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Two topics have recently risen to prominence within the ongoing searches
of beyond-Standard Model effects in b and c decays: observables that test
lepton flavor universality (LFU) as well as lepton flavor violation (LFV). A
coherent set of measurements suggests non-standard LFU effects. General
arguments relate LFU to LFV, and the observed size of the former gives hope
of observable signals for the latter. We attempt a comprehensive discussion
of both theoretical and experimental aspects of these tests. The main final
message is that all the instruments necessary to fully establish the putative
new effects are at hand, thanks to running experiments and their upgrades.
Therefore this subject stands concrete chances to usher genuinely unexpected
discoveries.
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1 Executive summary
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Figure 1: Selection of flavor anomalies shown as
pulls of (blue points) experiment ver-
sus (orange diamonds) theory expec-
tation [1]. For each measurement the
quadratic sum of the experimental and
theory uncertainties is normalised to
unity and the deviation of the experi-
mental value is displayed in this unit.

Results from the B factories and
the LHCb experiments show indica-
tions of deviations from the Standard
Model in decays of bottom and charm
hadrons. A selection of the most
discrepant measurements is shown in
Fig. 1. Many of these anomalies in-
dicate deviations from lepton univer-
sality, a symmetry of the gauge sector

— and an accidental near-symmetry
of the Yukawa sector — of the Stan-
dard Model by which all leptons cou-
ple with the same strength. If con-
firmed, the observed deviations from
lepton universality would, collectively,
represent an unambiguous sign of New
Physics.

Several ongoing and future exper-
iments propose to further test these
deviations with much larger data sets
and improved detection and analysis
strategies, improving both the statis-
tical and the systematic uncertain-
ties of the current measurements. In-
deed, a large fraction of the mea-
surements listed in this specific doc-
ument have an experimental uncer-
tainty much larger than the corresponding theoretical uncertainty on the SM prediction.
This is likely to still be the case for the foreseeable future — and this is why these
measurements are known to be “theoretically clean” probes of New Physics.

Processes violating lepton flavor conservation have not been observed yet. The general
expectation is however that they should be within experimental reach, if non-standard
lepton universality violation is as large as measured. Since lepton flavor violation (LFV)
is a null test of the SM, any measurement would be proof of New Physics. The very
same experiments mentioned above also offer a broad program of LFV tests — through a
stream of analyses closely related to those aimed at lepton-universality tests.
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2 Physics potential and reach

The present document covers two families of processes:

1. Tests of lepton universality in semi-leptonic processes, where the SM predicts near-
identical rates for all decays to light leptons, up to small radiative corrections well
below the present and projected experimental accuracies.

2. Searches for processes violating lepton flavor conservation.

Within the SM, gauge interactions are lepton-universal; so-called Yukawa interactions,
involving fermions and the Higgs field, are not lepton-universal because fermion masses
are different from each other. This however implies power-suppressed lepton non-universal
effects, that are tiny in decays to light leptons, and radiative corrections with lepton-mass-
dependent logs that, again for light leptons, are ultimately below projected experimental
sensitivities. Further lepton-universality tests — branching ratios and angular analyses

— have uncertainties dominated by the determination of the relevant hadronic matrix
elements. Here, the comparison with experimental uncertainties has to be discussed case
by case. Finally, the SM predicts no lepton-flavor violation (LFV). Therefore, signals in
item 2 are unequivocal proof of new phenomena.

The two above families of processes are, in general, intimately connected. In particular,
the observed size of lepton-universality violation may lead to observable LFV as well.

The experimental reach in these processes will be dominated by the LHCb and Belle II
experiments, with additions from ATLAS, CMS and charm factories, described in more
detail in Sec. 3.1.

2.1 Most promising directions

At present there are hints of deviations from the SM in lepton-universality ratios, which
make them high-priority areas for further investigations.

First are ratios in b→ s`+`− decays defined as [2]

RX =

q2max∫
q2min

dq2 dΓ(B→Xµ+µ−)
dq2

q2max∫
q2min

dq2 dΓ(B→Xe+e−)
dq2

(1)

with q2 = m2(`+`−) and X being a light hadron such as K±, K0
S, K∗0, φ etc. The

most precisely measured such ratio is RK using B+ → K+`+`− decays. LHCb find
RK = 0.846 + 0.042

− 0.039
+ 0.013
− 0.012 [3] for dileptons in the 1.1–6.0 GeV2/c4 range, which is 3.1 standard

deviations below the expected value of unity. Similar — though less significant — deviations
from unity are found in RK∗ [4, 5], or RpK [6] using Λ0

b baryons. The ratios RK and RK∗

have also been measured at BaBar [7] and Belle [8, 9], although with limited sensitivity.
The measurements of RK are depicted in Fig. 2.

Here and in the following charge-conjugated decay modes are implied. Experimentally,
these ratios are constructed as either ‘simple’ ratios of decays to different lepton flavors, or
‘double’ ratios, with a further normalization to resonant decays. Both definitions usefully
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Figure 2: Measurements of RK in the low-q2 range [3, 7, 9].

arrange efficiencies in ratios as well, so that many sources of systematic uncertainties
cancel.

Because of the theoretical cleanliness of the underlying observables, the ensemble of these
ratio measurements constitutes the centerpiece of three ‘b→ s anomalies’ — the other
two occurring in branching-ratio data to muons, and in angular analyses of differential
decay data, that are discussed in a separate document [10].

A second set of discrepant lepton-universality ratios concerns semileptonic b→ c decays:

R(D(∗)) =
B(B→ D(∗)τ−ν)

B(B→ D(∗)`−ν)
, (2)

with D(∗), B any valid combination of charm and beauty hadrons, and `− a muon or
an electron. Note the different notations in the b → s vs. b → c data, RX vs. R(X).
The present data shows a deviation of about three standard deviations from the SM
expectation in the two-dimensional chart of R(D) versus R(D∗). Their combination is
advantageous as experiments reach a better precision and control of (anti-)correlations
when measuring both observables simultaneously. The deviation is mostly driven by a
2012 BaBar measurement [11], see Fig. 3. Updates from LHCb and Belle II are eagerly
awaited.

