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1Università degli Studi Roma Tre and INFN Roma Tre,
Via della Vasca Navale 84, I-00146 Roma, Italy

2Mitchell Institute for Fundamental Physics and Astronomy,
Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA

3Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA
4Institute for Fundamental Theory, Physics Department,

University of Florida, Gainesville, FL 32611, USA
5Faculty of Natural Sciences, Seoultech, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Korea

6School of Physics, KIAS, Seoul 02455, Korea
7Fermilab Quantum Institute, Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

Kinematic variables have been playing an important role in collider phenomenology, as they expe-
dite discoveries of new particles by separating signal events from unwanted background events and
allow for measurements of particle properties such as masses, couplings, spins, etc. For the past 10
years, an enormous number of kinematic variables have been designed and proposed, primarily for
the experiments at the Large Hadron Collider, allowing for a drastic reduction of high-dimensional
experimental data to lower-dimensional observables, from which one can readily extract underlying
features of phase space and develop better-optimized data-analysis strategies. We review these re-
cent developments in the area of phase space kinematics, summarizing the new kinematic variables
with important phenomenological implications and physics applications. We also review recently
proposed analysis methods and techniques specifically designed to leverage the new kinematic vari-
ables. As machine learning is nowadays percolating through many fields of particle physics including
collider phenomenology, we discuss the interconnection and mutual complementarity of kinematic
variables and machine learning techniques. We finally discuss how the utilization of kinematic vari-
ables originally developed for colliders can be extended to other high-energy physics experiments
including neutrino experiments.
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I. INTRODUCTION

The defining objective of particle physics is to under-
stand the elementary constituents of our Universe and
their interactions at the most fundamental level. Ad-
vancing our understanding of Nature at these smallest
possible scales requires in turn extraordinarily large and
complex particle physics experiments. For example, the
Large Hadron Collider (LHC) at CERN is not only the
largest man-made experiment on Earth, but also the
most prolific producer of scientific data. The data deliv-
ery rate at its upcoming upgrade, the High-Luminosity
LHC (HL-LHC), will increase 100-fold to about 1 exabyte
per year, bringing quantitatively and qualitatively new
challenges due to its event size, data volume, and com-
plexity, thereby straining the available computational re-
sources. New particle physics discoveries in this era of big
data will only be possible with novel methods for data
collection, processing, and analysis.

A. The curse of dimensionality and the zoo of
kinematic variables

Modern particle physics data is extremely high-
dimensional — typical events result in multiple (∼ 1000)
particles in the final state. The dimensionality of the
data will increase even further at the HL-LHC. Ideally,
one would like to make use of the full information en-
coded in the raw experimental data, but this approach
would run into serious challenges:

• From a theorist’s point of view, the ultimate goal
is to understand the fundamental laws of Nature

FIG. 1. Illustration of the dimensionality reduction in col-
lider experiments and phenomenological studies. The com-
mon goal is to find the optimal low-dimensional kinematic
observables. On the experimental side (red boxes on the left)
this is accomplished by reconstructing the low-level detector
data into progressively more physically motivated quantities.
On the theory side (blue boxes on the right) the kinematic
variables (or features in their distributions) are meant to re-
flect fundamental parameters in the theory Lagrangian. The
solid (dotted) arrows indicate the typical flow (or simplifying
shortcuts) in the high energy physics simulation chain [2].

at the microscopic level. However, it is highly non-
trivial to decipher the underlying physics and/or
develop physical intuition by looking at the raw
data.

• From a practitioner’s point of view, working with
the full (raw) dataset very quickly becomes compu-
tationally prohibitive as the dimensionality of the
data increases [1].

Given the size and nature of the experimental dataset,
modern particle physics analyses inevitably involve some
kind of dimensionality reduction to fewer variables (fea-
tures), which are suitably chosen to be optimal for the
goal of the particular experiment. These higher-level
variables are derived from the measured particle kine-
matic information, and therefore, are generically referred
to as “kinematic variables”, see Figure 1. Naturally,
there is no unique or “best” way to perform this dimen-
sional reduction — the perceived benefits of any given
technique depend on a variety of factors, e.g., the experi-
mental signature, the goal of the analysis, the control over
the physics and instrumental backgrounds, and finally,
one’s judging criteria, which can be rather subjective to
begin with. Moreover, if the final state contains invisible
particles such as neutrinos and dark-matter candidates
which appear as missing energy, their treatment opens
the door for many new possibilities. This is why many
different approaches have been tried, and as a result, a
great number of kinematic variables have been proposed
and investigated in the literature. Depending on the un-
derlying event topology and the target study point, they
may show different levels of performance and capability
(i.e., no single variable exhibits absolute superiority to
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the others), hence, it is prudent to keep as many tools as
possible in the analysis toolbox.

