scattering experimental collaborations at HERA continue to exist. Their software infras-
tructure has been modernized [21] and it is still possible to analyze data from two decades
ago. These data are precious and new insights from jet physics and modern machine learning
(ML) will yield new and exciting physics results - see e.g. Ref. 2. I recently became involved
in the H1 experiment because of my interests in quantum chromodynamics (QCD) and in
preparation for the upcoming Electron Ion Collider (EIC). While the H1 data are propri-
etary, the collaboration welcomes new members. There is enough institutional knowledge to
enable precise analyses, but not enough institutional inertia to discourage new ideas. There
are simulated datasets that are hundreds of times the size of the experimental data and
significant institutional knowledge about how to generate more events, even with different
generators. This seems like an ideal model for long term data analysis in HEP.

LEP/SLC. In contrast to HERA, the experimental collaborations at LEP and SLD ended
a long time ago and their data are not public. I have been fortunate to have the oppor-
tunity to explore the ALEPH dataset from LEP through personal connections (or rather
connections of connections) with former collaboration members. These data are pristine
and just like for HERA, there are many new analyses to be performed with modern QCD
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Figure 2: Differential cross section measurements from the H1 Collaboration [22, 23, 24],
performed in 2021-2022 using data collected in 2006-2007 and an unfolding method proposed
in 2019 [25].
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and ML tools. However, the software infrastructure has not been modernized and there are
no standard tools for generating new events or estimating uncertainties. With significant
effort, some aspects of these tasks can be performed (see e.g. Ref. [26]), as at least some
collaboration software is still accessible. The situation with the SLD collaboration at SLC is
even less positive. As with ALEPH, I have access to the data through personal connections,
but there is little or no simulation and the software to produce more simulation disappeared
when old computers were discarded. As there is very little we can do without simulations,
this makes it challenging to use these pristine and unique data.

3 Resources for Data Preservation

Everyone agrees that data preservation is critical, however, it is often an unfunded mandate
to make this happen. Resources for data preservation should be available before, during,
and after an experiment has ended. Data from any point in the data taking should be
analyzable throughout the course of the experiment’s lifetime. I am impressed by the
HERA model for data preservation, which is possible due to a modest investment from
DESY. It seems like national laboratories are well-suited to host (which is more than just
store) these important and large datasets and the accompanying software/documentation.
Funding data preservation after an experiment has ended is complicated because project
funding is no longer available. Funding data preservation centers (like the CERN Open
Data Portal) at national laboratories seems like a viable path forward. It may also be
possible that a modest investment now could even resurrect the unique datasets taken at
LEP and SLC while enough former collaboration members are around, especially as the
community prepares for a future e+e− collider.

I note that not everything about data preservation is in dire straits. A number of tools
and initiatives are now in place to preserve various data products and analysis logic. While
not “open data” as I have defined it above, these developments are an important success
for the future of HEP. For example, current and future search results in ATLAS are being
preserved through the RECAST [27] system, which makes it straightforward to determine the
sensitivity to new models not tested at the time of the original analysis. For Standard Model
measurements, Rivet [28] and HepData are broadly accepted as community standards for
preserving analysis logic and final measurement data products. These have enabled many
data re-analyses.

4 Data Physicists

It is clear that there will be more and not less open data. I have tried to argue above that
alternatives to open data may be preferable, but I want to now turn my attention to how
I believe HEP should react to the growing availability of these data. In particular, I think
the trend in open data provides further and strong evidence for the need for a new type
of HEP scientist that is neither an “experimentalist” or a “theorist” - they are a “Data
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Physicist”‡. These scientists have the core skills to understand and interrogate data as well
as the computational and theoretical background to relate these data to underlying physical
properties. Unlike a traditional “experimentalist”, a Data Physicist will likely not have
extensive (or any) hands-on instrumentation experience and unlike a traditional “theorist”,
they may not have extensive (or any) experience with complex higher-order cross section
calculations. It is not enough to make data easily accessible and well-documented - we also
need to train a cohort of scientists who are well-equipped to use these data for science. In
particular, I expect the Data Physicist to have a HEP background, but extensive training in
statistics/data science/machine learning and scientific computing. Software and computing
are becoming commensurate with instrumentation and it is important and necessary physics
research to work on these topics for maximizing the science from our data.

How can we create this cohort? There needs to be career paths (starting in graduate
school) for Data Physicists. This includes degree programs as well as long term funding
prospects (that are not all short grants as is typical for computing). Important institutions
like HEP-CCE, IRIS-HEP, the NSF AI Institutes (IAFAI, A3D3, etc.) are great examples of
interdisciplinary research on software and computing and I strongly support continuing and
expanding these initiatives. However, funding through individual PIs, as is currently the
case for other areas of experimental and theoretical HEP, will be important for a sustained
effort.

5 Conclusions and Outlook

The LHC still has a long and exciting program ahead - only O(1%) of the full dataset has
been collected. The future data will open up exciting avenues for research that are not
possible with the existing data. At the same time, the data from the first and second runs
of the LHC are unique. The low instantaneous luminosity of Run 1 may compensate for
the improved detectors of Runs 2 and beyond for certain precision measurements. I would
argue that before we make it a priority to ensure that external users can analyze these
legacy datasets, we should work hard to make sure that collaboration members are able to
analyze them.

It is fantastic that many people are excited about sharing and exploring data. The reason
I became an “experimentalist” in graduate school is precisely because I wanted to interact
directly with data. On the other hand, I have found through the course of my career so far
that the labels “experimentalist” and “theorist” can be unnecessarily restrictive. With a
growing need for cross-cutting methodology and the growing availability of open datasets,
we need to train and support Data Physicists to make the most of our precious data. With
open minds and the right skill set, we will be ready to make the discoveries of tomorrow.

‡This name was coined by David Shih, who gave an inspirational talk at the recent Snowmass Summer
Study.
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Executive Summary:

1. Significant short term investment for Runs 1 and 2 and modest long term
investment going forward to ensure that all relevant previous data collected by
a collaboration are analyzable by the collaboration. This could be stress-tested
with data challenges, including targeted measurements that would benefit from
earlier data. The focus should be on enabling generic data analysis and is
complementary to efforts to preserve historical analysis logic and data products.
This could benefit from involvement by non-collaboration researchers (see 2 and
3).

2. Make it easier for non collaboration members to engage with the collaboration
on data analysis. This should include ease procedurally as well as financially
(see 3).

3. Significant and long term investment (‘base funding’) in Data Physicists at all
levels (undergraduate, graduate, postdoc, and tenure-track faculty/staff). This
funding should be different than existing experimental/theoretical sources; data
physicists are not ‘experimentalists’ who do not touch detectors and are not
‘theorists’ who do data analysis - they have dedicated training and a focused
research program. Data Physicists are also not engineers, although they are
also critical for enabling the science.
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