If lepton universality does not hold in decays of b hadrons, it is natural to search
for confirmation in yet unobserved processes, for example purely leptonic decays to two
electrons, or to two tau leptons. The latter escape present sensitivities, similarly as the
very constraining b→ sνν decays.

Moreover, if one abandons lepton universality, there is no a priori reason to stick to
lepton flavor conservation [13] — which is known to be violated in neutrinos — and
searches for processes forbidden in the Standard Model become a high priority. So far no
sign of charged-lepton flavor violation in B→ ``′ or b→ s``′ processes has been seen yet
and branching-ratio limits now reach the 10−9 range.

All the above applies to b decays. Similar studies are needed in charm decays, that
provide access to couplings to up-type quarks. Rare charm decays are notably more
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Figure 3: Latest experimental constraints on R(D) and R(D∗). Plot taken from the 2021 HFLAV
web update (see also Ref. [12]).

difficult than their beauty counterparts because the short-distance contributions are often
subleading with respect to long-distance ones due to intermediate light resonances. In
this discussion, “short-distance” loosely refers to the parts of the respective amplitudes
that are perturbatively computable to any desired order in QCD × QED. The accuracy
of the theory calculation is less of a strict requirement for null tests of the SM such as
LFV processes, which are a clear sign of new physics the very moment they are measured
to be non-zero.

3 Experimental opportunities

This section first presents the main experiments contributing to LUV and LFV measure-
ments and then outlines the main processes of interest.

3.1 Experiments

The LHCb and Belle II experiments are dedicated to measurements of rare processes
with b and c hadrons and cover the whole programme described in this document. Many
further experiments contribute in selected areas.

3.1.1 LHCb

LHCb is the LHC experiment optimised for flavor physics. LHCb profits from the large
bb and cc production cross-sections in pp collisions in its forward acceptance: σbb =
144± 21µb [14] and σcc = 2370± 160µb [15]. All species of b hadrons are produced, with
typical ratios of 4:4:2:1 for B+, B0, Λ0

b and B0
s hadrons, respectively. In addition, the B+

c

meson is produced at a rate further suppressed by O(10−3) [16].
Until now LHCb ran at a fixed instantaneous luminosity of 4× 1032 cm−2 s−1, collecting

data corresponding to 9 fb−1. With its first upgrade being completed this year, this
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luminosity is being increased by a factor five, to 2 × 1033 cm−2 s−1 for Runs 3 and 4
(covering the 2020ies) with a target of 50 fb−1 [17]. This is made possible by new detectors
but also by a full-software trigger that can cope with the high rates of b and c events
at high efficiency. LHCb is planning a further upgrade [18] which should lead to a total
integrated luminosity of 300 fb−1.

LHCb has excellent particle-identification and vertexing capabilities, which allow for
good separation of signal and background. Requiring that the b-hadron momentum point
back to the primary pp collisions sets stringent constraints on partially reconstructed
backgrounds and often permits to close the kinematics even in the presence of undetected
particles such as neutrinos.

3.1.2 Belle II

The Belle II experiment is the successor of the Belle experiment which operated at the
KEK-B e+e− collider in the 2000ies. It is a 4π magnetic spectrometer with subdetectors
placed cylindrically around the beams. Belle II started operating in 2021, but still misses
some elements of the pixel detector, to be installed in 2023 [19,20].

Belle II mostly runs at the Υ (4S) resonance, which decays only to BB pairs. This results
in comparatively clean events with O(10) final-state particles. While the Belle data set is
just short of 1 ab−1, Belle II targets 50 ab−1 at an unprecedented instantaneous luminosity
of 1035 cm−2 s−1. These large luminosities are mitigated by a lower BB cross-section of
about 1.1 nb. Belle II will also collect sizeable charm-hadron samples.

At the Υ (4S) resonance the system of the two B mesons has a known center-of-mass
energy, which for fully reconstructed decay modes is used to identify signal peaks both in
reconstructed mass and energy. For partially reconstructed decay modes this setup offers
the possibility of fully reconstructing one (tag) B meson, which determines the charge
and four-momentum of the other (signal) B meson. This feature can be used to search for
B→ invisible or to determine the momentum of the neutrino in semileptonic B decays,
notably those involving τ leptons. Considerable effort is invested in optimising such event
tagging methods; see e.g. Refs. [21, 22].

3.1.3 LHCb and Belle II compared

The rule of thumb is that for B-meson decays to charged particles, LHCb with 50 fb−1 will
collect signal yields larger than those of Belle II with 50 ab−1 by a factor 5 to 10. When
neutrals are involved the yields are more similar, while Belle II will likely be superior for
modes with neutrinos. LHCb will additionally collect heavier b hadrons, such as B0

s , B
+
c ,

and Λ0
b .

In general Belle II and LHCb will be in competition for a limited number of measurements
and otherwise be mostly complementary as they will shed light on the same parton-level
physics processes from different angles.

3.1.4 ATLAS and CMS

The ATLAS and CMS experiments at the LHC also profit from large cross-sections and run
at a higher luminosity than LHCb. Their flavor physics capabilities are however limited
compared to LHCb by much more stringent trigger requirements (notably on transverse
momentum), a (presently) lower mass resolution, larger charged multiplicities, and very
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limited hadron-identification capabilities. They do however complement LHCb for decay
processes with muons. They potentially can measure RX and R(D(∗)) ratios; however this
is still to be demonstrated. It is therefore difficult to estimate their future contribution
to these measurements. No sensitivity projections to lepton-flavor or lepton-universality
violation are given in Ref. [23].

3.1.5 BES III and SCTF

The BES III experiment in Beijing is also operating at a high-luminosity e+e− collider,
but at a lower energy than Belle II. It is optimised for charmonium spectroscopy and
charm physics. A successor Super τ -Charm Factory (STCF) is proposed in Ref. [24]. Its
aim is to collect 1 ab−1 at a collision energy of 3.773 GeV.

3.1.6 Future colliders

New e+e− colliders at the Z-boson resonance, such as the FCC-ee proposal [25] or
CEPC [26], combine the advantages of pp and Υ (4S) colliders. The bb cross-section is
larger than at the Υ (4S) resonance, all species of b hadrons are produced, and bb events
remain relatively clean (but are not limited to just b hadrons).

Both FCC-ee and CEPC expect to collect O(1012) Z→ bb events, which corresponds
to 20 times more B0 and B+ mesons than Belle II, to which B0

s , B
+
c and Λ0

b hadrons
uncovered by Belle II are to be added. A striking feature of FCC-ee is an excellent mass
resolution.

The muon collider and FCC-hh projects are too far in the future to be discussed here.

3.2 Lepton universality in b→ s`+`−

Given the present status of B anomalies, it is of paramount importance to precisely study
b→ se+e− and b→ sµ+µ− processes. These include not only partial branching fractions
in the form of RX ratios, but also angular distributions. More details can be found in
Ref. [10].

3.2.1 RX ratios

The most accessible set of processes for RX ratios are B→ K`+`− [3,9], where LHCb will
have highest sensitivity to B+→ K+`+`− while Belle II performs similarly well for charged
and neutral modes. Conversely, for B→ K∗`+`− LHCb will be most sensitive to the
neutral mode (with K∗0→ K+π−). While LHCb has measured LFU ratios with K0

S [5], the
yields are an order of magnitude lower than those with only charged final-state particles.
Other decays will also be measured by LHCb, using B0

s and Λ0
b hadrons. Prospects for

future improvements in precision are shown in Fig. 4.
The challenges inherent in RX-ratio measurements at hadron colliders deserve some

more comments. These challenges are due to the already mentioned differences in electron
vs. muon efficiencies. One basic reconstruction challenge is consequence of electrons
emitting much more bremsstrahlung than muons, whereby the reconstructed momentum is
the momentum after emission, which differs from the momentum required for the dilepton
invariant mass of the event. This problem has been the subject of constant scrutiny within
the analyses. The numerous tests performed suggest that the effect is understood. Two
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Figure 4: Precision on RX ratios. Figure from Ref. [36]. The time frame has slightly shifted
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representative examples of these tests include the following: (1) RK can be measured in
the control region where the dilepton is emitted resonantly by the J/ψ or the ψ(2S); (2)
the electron efficiencies εe are calibrated in the J/ψ→ e+e− region and extrapolated to the
signal region; the kinematic properties of electrons in these two regions are very similar.
An important outcome of these tests is that the ratio values obtained for electrons with
kinematics in either of the resonant regions are well compatible with unity.

A further reassuring fact is that, although branching fractions to di-electrons generally
come with inferior yields and larger systematic uncertainties with respect to branching
fractions to di-muons, it is the latter that display discrepancies — in particular the
vast majority of b → sµ+µ− branching fractions [6, 27–35] — whereas all branching
fractions to di-electrons are SM-like within the quoted uncertainties. As a consequence,
dismissing the RX measurements on the ground of unaccounted systematic effects in
electrons is not straightforward — how would such systematic uncertainties not manifest
themselves in B(b → see) data, that are SM-like, and instead result in B(b → sµ+µ−)
below the SM predictions, in basically all channels with large yields? In other words,
ratios B(b→ sµ+µ−)/B(b→ se+e−) below unity would be suspicious if the denominator
were above the SM prediction, but instead it is the numerator which is below the SM, in
B → K as well as in any other measured channels, including baryon modes.

3.3 b→ sτ+τ−

Given the tensions in measurements comparing b→ s`+`− processes with muons and
electrons, and those comparing light and τ leptons in b→ c`ν it is crucial to measure
b→ sτ+τ− processes to gain a complete picture. Decays such as B → K(∗)τ+τ− are
however notoriously difficult to reconstruct. On top of the usual b→ s`+`− suppression
they suffer from a reduced phase space which makes only the high-q2 region above the
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ψ(2S) resonance accessible. In addition, the missing τ neutrinos prevent a clean separation
of signal from charmed backgrounds. The present limits are five orders of magnitude
above the SM predictions and thus only sensitive to models predicting spectacular effects.
Improvements will be made by Belle II, who may reach the 10−4 range. To reach the SM
signal, one may have to wait for FCC-ee where, it is claimed, the excellent vertexing can
reach a 5% sensitivity on SM branching fractions [25].

3.4 b→ sνν decays

Rare decays involving neutrino pairs will be mostly Belle II territory, thanks to their
ability to fully analyse the event [22]. Belle II expects uncertainties on the branching
fraction of exclusive B→ K(∗)νν modes between 10 and 50% of the SM expectation [20].
See Table 1 for details. First observations are thus expected in some of these processes.

Further in the future, FCC-ee or CEPC should be able to exploit their good vertexing
resolution to measure decays not accessible to Belle II with similar precision as above.
The decays B0

s → φνν and Λ0
b → Λνν are most promising, and even B+

c → D+
s νν is

feasible [25,37].

3.5 Leptonic decays

Leptonic decays B+→ `+ν` are accessible to Belle II thanks to the possibility to reconstruct
the rest of the event. While the present precision on the B+→ µ+ν and B+→ τ+ν decays
are in the 20–50% range, Belle II expects 3% with 50 ab−1.

The decays B0
s→ τ+τ−, B0

s→ µ+µ− (see Ref. [10]) and B0
s→ e+e− will be dominated

by LHCb (together with ATLAS/CMS for the dimuon mode). Limits on B→ τ+τ−

decays are now in the 10−3 range and are expected to reach 10−4 by the end of LHCb

Upgrade II [38]. As the search is background-dominated, improvements scale as
√∫
Ldt,

and thus are expectedly slow. To our knowledge no outlook is available for B0
s→ e+e−. It

is expected that Belle II will also set limits on the even more suppressed corresponding
B0 decays.

A particular type of (b̄c)(ν`) coupling, related to those of Sec. 3.6, produces B+
c → `+ν

decays. FCC-ee and CEPC expect a precision on the branching fraction of B+
c → τ+ν

below 1% [25,39], and as many as 105 B+
c → µ+ν decays under SM assumptions [25].

3.6 Lepton universality in b→ c`−ν

Decays involving b→ cτ−ντ transitions are more challenging due to the multiple unde-
tectable neutrinos in the final state. The B factories have performed the most precise
measurements of R(D) and R(D∗) to date thanks to their ability to significantly constrain
the kinematics of these neutrinos by leveraging the knowledge of the e+e− collision en-
ergy at these facilities [40]. Belle II is expected to have the highest sensitivity to these
measurements in the next decade.

In these decays an initial b-flavored hadron (a B meson or a Λ0
b baryon) decays to a

c-flavored one (D(∗) or Λ+
c ) plus a charged leptonic current `±

(–)

ν . These decays occur in
the SM already at tree level; they are namely not suppressed by a loop factor as is the case
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of the b→ s semi-leptonic counterparts. Therefore these decays — at least those to final-
state muons and electrons — have been used for a ‘NP-free’ determination of the CKM
entry Vcb. This assumes no NP-induced LUV in electron vs. muon modes [41–45]. The
parameter Vcb is often used as one of the four standard parameters that fully describe the
CKM matrix — for a discussion, see e.g. Ref. [46]. At present, however, the ratios known
as R(D(∗)) ≡ B(B → D(∗)τν)/B(B → D(∗)`ν) are in disagreement with the respective
SM predictions at 3.3σ as of the HFLAV June 2021 web update (see also Ref. [12]). As a
consequence of these discrepancies, R(D(∗)), Vcb and possibly other sensible parameters
are now carefully fitted simultaneously, following various approaches discussed in Sec. 4.4.
The discrepancies in R(D(∗)) constitute the fourth ‘B anomaly’ — in addition to the three
in b→ s semi-leptonic transitions also mentioned in Sec. 2.1.
R(D(∗)) is best measured in events whose initial-state kinematics is known, as is the

case at B factories. This knowledge, as well as a large angular coverage, partly recovers
the missing kinematic information due to the final-state neutrinos — at least two. R(D(∗))
have been measured at BaBar and Belle in Refs. [11, 47–51]. LHCb has measured R(D∗)
in Refs. [52–54]. Here the analysis strategy relies on first inferring the momentum of
the parent B meson from the flying direction estimated through the reconstructed decay
vertex. Then, R(D∗) is determined in a multi-dimensional fit, including different variables
according to the decay modes — hadronic or leptonic — of the τ lepton. Similar strategies
are used for the already mentioned R(J/ψ) [55] and R(Λ+

c ) [56].
Knowledge of the b→ c modes mentioned above, as well as additional ones, will steadily

increase in the years to come, thanks to measurements at Belle II [57] as well as LHCb [38].
Being Belle II a lepton collider, it will have the same key advantages as discussed above

— and should even be sensitive to the D∗ and τ polarizations. Given the multiplicity of
final states accessible, Belle II could even be able to perform the inclusive measurements
advocated in [58,59]. LHCb will also represent an important asset, for example because
of the multiplicity of R-measurements it will be able to access — including channels
such as the Ds, the Λ+

c and the J/ψ. One can expect the experimental precision of these
measurements to be ultimately few percent.

3.7 Leptonic universality in charm

The STCF factory will allow a precision measurement of the ratios

RD+
(s)

=
Γ(D+

(s)→ τ+ντ )

Γ(D+
(s)→ µ+νµ)

SM
=

m2
τ+

(
1− mτ+

m
D+
(s)

)2

m2
µ+

(
1− mµ+

m
D+
(s)

)2 , (3)

which are measured by BES III to 20% and 5% precision for D+ and D+
s , respectively [24].

It is anticipated that this precision can be reduced to 0.4% with STCF.
The ratio of D→ πµ+νµ to D→ πe+νe branching fractions is measured at BES III

with about 4% precision [60], which could also be significantly improved at STCF (and at
Belle II), though no precise extrapolation is available yet.
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Table 1: Summary of expected experimental precision for selected observables in b physics.
Numbers from Refs. [17] (LHCb) and [20] (Belle II; when available the improved
scenario is taken). Here µ stands for the signal strength relative to the SM. More
numbers are given in the text, notably for STCF and FCC-ee.

Observable Current LHCb U1 Belle II LHCb UII
RK([1, 6] GeV2/c4) 0.044 [3] 0.025 0.036 0.007
RK∗([1, 6] GeV2/c4) 0.12 [4] 0.031 0.034 0.009
R(D∗) 0.014 [12] 0.007 0.003 0.002
R(D) 0.030 [12] 0.004
R(J/ψ) 0.24 [55] 0.07 0.02
µ(B+→ K+νν) 0.7 [65] 0.08
µ(B0→ K∗0νν) 1.8 [67] 0.34
B(B→ K∗τ+τ−) < 2× 10−3 [68] < 5.3× 10−4

B(B+→ µ+ν) 50% [69] 2.5%
B(B+→ τ+ν) 22% [70] 3.0%

3.8 Lepton flavor violation

Following from the above, searches for charged lepton flavor violating decays should be
categorised into modes with τ leptons, and modes without, i.e. with an electron and a
muon.

The latter are relatively easy and build on the same experimental techniques as processes
involving dielectrons and dimuons. The main difficulty is the absence of a control mode
with the same final state (as B→ J/ψ(`+`−)K+), but that is hardly limiting for a new
physics search. Limits at the few 10−9 level exist for processes as B→ e±µ∓ [61], or
B→ Ke±µ∓ [62], and will be improved by Belle II and LHCb. An improvement by an
order of magnitude by the end of LHCb Upgrade II is reachable. Similar searches have
been performed with charm [63]. The larger cross-section may make charm a promising
route to explore, although no sensitivity studies are available yet.

On the other hand, processes with τ leptons as B→ τ±µ∓ [64] or B→ Kτ±µ∓ [65]
suffer from much larger backgrounds. Innovative analysis techniques as the use of a B∗0s2
tag [66] may be required. The limits, presently in the few 10−5, may reach the 10−6 range.

4 Theory aspects and challenges

4.1 Lepton Universality in Semi-Leptonic b→ s Decays

Lepton-universality tests are usually constructed as ratios [2, 71], or differences [72–74], of
two semi-leptonic branching ratios, whereby the two concerned branching ratios differ only
by the lepton flavor. In particular, since branching ratios are integrals over phase-space
of their differential counterparts, the dilepton invariant mass range has to be the same
between the two branching ratios concerned.

These ratios are by construction tests of a near-symmetry of the SM, lepton universality.
Within the SM gauge interactions couple universally to matter, and the only non-universal
dynamics arises from Yukawa interactions and is proportional to the mass of the concerned
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matter particle. Such effects have been addressed in ratios such as RX (Eq. 1) and are
minuscule [2, 75].1 QED effects may also lead to lepton universality violation (LUV),
in particular from collinear corrections (due to photons of arbitrary energy within the
kinematic limit) ∝ αe log(m`/∆), with ∆ denoting any other scale in the problem. This
may include inherently physical scales such as mB or ΛQCD, or scales induced by the
definition of the observable, in particular q2

min,max. The above corrections have been
evaluated analytically in Refs. [76–78] in the framework of a pointlike-meson Lagrangian,
and the resulting spectrum has been compared to the one produced by the PHOTOS

simulation [79].
RX ratios like in Eq. (1) are advantageous from both experimental and theoretical

viewpoints. Form-factor induced uncertainties — that usually constitute the largest source
of uncertainty in branching ratios2 — cancel to a large extent in such ratios.

Two main sorts of theoretical uncertainties can affect LUV observables. The first are
QED corrections with large logs; the second may arise from the imperfect cancellation of
hadronic uncertainties. This occurs as the prediction of LUV observables departs from
the lepton-universal limit — e.g. as RK(∗) depart from unity. Let us first discuss QED
corrections. Although these contributions are proportional to a small coupling, α/π ≈ 2×
10−3, kinematic effects in B → K`+`− can enhance them to O(α/π) log(m`/mB) & 2–3%.
A first analysis — single-differential in the dilepton invariant mass squared q2 — was
performed in Ref. [76]. The authors find agreement with PHOTOS [79] at per mil level, and
assign RK an uncertainty of 1%. A more general analysis [77] calculates the full matrix
elements, i.e. both the real and virtual components, and studies the fully differential
decay rate. A further recent analysis [78] constructs a dedicated simulation to describe
QED corrections to B → K`+`−. Besides a comparison with PHOTOS, this tool is also
used to investigate effects of charmonium resonances. All of Refs. [76–78] adopt an EFT
Lagrangian description, i.e scalar QED. The aim is to capture effects beyond collinear
log(m`/mB) terms. Using arguments of gauge invariance, Ref. [77] also suggests that
there are no leftover log(m`/mB) contributions due to structure dependence.

The subject of QED corrections to b → s decays is clearly central to the theoretical
control of LFU observables. This subject has a number of open challenges (see e.g.
Ref. [80]). On the sheer phenomenological side, one may expect that structure-dependent
corrections for semi-leptonic heavy-to-light lepton-universality ratios — including RK(∗) —
depart from unity by terms of O(α)×O(log(m2

µ/ . . . ), where ellipses denote any scale in
the experimental observable. Before any more refined argument, such terms may give a
few-% uncertainty at worst. One should also emphasize the complementarity of lattice
evaluations of QED corrections for heavy mesons with respect to the EFT approach. In
particular, lattice QCD can estimate log(mB/ΛQCD) ∼ 3 terms, that are comparable in
size with those captured within the EFT approach. Novel ideas and applications are
being pursued, both at low and high dilepton q2, corresponding to respectively large and
small photon energies Eγ. Strictly speaking, only the low-Eγ case is directly relevant
to the discussion in the previous paragraph.3 For large Eγ, it has been noted that the

1For small enough q2min one gets close to the lower endpoint in the muon channel and there is LUV by
lack of phase space.

2It is understood that the phase-space integration is defined so as to exclude resonant regions.
3It should be noted however that inclusion of a hard photon lifts the chiral suppression in Bs,d → `+`−

decays. The electronic and muonic modes have thereby comparable rates. At facilities where electron
and muon efficiencies are comparable (which in principle includes LHCb starting from Run 3), one could
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Figure 5: Tower of theories and scales relevant for the description of semi-leptonic heavy-to-light
lepton-universality ratios including QED corrections. ∆E denotes the minimum energy
for single-photon detection. Figure taken from Ref. [80].

required correlator — a weak and an electromagnetic current insertion between the
external hadronic states — has the desired behavior for large Euclidean time, if the
matrix element is between a B and the vacuum [83, 84]. This advantageous property
holds specifically for radiative leptonic decays — i.e. it does not hold in the semi-leptonic
case.4 In addition, the B → γ FFs in this q2 region have been calculated in several recent
studies based on QCD factorization and soft collinear effective theory [85] or on light-
cone sum rules [86–88]. For small Eγ, the main underlying problem is to define IR-safe
LQCD quantities. A novel approach to this problem was put forward in Refs. [89, 90]
and first applied to the K`2 case. In a nutshell, the idea is to use the continuum width,
calculated within scalar QED, in order to cancel the IR divergences in the width from
LQCD. This ‘subtraction’ is performed for each photon momentum considered within
the lattice simulation. The main challenges for this idea to fully capture QED logs
non-perturbatively is to go beyond the assumption of scalar QED, which implies a cutoff
on Eγ well below ΛQCD. Besides, applications of the approach in Refs. [89,90] to B physics
bring in additional challenges related to the heavy b quark involved. In particular, one
can take advantage of HQET, but the challenge is then to go beyond leading power in
the 1/mB expansion. From a theory point of view, the basic challenge is to perform a
non-perturbative matching between the point-like EFT and the microscopic description.
The corresponding sequence of theories to be matched to one another is well summarized in
Fig. 5, taken from Ref. [80]. The necessity to carefully include hard but collinear photons
has been elucidated in a benchmark application to B0

s → µ+µ− [91, 92], which identifies
single and double log(mbω/m

2
`) terms (ω ≈ ΛQCD), that however largely compensate

for seemingly accidental reasons. Additional steps towards a systematic treatment of
QED in charmless B → π+π− and in heavy-to-heavy decays have been undertaken in
Refs. [93, 94]. It should also be noted that, as soon as non-perturbative soft matrix
elements are evaluated within QCD×QED, light-cone distribution amplitudes have to be
generalized accordingly. This generalization is accomplished in Ref. [95].