B. Goal, scope and organization of this review

This review is meant to provide a comprehensive guide
to commonly used kinematic variables with a special fo-
cus on the recent developments within the last decade.
Such a review is important and timely for the following
reasons:

• A comprehensive list of kinematic variables. Kine-
matic variables are routinely used in experiments
to search for new signals, as well as to perform pa-
rameter measurements in observed processes. The
use of the right kinematic variables can expedite
the discovery of new physics, as well as increase the
sensitivity to a given parameter. This review will
provide a comprehensive menu from which practi-
tioners can either pick existing kinematic variables
which are the right ones for their task, or derive
new kinematic variables following the methodology
presented here.

• Feature engineering. Machine learning is now in-
creasingly being used for data analysis in high en-
ergy physics. It is known that the performance
(and the training efficiency) of the algorithms de-
pends crucially on the parametrization of the input
features. Using the right kinematic variables to de-
scribe the data would greatly enhance the perfor-
mance of machine learning techniques in analyzing
the data. Finding the right balance between at-
tributes of the data that one wants to be sensitive
to and those which are irrelevant for the question
at hand, is an art. This review can thus be used
either to optimize the input for various machine-
learning algorithms and tasks or to properly in-
terpret the output from the machine in terms of
human-engineered kinematic quantities.

• The need for an up-to-date review. The last such
review of comparable scope was written ten years
ago [3]. There also exist several sets of pedagogical
lectures targeting newcomers in the field which fo-
cus on standard material [4–6]. A few other, more
limited in scope, reviews have appeared recently as
well, e.g., focusing on energy peaks [7] or minimum
invariant mass bounds [8].

The organization of the paper is as follows. Section II
provides the necessary background, motivation and con-
text for the construction of kinematic variables. Our con-
ventions and notation for the particle kinematics are then
presented in Section III. Some basic kinematic observ-
ables and their use in a few benchmark processes from
the Standard Model (SM) are reviewed in Section IV.
In Section VI (Sections VII through IX) we describe in-
clusive (exclusive) event variables used to characterize

a single event. Variables and methods relying on en-
sembles of events are discussed in Section X. The inter-
play between the classic kinematic methods and the more
recent machine-learning approaches is discussed in Sec-
tion XI. Section XII contains examples of kinematic vari-
ables which are experiment-specific, while Section XIII is
reserved for conclusions and outlook. Appendix A pro-
vides a guide to some commonly used tools and codes for
kinematic variables.

II. KINEMATIC VARIABLES RUN-THROUGH

A. Pre-processing of the input data

The primary objective of a particle physics experiment
is to test a theory model, which is usually encoded in a
Lagrangian in the quantum field theory. Then, as de-
picted in the rightmost side of Figure 1, one can use this
Lagrangian to predict the kinematic distributions of rel-
evant quantities of interest. This is a relatively straight-
forward procedure, which takes advantage of established
theoretical tools like the perturbative expansion in the
quantum field theory. However, this can only be done
at the parton level, i.e., in terms of the fundamental
particles represented by the fields appearing in the La-
grangian. Therefore, a necessary step in any analysis is to
measure the four-momenta of the fundamental particles
emerging from the hard collision.

For leptons like electrons and muons, this is relatively
easy, since the object measured in the detector represents
the fundamental particle itself. For tau-leptons, the sit-
uation is a bit more complicated, since taus can only be
identified through their hadronic decays, in which there
is a neutrino gone missing. However, the biggest chal-
lenge is presented by colored partons (quarks and glu-
ons), which are observed as streams of hadrons called
jets. The parton showering and hadronization processes
are described by taking limits of perturbative QCD and
by phenomenological models implemented in the gen-
eral purpose event generators. Jet reconstruction algo-
rithms are then needed to cluster the particles observed
in the detector into individual jets, and thus, to obtain
the jet four-momenta, which can be related to the four-
momenta of the underlying partons. At the end of the
day, as a result of the so-described “object reconstruc-
tion” procedure (see Figure 1), one ends up with a set
of four-momenta for the relevant fundamental particles
in the event.1 These four-momenta serve as the basis
for constructing the kinematic variables discussed in this
review. Each kinematic variable is a certain mapping f
from the measured four-momenta to a single, typically

1 Recently there have been suggestions to bypass the “object re-
construction” stage altogether and directly leverage low-level
data. Examples include end-to-end analyses [9, 10], the use of
jet images [11, 12], etc.
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scalar, quantity. However, there are some practical chal-
lenges in defining the proper mapping f , as discussed
next.

B. Constructing kinematic variables and associated
challenges

In the construction of any derived kinematic quantity,
in general, one may encounter a number of practical prob-
lems which we briefly discuss below.

Particle ID and reconstruction. