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Abstract

In this short review, I’ll discuss the background, applicability and prospects of
collinear factorization in quantum chromodynamics.
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1 Introduction: some concepts of factorization

Factorization is the fulcrum of the collider system, which, realizing the famous quote of
Archimedes, is designed to lift new worlds from the vacuum, with high-energy colliding
protons providing the lever arm. It is central to the energy frontier program, entering into
nearly every attempt to achieve precision within the Standard Model, and in recognizing
signals of new physics [1, 2]. As our searches become more sophisticated, they become
more sensitive to the dynamics of the final state. Such sensitivity, however, may violate
the assumptions necessary to prove factorization. The purpose of this little essay is to
present one person’s viewpoint on the basic concepts that have gone into proofs of collinear
factorization at hadron colliders, the fundamental results, and some of their strengths and
limitations, to suggest where we can be confident, and where more work remains to be
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done. The presentation is a mixture of intuitive and technical arguments, hopefully in a
conversational style. It is thus by no means intended to provide a final word, or to be
rigorous, but rather to lead to further conversation as the field moves forward into the next
era of collider physics.

Factorization is the quantum field theoretic realization of the parton model [3, 4], in
which large momentum transfer cross sections in hadron-hadron (or lepton-hadron) colli-
sions are the result of the short-distance collisions of constituents within those hadrons, each
Lorentz-contracted and time dilated in the frame of the other. The word “factorization”
in this context refers to our ability to treat the momentum distributions of the partons
as incoherent from the probabilities of their short-distance interactions, if and only to the
extent that they collide at relative velocities approaching the speed of light. In this limit,
before the collision each hadron is in a superposition of quantum states that is completely
independent of the other hadron. At high enough energies, all hadrons are “pristine” at
the moment of collision, in the same mixture of states since baryogenesis. The basic con-
cept here is causality, in the sense that signals from one hadron cannot reach the other
before the moment of collision. This implies universality of the kinematic distributions of
constituents in fractional momenta, the parton distributions. In collinear factorization, the
hard scattering probability function is computed with the momenta of the colliding partons
taken lightlike and in the directions of the colliding hadrons.

The collision takes place over a short time scale, creating new particles and/or patterns
of momentum flow that evolve into the observed final state. Interactions that take place
long after the short-distance process involve smaller momentum transfers, which for suitably
defined observables do not alter the overall flow of momentum, or excite quantum numbers
in a manner that can neutralize those created the hard scattering. When summed with
sufficient inclusivity, perturbative singularities associated with this evolution cancel, because
they do not affect the total probability that defines the set of states that are summed. This
is an expression of the unitarity of the underlying theory. Here, the identifiable class of final
states is typically characterized by decay products of transient, heavy degrees of freedom
and/or high-pT leptons or jets. These may be Standard Model or not, and final states may
be visible or dark, so long as we can recognize their presence, directly or indirectly.

In summary, the central concepts of factorization are causality, unitarity and universal-
ity. Most commonly, universality refers to parton distributions, but in a closely related sense
universality also applies to hard scattering functions. For parton distributions, it applies
between different processes, say the proton distributions in deep-inelastic scattering for an
electron-proton initial state, and in Drell-Yan, or jet production production for hadron-
hadron scattering. For the short-distance hard-scattering factors, we assume a universality
among perturbative calculations with different long-distance completions of the theory. For
example, the production of a photon plus gluon from a quark pair is the same in real
QCD as in the four-dimensional limit of dimensionally-continued QCD. The universality
of parton distributions allows us to transfer information from deep-inelastic scattering to
hadron-hadron scattering and vice-versa. The universality of short-distance factors allows
us to compute hard scattering for incoming partons rather than model hadrons, clearly a

2



much more efficient procedure.
In principle, as we go to higher orders in hard scatterings, simultaneously fitting more

precisely determined parton distributions within processes we confidently identify as Stan-
dard Model at short distances, we can achieve more precision in the comparison of high-
statistics data to our calculations, with an eye out for discrepancies. At the same time,
factorization allows us to calculate with the same precision the ways that new forces and
fields would manifest themselves in these same data. In the best of possible worlds, we may
see behavior that is qualitatively different from the Standard Model predictions (asymme-
tries, etc.) In all this, uncertainties in data, and in parton distributions are subjects of
increasing interest.