The second source of theory uncertainty in ratio observables is the imperfect cancellation

then consider Rγ ≡
∫
dB(Bs → µ+µ−γ)/

∫
dB(Bs → eeγ) with an energetic photon [81, 82]. LQCD

calculations of B → γ form factors (FFs) for energetic photons would be crucial for such observables.
4We thank Stefan Meinel for insightful conversations on this matter.
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of the uncertainties induced by long-distance physics as the branching ratios in the
numerator vs. the denominator of the ratio depart from the lepton-universal limit. Such
departure may be induced by the different phase space available to the different lepton-
flavor combinations in the numerator vs. the denominator — as is the case e.g. in RK∗

for very low q2 [76] or for R(D(∗)) — or else it may due to LUV new physics. In this
discussion we focus on the latter possibility, which has been explored in e.g. Ref. [96]. This
paper addresses the question of the validity of the approximation of evaluating the theory
covariance matrix at the SM point. This approximation is expected to hold to the extent
that NP is small with respect to the respective SM contribution. However, global analyses
include observables whose theory uncertainty is negligible as compared to the experimental
one only at the SM point. Examples include lepton-flavor universality tests like RK(∗) ,
because the larger LUV NP contributions, the less efficient the cancellation of hadronic
uncertainties between numerator and denominator. The correct procedure in this case
is to re-evaluate the theory correlation matrix at each NP point being considered in the
global fit. To have an idea of the possible impact of such uncertainty, let us consider RK .
The SM uncertainty is quoted as 1% [76,77], which is small with respect to the current
5% experimental uncertainty [3]. An O(15%) LUV contribution from NP will multiply
hadronic contributions known to, say, O(30%) (from FFs squared). This translates into a
contribution to the theory uncertainty of, again, 5%, which is no more negligible with
respect to the experimental uncertainty. A similar word of caution applies to other LFU
ratios. An additional class of LFU tests are the quantities known as DP ′i

= Qi [72–74].
For them, current experimental uncertainties are completely dominant [97] with respect to
theory uncertainties, and accuracy projections suggest that the level of few percent [98] is
a longer-term prospective than in ratio tests. Q5 may help distinguish genuinely LUV v.s
lepton-universal NP contributions [99]. A universal such shift to C9 has a neat theoretical
interpretation [100,101], that naturally connects b→ s`` and b→ c`−ν̄ anomalies. This
connection was found to work quantitatively in [102].

4.2 Lepton Flavor Violation in b→ s (Semi-)Leptonic Decays

The three ‘B anomalies’ hitherto discussed — in q2-integrates differential rates, in angular
analyses, and in ratio tests — coherently suggest that the discrepant measurements
are all and only those to dimuons, while modes to dielectrons are SM-like within large
uncertainties, and modes to ditaus are still too weakly constraining. These experimental
facts suggest new physics hierarchically coupled to the different lepton generations [13].

New LUV dynamics is generally accompanied by new lepton-flavor-violating (LFV)
dynamics as well. Here, ‘generally’ means that this is the expectation in the absence of
further assumptions. In other words, in the same way as one could explain a diagonal
CKM matrix — had it been the case chosen by nature — one can explain the size of LUV
in RK , and concurrently forbid non-standard (i.e. non-zero) LFV at the price of suitable
assumptions — whether dynamics or a symmetry mechanism for example. One consistent
avenue to prevent measurable LFV in the presence of measurable LUV is to extend the
peculiar lepton-flavor symmetries of the SM to hold also for the NP dynamics, see e.g.
Refs. [103,104].

It is clear that the above question can only be settled by experiment — but it is a
crucial question on the structure of the putative new dynamics. For guidance, one may ask
oneself what is the general size of the expected LFV effects in the presence of LUV as large
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as observed [13]. The latter are of O(15%) according to data, as opposed to unobservable
effects within the SM. By a general argument [13] this figure suggests likewise measurable
LFV effects (see also Refs. [105, 106]). The starting point is the observation that all
b→ s data are explained at one stroke by a 4-fermion operator composed of a left-handed
(LH) quark times a left-handed lepton structure [107]. Importantly, the latter comes
with a lepton-generation dependent Wilson coefficient, because µ+µ− data hint at new
effects, whereas e+e− data do not. Such pattern suggests a purely 3rd-generation LH ×
LH interaction, as the result of integrating out new states at some scale above the EWSB
scale. As a consequence, the fields in this interaction are generally not mass eigenstates.
The unitary transformations required to express the interaction in this basis will extend
this interaction to generations other than the heaviest, and generally yield LUV along
with LFV. The two sets of effects may be parametrically related to each other, because
LUV is measured (through RK). One thereby obtains ballpark estimates for LFV decays,
such as B → Kτµ, with branching ratios around 10−8 [13]. In a nutshell, this order of
magnitude arises as the product of B(B → Kµ+µ−) ≈ 4× 10−7, times the departure of
RK from unity, squared — which yields a number around 10−8 — times ratios of products
of the above mentioned unitary rotations that lead to the mass eigenbasis. Since not all
these ratios can be much smaller than unity (even if all unitary mixings are small numbers,
there is no reason why also the ratios of such mixings should all be small numbers), one
may expect that some LFV decay branching ratio be in the nominal ballpark of 10−8 [13].

The above picture must withstand certain constraints. In particular, the mentioned
LH × LH interaction arising above the EWSB scale, it should be made compliant with
SU(2)L symmetry [108]. By closing the quark loop and connecting it to a further lepton
pair through a gauge boson, this interaction then yields LFV effects in lepton decays, for
example τ → 3µ [109,110].

In recent years, the subject of LFV in semi-leptonic B decays — and even its possible
connections with other flavored sectors — has been extensively explored from a phenomeno-
logical point of view, see Refs. [111–124]. Expressions for the full angular distributions of
the B → K(∗)`1`2 have been discussed in Ref. [116]. Many scenarios predicting LFV signals
have been advocated, all the way from EFT approaches, to simplified gauge or LQ models,
or composite Higgs sectors, or UV-complete models [105,106,108,110–113,125–159]. All
the modes discussed are realistically within reach at present facilities and/or at their
upgrades. As a matter of fact, a detailed program of experimental searches has blossomed.
Recent searches at LHCb include Refs. [64,66], with more ongoing. For further details,
see Sec. 3.8.

4.3 Semi-Leptonic b→ s Modes with τ leptons

To reiterate, the pattern of semi-leptonic b→ s decay data — SM-like in modes to electrons,
discrepant to O(10%) in modes to muons, still insensitive to the SM signal in modes to
taus — suggests new physics hierarchically coupled to the generations of matter [13]. It is
worth noting that, for the third generation of leptons, this conclusion relies on the limited
knowledge of the relevant modes: B(B+ → K+τ+τ−) and B(B+ → K+τ±µ∓) set weakly
constraining bounds of O(10−3) and O(10−5) respectively, and hence order-of-magnitude
signals from new physics are possible. In these circumstances, the above modes, as well as
B0
s → τ+τ−, are the perhaps most crucial test of the overall theory understanding [13].

More general surveys have been performed, including in particular B → K(∗)τ+τ− and
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Bs → φτ+τ−. With minimal assumptions and an EFT approach, one generally expects
large enhancements of around three orders of magnitude with respect to the SM [160].
Several works mentioned in Secs. 4.2 and 4.5 also quote similar enhancements in the
context of models.

4.4 Semi-Leptonic b→ c modes

The departures of the measured R(D(∗)) from the SM predictions may be interpreted in
terms of new effects in B(B → D(∗)τν), namely in the numerator branching ratio. In fact,
if new physics is present in b→ s`+`− transitions, and is caused by dynamics occurring
above the EWSB scale, the new effects should, to some extent, ‘spill over’ to b → cτν
transitions as well, especially if one starts with the assumption that the new interaction is
dominantly coupled to the 3rd generation [13]. In fact, the b→ s and b→ c anomalies
are closely related by SU(2)L symmetry [104,108].

Similarly as b→ s`+`− transitions, one important aspect of b→ c`ν processes is the
theoretical control of FFs, that are functions of the leptonic invariant mass squared
q2, and that arise from the matrix elements of the concerned quark bilinear between
external hadronic states. Their determination follows different approaches. A first one is
lattice QCD (LQCD), and is best suited for high q2, possibly close to the upper endpoint
q2

max. Results exist for several meson transitions, including B → D(∗) [161–165] and,

in the full kinematic range, Bs → D
(∗)
s [164, 166–168] as well as B+

c → J/ψ [169, 170].
Form-factor calculations, as well as phenomenological applications, exist also for b→ c
decays involving baryons, in particular Λb → Λ

(∗)
c [171–174]. As concerns B+

c → J/ψ
and the ensuing R(J/ψ), it is quite intriguing that the precise SM prediction leads to a
discrepancy with the experimental result that is compatible in magnitude and sign with
the R(D(∗)) anomaly. Besides the specific calculations above, the interested reader is also
referred to the dedicated Snowmass 2022 White Paper [175], as well as the comprehensive
FLAG review [176]. A further approach is a QCD-inspired method known as QCD sum
rules [177,178] (see also Refs. [179,180], and for a modern viewpoint [181]). In this case,
light-cone sum-rule calculations of B → D(∗) FFs [182, 183] at q2 values ≤ 5 GeV2 are
extrapolated to large q2 following different approaches (see below).

The decay B → D`ν is parameterized in terms of two FFs, often chosen to be the
vector and the so-called scalar one. The FF dependence for B → D∗`ν is more complex
— although, as discussed in Ref. [184], the R(D∗) prediction may be more robust than
is R(D)’s. The reason is that the scalar FF contributes sizeably to the τ mode — the
numerator in R(D) — whereas its contribution is negligible for light leptons (in both
cases the reference is the vector FF contribution). In particular, better agreement of R(D)
with experiment would be possible if the scalar FF departed with respect to the current
lattice evaluation [161,162] by O(10%) in some q2 range below q2

max [184].
Starting from the calculations mentioned above, extrapolations are typically required to

estimate the FFs in the full kinematic range required for R(D(∗)) and other observables.
Several approaches exist for such extrapolations. A first one is due to Boyd, Grinstein
and Lebed (BGL) [185]. One starts [186–198] from the FF normalization in the heavy-
quark-symmetric limit ( [199–202], for reviews see Refs. [203,204]), and the FF shape, as
functions of the momentum transfer, are subsequently constrained by means of dispersion
relations. These relate an inclusive-production rate with a two-point function that can
be calculated perturbatively in QCD. BGL showed that inclusion of higher states in the
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sum over channels through which the inclusive rate is estimated significantly improves
the shape constraints for b→ c transitions. Global analyses [205] exploit the constraining
power of such relations. The form-factor parametrization can be further constrained
through fundamental QFT requirements such as unitarity, analyticity and perturbative-
QCD scaling as in Bourrely, Caprini and Lellouch (BCL) [206]. This approach aims at
making the parameterization as model-independent as possible, while also avoiding explicit
expansions in αs or in inverse powers of the heavy-quark mass. Applications [207–209]
include a simultaneous determination of the R(D(∗)) ratios and of Vcb, that allows to also
get insights on the “exclusive vs. inclusive” tension in this CKM entry.

An additional, somewhat separate approach starts again from the heavy-quark-symmetry
FFs, but then focuses on the systematic inclusion of QCD corrections as well as power-
suppressed — both in 1/mb and in 1/mc [210–214]. This method has also been applied to
the simultaneous determination of R(D(∗)) ratios and of Vcb [210–212,215]. Refs. [213,214]
focus instead on the convergence of the power expansion — they include 1/m2

c corrections
— and on maximally constraining the FFs through calculations within light-cone sum rules,
plus additional constraints from LQCD, QCD three-point sum rules and unitarity.