Collinear factorization is well-illustrated by the inclusive cross section for the production
of a Drell-Yan pair or more generally, a heavy electroweak boson of mass Q,

Q4dσ
pp→γ∗(Q)X

dQ2
=
∑
ab

∫
dxa fa/p(xa)

∫
dxb fb/p(xb)ω

ab→γ∗(Q)X(xaPA, xbPB, Q) , (1)

with the functions fi/p(xi) the parton distributions, and ωab→γ
∗(Q)X(xaPA, xbPB, Q) the

perturbatively calculable short-distance functions for partons a and b to produce an off-
shell photon of mass Q. Similarly, jet cross sections take the generic collinear-factorized
form

S σpp→{ji}X =
∑
ab

∫
dxa fa(xa)

∫
dxb fb(xb)ω

ab→{ci(pi)}X(xaPA, xbPB, {pi, δi}) . (2)

where {pi, δi} labels the momenta of the observed jets and the paramters δi that define them,
jet cone radii, for example. (Notice that these parameters generally imply limitations on
the additional particles labelled by X.) In both cases, the short-distance, perturbative
function, ω, is normalized to be dimensionless. We have suppressed the factorization scale,
which for this discussion we assume is of the order of the scale of renormalization. Clear
generalizations exist to multiple electroweak boson production followed by decay, and to
an unlimited set of “new physics” scenarios, as long as these involve heavy particles and
short-distance interactions.

2 What’s involved in factorization proofs

As suggested above, the basic ideas that go into arguments for factorization are causality
and unitarity, with universality as a consequence. In informal language, the formation of
initial states takes place too early to affect the hard scattering, and subsequent interactions
take place to late to undo it. Also as hinted above, the applicability of these ideas very
much depends on what we measure in the final states, and how we combine them.

First a word about what is meant by proof in this context. All proofs I know of assume, as
noted above, that hard-scattering functions are universal, and that they can be identified
in the scattering of elementary quanta, generally in a theory that is infrared-regulated
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dimensionally or by other means. In that theory, long-distance dynamics is to be identified
through its (regulated) infrared singularities, generically poles in 4−D, with D the number
of dimensions. When a cross section is factorized in this theory, we can identify the short
distance function by a suitable definition and separation of parton distributions, which
contain all infrared singularities. In this procedure, our ability of factorize depends on
our ability to identify singular long-distance, infrared (IR) behavior in the massless limit.
Once identified, we investigate whether in each relevant region of phase and loop momentum
space, the integrand is either consistent with factorization, or is part of a nonfactorizing class
of contributions that cancels without double counting. In all these arguments, a key tool is
that physical infrared singularities of all types are logarithmic in gauge theory cross sections.
As a result, a single power suppression in a sum over logarithmically-divergent integrals leads
to an integral that is finite in perturbation theory. Effective theory treatments organize sets
of regions where logarithmic singularities arise from the outset. The consistency of any such
choice is verified in the process of matching to the full theory at each order of perturbation
theory at relevant scales. The success of this matching at all orders requires in general
arguments that go beyond the effective theory itself, and are part of its justification.

For renormalizable, non-gauge theories near four dimensions, like φ4 and Yukawa, or
φ3 near six dimensions, IR singularities are all “collinear”, corresponding to splittings and
recombinations of descendants of the two incoming partons, and the task just described
is by now well understood. The treatment of collinear singularities in gauge theories, it
is worth noting, also requires the treatment of unphysical, longitudinally-polarized vector
particles that share the momenta of active partons, at least in covariant gauges. Many
of the early all-orders discussions of factorization avoided this complication by working in
axial or other physical gauges. A dedicated discussion of the role (and factorization) of
unphysical collinear gluons is given, for example, in Ref. [5]. In effective theory treatments,
unphysical gluon polarizations can be absorbed into the definitions of the physical fields
[6, 7].

For gauge theories, an additional distinguishing feature is soft singularities. In essense,
soft gluons can be exchanged between constituents of the incoming hadrons, and such ex-
changes appear to have the potential to violate causality, and hence factorization.2 Roughly
speaking, it’s as if the quarks in proton A could attract the antiquarks in proton B before
they collide, even if they approach each other at the speed of light. They do not do so,
because until the collision the fields involved are gauge-equivalent to zero field [8], but this
feature is obscured in perturbation theory, which incorporates sums over physical and un-
physical degrees of freedom. Factorization proofs rely on our ability to organize the phases
associated with the external charged particles. The challenge is to disentangle the unphysi-
cal component of these phases from the physical gluon-mediated scattering, and to discover
when and how the phases cancel in cross sections. At this stage, we emphasize again that
all these arguments depend crucially on treating the momenta of incoming particles, the
partons and hadrons, as lightlike.

Early all-orders discussions of factorization in hadron-hadron scattering [9, 10, 11, 12,

2Actually, the violation of factorization would be the least of our problems.
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13, 14] dealt most exhaustively with collinear singularities, which control evolution, also pro-
viding a variety of arguments for the cancellation of soft singularities through virtual-real
emission cancellation. This work was inspired in part by a pioneering low-order demon-
stration of soft-gluon cancellation in Ref. [15] and the older φ4 fragmentation analysis in
Ref. [16]. In what follows, I will give an informal account of the soft gluon interactions
in hadronic hard scattering, which set QCD and other gauge theories apart, and were the
primary concern of a second round of factorization studies [17, 18, 19, 20].3

2.1 Soft gluons and phases

Associated with each parton that arrives at the hard scattering from the past is a nonabelian
phase, sensitive only to that component of the gauge field that contracts with the momentum
of the parton. Such interactions can be organized into a phase by the application of an
appropriate gauge transformation. Likewise, for the particles that emerge from the hard
scattering, their experience of the color fields of other emerging particles is entirely pure
gauge, again involving only one component of the gauge field. These phases differ in an
important way. This difference illustrates the fundamental relationship between causality
and analyticity in quantum field theory, and is a direct consequence of the kinematics of
the process. The interactions of fast-moving partons over a semi-infinite time scale, λ, take
one of the two general forms, in terms of a “current”, labelled here as simply J ,

J̃µ+(k · β) = βµ
∫ ∞
0

dλ eiλk·βJ(λβ) ,

J̃µ−(k · β) = βµ
∫ 0

−∞
dλ eiλk·βJ(λβ) , (3)

where βµ = pµ/p0 defines the light-like velocity of the parton. The vector J̃µ+(k·β) is analytic
in the upper half-plane in k ·β, simply because, for Im(k ·β) and λ both positive, the integral
that defines J̃µ+ becomes exponentially suppressed for large λ. Similarly, J̃µ−(k ·β) is analytic
in the lower half-plane of k · β.

An essential feature of factorization proofs is the wholesale continuation of momentum
space contour integrations away from singularities, into the regions of analyticity just iden-
tified. Along the deformed contours, the “eikonal approximation”, p · k � k2, holds for
generic soft momentum kµ and high-energy parton momentum pµ. This condition, in turn,
implies that in a subdiagram consisting of collinear lines whose momenta are all of order
p, all components of momentum kµ can be neglected in the analysis of singularities, except
for β · k. This is because a single factor like k2/(β · k) renders a logarithmically divergent
integral finite. For lines that terminate at the hard scattering (“active” incoming partons)
or originate at the hard scattering (produced high-pT partons), we can argue that no addi-
tional singularities prevent this deformation [5] and that all potentially “acausal” effects are

3For a relatively brief review of the basic arguments, see [21], and for a much more complete discussion,
Ref. [22].
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Figure 1: Representation of components of a hard-scattering amplitude in terms of two
incoming and a representative outgoing jet in a typical hard-scattering process. The la-
belled gluons attach to (A) an incoming active parton, (B) a parton emerging from the
hard scattering and (C) a spectator parton. Double lines represent the couplings of the
unphysically-polarized collinear gluons referred to in the text.

organized into unitary Wilson line operators (nonabelian phase operators), coming in from
the past to the origin, with lightlike velocities βi, or going out to the future with lightlike
velocities βj,

Φ
(Ri)
βi,in

(x) = P exp
[
−ig

∫ 0

−∞
dλ βi · A(Ri)(λβi + x)

]
,

Φ
(Rj)
βj ,out

(x) = P exp
[
−ig

∫ ∞
0

dλ βj · A(Rj)(λβj + x)
]
. (4)

Here R is the color representation of the parton in question, and P denotes path ordering.
For elastic S-matrix elements in wide-angle scattering, these operators fully describe the in-
teractions of soft gluons, and generate all associated phases [23, 24, 25]. For hard-scattering
cross sections, however, the situation is more complicated.

Referring to Fig. 1, integrals over soft gluon attachments to spectator lines can extend
from negative to positive infinity on the same line, and hence inolve both Φin and Φout

operators. This leads to a mismatch in analyticity properties between gluons in the initial
state and those in the final state, and this is a physical effect. This distinction cannot be
removed by a gauge transformation, and corresponds physically to gluons that arrive at the
time of the hard scattering. Such gluons are the origin of the “Glauber”, or “Coulomb”,
gluon problem in hadron-hadron scattering [26, 27]. In essence, Glauber gluons occur in
regions of momentum space where integration contours are pinched between singularities
associated with incoming and outgoing phase operators, hence for which the eikonal ap-
proximation fails. If such a gluon also attaches to the oppositely moving incoming line,
we have an essential obstacle to factorization. Corrections of this type only begin at three
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loops at the finite level, with logarithmic enhancemennts starting at four loops.
It is at this stage that the construction of the cross section comes in. For appropriately

defined cross sections, final-state phase operators (the Φouts) cancel in the sum over final
states.

The purest example of an outgoing phase is in deep-inelastic scattering, where it is
generated by soft gluon interactions with the outgoing quark (and its collinear radiation).
This is the origin of the matrix element definition of parton distributions, which can be
written for quark field qa(x) with flavor index a, in the conventional form [28]

fa/h(x, µ) =
1

4π

∫ ∞
−∞

dλe−iλn·(xp)
〈
h(p)

∣∣∣∣q̄a(λn) Φ†n,out(λn)
n · γ

2
Φn,out(0)qa(0)

∣∣∣∣h(p)
〉
.

(5)

Here, soft singularities cancel in the final state because of the unitarity of the Wilson line
operators, which are both oriented in direction nµ, conventionally chosen as a lightlike
direction opposite to the lightlike momentum p of incoming hadron h. Argument µ is the
factorization scale, the scale associated with renormalization of the composite operator that
defines the matrix element [28], which becomes ultraviolet divergent because its fields are
all separated by lightlike distances (n2 = 0). In effect, the scale µ cuts off the transverse
momenta of radiation. The transverse momentum can actually be fixed in this matrix
element. This possibility is realized in transverse momentum distributions and factorization,
with many applications in deep-inelastic scattering and Drell-Yan proceses [29].

We can extend collinear factorization in deeply inelastic scattering far beyond the total
cross section, to sums designed to identify jet and related final states, because collinear and
soft singularities cancel in the corresponding partial sums over states. This is a consequence
of the “local” unitarity [30, 31, 32] of quantum field theories. Unitarity at fixed values of
spatial momenta is the basis of the infrared safety of jet cross sections in e+e− annihila-
tion [33, 34, 35], and is closely related to the ideas of effective field theory, and to efforts
to reformulate calculations entirely in four dimensions [36]. For example, an interaction
Hamiltonian that excites and absorbs partons in only two directions is not rotationally-
invariant, yet it is hermitian, and hence generates a unitary theory. As such, summing over
its final states gives, by the optical theorem, a forward scattering amplitude that is free of
infrared singularities, either soft or collinear.

2.2 Unitarity, final states and soft gluons

Moving on to hadron-hadron scattering, the essential observation is that in inclusive cross
sections, final state interactions, including phases cancel in the sum over final states. This
will be the case not only for particles emerging from the hard scattering at large pT , but also
for spectator particles that are collinear to the incoming directions. It is this cancellation
that eliminates pinches in the Glauber regions.

The “local” unitarity of QCD, mentioned above, enables the cancellation for sectors in
momentum space that describe jet cross sections. The long-distance phases that remain
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are generated only by initial state operators, Φin. Given what we’ve seen, this is somewhat
surprising at first, because it is just the opposite to deep-inelastic scattering, built, as in
Eq. (5), on Φout operators. Nevertheless, universal factorization into parton distribution
functions, as naturally defined in deep-inelastic scattering, is still possible so long as soft
singularities cancel in the hadron-hadron cross section in question. This cancellation was
referred to as the transition from “weak” to “strong” factorization in the context of Drell-
Yan cross sections, [17, 18, 19, 20]. Reference [37] discussed explicitly how soft radiation
sensitive to the difference between the incoming and outgoing Wilson lines cancels.

The technical consequence of this cancellation is that the interactions of all “acausal”
initial-state gluons connected to the set of partons collinear to incoming lines A and B
become coherent, and are summarized by two Wilson lines of the type Φin. In a fully
inclusive cross section, we expect all soft singularities associated with these operators to
cancel, enabling a universal factorization. This is the case of Drell-Yan processes. It is
natural to ask, however, about less inclusive cross sections. How inclusive is inclusive
enough, and what sums over final states will cancel outgoing nonabelian phases up to a
momentum scale at which perturbation theory can be applied?

Here is one way of thinking about these questions. We can characterize the length scales
associated with the hard scattering by the energy scales of heavy or high-pT particles in the
final state. This alone, however, does not ensure that final state phases cancel. Rather, a
“figure of merit” corresponding to this cancellation is the coordinate space distance between
the hard scattering in the amplitude and in the complex conjugate. At zero separation,
outgoing Wilson lines cancel identically.

The relative “displacement” of the hard scattering is determined by the range of mo-
menta integrated in the final state, by the usual complementarity of position and momentum
measurements. For hard scale Q, if we integrate over a range of momenta in the final state
characterized by scales δQ, with δ a fraction such that αs(Q) ln(1/δ) < 1, we anticipate
that the hard scatterings are localized on the scale 1/(δQ). Such scales can be used to
define jet and related cross sections. In these cases, the final-state phases Φout correspond-
ing to outgoing partons will be matched with their hermitian conjugates at scales that are
moderately close to 1/(δQ), and we can expect their soft gluons to cancel up to the scale
δQ, which is consistent with the definition of the cross section. As δ decreases, of course,
the cross section becomes more and more sensitive to soft radiation. At whatever scale the
non cancellation sets in, it is no longer possible to absorb radiation at that energy scale (or
higher) into cancelling nonabelian initial state phases, and radiation is no longer incoherent
between the descendants of the incoming particles. At scales beyond this one, factorization
is “broken”, in the sense found for amplitudes with forward collinear lines in the final state
[38]. Perhaps more accurately, what we have is collinear factorization at an anomalously
low factorization scale, determined by the parameters of the set of final states, rather than
the hard scattering itself. Beyond this scale, in fact, virtual or real radiation coupling to
fragments of the colliding hadrons, the spectators, can influence measured quantities. As
noted above, such corrections, which are consistent with collinear factorization for inclusive
cross sections, begin at three loops. Important examples of cross sections that illustrate the
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limitations of collinear (and transverse) momentum factorization in cases like these have
been identified, for example, in Refs. [39, 40, 41, 42, 43].

Given these general considerations, I’ll go on in the next section to give a viewpoint
on some of the commonly-discussed cross sections, and the arguments I’m aware of that
determine their factorization status.

3 Where we stand

At the risk of introducing evanescent terminology, I’d like to distinguish between “deep”
factorization, at the scale of the hard scattering, and “shallow” factorization, in which the
factorization scale is set by relatively small (if still perturbative) energy scales that are built
into the final state sum in question. It is important to remember, though, that when such
scales decrease, corresponding to a less inclusive cross section, with fewer final states, the
cross section must decrease. To see this decrease, it will be necessary to generalize the anal-
ysis of Sudakov resummation, which can be carried out for fixed-angle exclusive amplitudes
[23, 24, 25]. In time, we will learn to love cross sections with shallow factorization, which
are in some sense intermediate between inclusive cross sections and exclusive amplitudes.
They encode the coherence of color flow in the perturbative regime, in manners that we
have not yet fully understood.

3.1 Processes with deep factorization

The arguments above provide, I hope, sufficient framework to interpret at least the claims
in the literature of what factorization arguments purport to show. In these terms, a list
of processes for which factorization scales are similar to the corresponding scale of the
hard scattering includes electroweak annihilation (Drell-Yan, electroweak boson and Higgs
production), and jet production in a wide range of kinematics.