Finally, yet another approach to Vcb and R(D(∗)) is the so-called “dispersive method”,
very recently put forward in Refs. [216–220]. This model-independent method was
originally introduced for lattice calculations in Ref. [192]. Within this approach, FFs
are described without assumptions on their functional dependence on the momentum
transfer. By enforcing the dispersive bounds due to unitarity and analyticity, as well as
the existing lattice-QCD data on FFs — available at large momentum transfer only —
one determines the FFs in a model-independent way in the full kinematical range. This
leads to the predictions R(D) = 0.296(8) and R(D∗) = 0.275(8), whose agreement with
the measurements’ world average is at the 1.3σ level.

The possibility to enhance lepton-universality tests in the b→ c sector through additional
observables with the same underlying current, including leptonic decays, specific angular
distributions, measurements sensitive to specific polarization fractions, high-pT signatures
has been discussed in Refs. [221–236]. Lepton-universality tests in b→ c semi-leptonic in
the baryonic sector are discussed in Refs. [172,227,237–239].

4.5 Model-building considerations

The interpretation of O(10− 20%) LUV effects in semi-leptonic decays has to face well-
defined challenges. The ‘minimal’ requirements that data seem to convey include the
following: (i) the new dynamics explaining the b → s measurements must, directly or
indirectly, involve the second and the third generation of quarks and leptons; (ii) it must
yield large enough effects in the product of a quark times a charged-lepton bilinear, Jq×J`,
and small enough effects elsewhere, in particular in flavor-changing Jq × Jq and J` × J`
amplitudes. These requirements have ‘genetically’ selected LQs as the preferred candidate
for a dynamical explanation. In fact, requirement (ii) holds automatically, because Jq×J`
can occur at tree level, whereas Jq × Jq and J` × J` are automatically loop-suppressed —
at least for ‘genuine’ LQs [240,241].

More formidable challenges arise if one wants to explain b → s and b → c hints of
LUV concurrently. At face value, i.e. to the extent that both sets of ‘anomalies’ have
comparable significances, it looks justified to take both datasets on an equal footing.
There are also theory considerations supporting such a stance, in particular the fact that
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the two sets of anomalies convey the same underlying piece of information — sizeable LUV
— in currents that, above the EWSB scale, are related by the SM SU(2)L symmetry — as
expected of new short-distance effects [108,242,243]. The problem with a simultaneous
explanation is at the quantitative level, as b→ s data hint at ∼ 10−20% shifts in a SM loop
amplitude, whereas b→ c data hint at comparably large shifts, but in a tree amplitude.
Then, if one introduces a common effective, SU(2)L-invariant structure to account for
both shifts, a mechanism must also be supplied for the flavor-dependent coupling to
produce more suppressed effects in b→ s than in b→ c — the relative suppression being
approximately a loop factor. Various such mechanisms have actually been proposed in the
literature. One instance the LQ model in Ref. [244], giving rise to tree- vs. loop-suppressed
amplitudes (on the phenomenology of this model, see also Refs. [113, 245]). Another
instance is [246], which proposes a minimally-broken U(2)5 global symmetry [247,248]. In
this case, b→ cτν and b→ sµ+µ− effects arise as respectively first and third order in the
breaking parameter [246] (see also Refs. [128,139,243]).

One further important aspect to face is that, for the model to be thoroughly testable, all
processes relevant as constraints should be, at worst, log-dependent on the UV scale. As
well known, this is not an issue for massive-scalar extensions. A handful of combinations of
scalars are most popular as combined explanations of b→ s and b→ c LUV, namely the
two scalar leptoquarks S1 and S3 — see Refs. [243,249,250], and [240] for nomenclature;
R2 and S3 — see Refs. [143,159]; the S1 plus a charged singlet φ+ [251]. However, massive
new vectors do pose a problem, as certain (constraining) processes display power-like
dependence on the UV scale — for a reference discussion on this point see Ref. [246].
This problem applies to the vector leptoquark U1 ∼ (3,1)2/3 [104, 127, 252–261], the most
popular single mediator capable of explaining the RK(∗) and RD(∗) anomalies (see e.g.
Refs. [112,136,148,151,243,246]).5

In great synthesis, the U1 LQ may be UV-completed via an appropriate gauge group, such
as the one in the Pati-Salam (PS) model [263] — a leptoquark vector mediator is the natural
mediator between a quark and a lepton if lepton number is the fourth color. However, the
PS group in its original version is not an option in the light of high-pT constraints, as
spelled out in [252], which require to separate the SU(4) group from SU(3)c, and to enforce
g4 � g1, g3. Minimality seems then to point to an SU(4)× SU(3)′ × SU(2)L × U(1)′, or
4321 model [252] (see also Refs. [264,265]). Besides calculability (in principle at least) of
the processes that in a simplified-U1 approach would be power-divergent, this UV-complete
construction allows to include in the picture one additional important insight: the U1 does
not come alone as a mediator. The 4321 model implies a Z ′ and a “coloron” mediator, and
the signals — e.g. at colliders — of this extended sector have to be studied jointly [266–268]
and a generic expectation are excesses in di-tau tails. Besides the collider aspect, this
scenario has also well-defined low-energy signatures and null tests. Interestingly, the
model has by construction no tree-level contributions to the otherwise very constraining
B → K(∗)νν̄ processes [269]; it predicts large signals in b→ sτ+τ− and b→ sτµ currents
and in τ decays [153,266,270,271]. A recent comparison between the different LQ scenarios
vs. existing data can be found in Ref. [272].

Finally, additional UV-complete proposals — either non-LQ models, or alternative
mechanisms to generate a mass for vectors, or bosonic-mediator combinations other
than those detailed above — aimed at addressing both b → s and b → c anomalies

5The option of R2 as a single mediator was discussed in Ref. [262].
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include [148,258,273–290].
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