• Electroweak annihilation (fully inclusive in hadronic final states). These cross sec-
tions, were discussed explicitly in the “second round” of factorization papers, from the
mid 1980’s [18, 19, 20]. In this case, the cancellation of final states is complete, a claim
that is made explicit by the use of time-ordered or light cone-ordered perturbation
theory. Later work [37] explored more in detail the manner in which soft radiation
associated with the initial state phases cancels, leading to classical “universality” for
the parton distributions. Similar results can hold in multiple hard scatterings, where,
for example, two electroweak bosons are created at separate partonic interactions in
a single collision [44].

• Inclusive jet production. Here, we imagine sets of states with jets defined through
parameters ε with αs(Q) ln(1/ε) ∼ 1. For a review, see [45]. The discussion of jet
cross sections began early [9], and in Ref. [13] the local unitarity mentioned above
was used to show that collinear factorization for jet cross sections of this sort reduces

9



to the Drell-Yan case: soft quanta that connect active or spectator partons to lines in
the outgoing jets cancel in the sum over jet final states (assuming that soft radiation
is summed inclusively up to a finite fraction of the jet energy scales). This leaves only
soft radiation connecting the two incoming jets, just as in Drell-Yan.

• Single-particle inclusive cross sections, with inclusivity defined similarly to the jet
cross sections defined above, provides another example. Arguments for the use of
universal fragmentation functions were given in Ref. [46], very much relying on the
concepts described above.

• Multi-particle inclusive cross sections for massive quarks: As an example, consider
final states with a pair of top quarks,. We may observe the top momentum with
arbitrary accuracy, so long as we average over the momenta of the anti-top [47]. For
cross sections with the hard scale far above the mass of a heavy quark, additional
considerations enter [48, 49]. Interestingly, the same cancellations will occur if we
measure the transverse momentum of both elements of the top pair, if the pair recoils
against sufficiently hard gluonic radiation, over which we average. This is possible,
of course, only at an order high enough that such radiation is present in the final
state. Thus, we expect the cancellation to fail at low orders, and it does [47, 50,
51]. Nevertheless, in the production of very heavy pairs, the cross section is actually
dominated by final states with substantial radiation. In this case, the nonradiative
portion of the cross section is Sudakov suppressed. In this limit, then, it might be
possible to compute the pair transverse momentum self-consistently.

3.2 Shallow factorization

The generic examples of shallow factorization are nonglobal sums over final states [53]. In
these cross sections, we impose an energy cutoff in one angular region at a scale much lower
than that of unobserved “jets and subjets” in another region. In general, at high orders
these lead to “super-leading” logarithmic enhancements [39, 52], sensitive to both soft and
collinear limits, and the factorization scale decreases to the measure of energy flow, rather
than the underlying hard scale. Again, in this case, we can think of these logs as due to
the non cancellation of outgoing nonabelian phases for energy scales larger than the cutoff
imposed to define the cross section.

Going to the limit, if we “empty out” a section of phase space (say, a complete rapid-
ity gap), we break the cancellation of final-state interactions, including the matching of
nonabelian phases in the amplitude and complex conjugate in hadron-hadron scattering.
Nevertheless, in deep inelastic scattering a variant factorization is possible [54], which goes
beyond the present discussion.
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4 Conclusions

In this short review, I’ve tried to summarize some of the elements of the existing literature
on collinear factorization, concentrating on basic intuition and the role of soft radiation. I
have left to the side many topics, including transverse momentum factorization [29], factor-
ization for generalized parton distributions [55], the uses of factorization in resummation,
higher twist factorization, and its application in nuclear targets and collisions. Even purely
collinear factorization is a vast subject, and in closing I can only emphasize that even
within this narrow focus on a familiar but consequential topic, much important work has
surely been neglected. Renewed interest in this subject, partly inspired by the high energy
behavior of the spontaeneously broken sectors of the Standard Model [56, 57, 58, 59], will
hopefully lead to further insights in how to use examples of “shallow” factorization, to study
the transition between short- and long-distance dynamics in gauge theories.
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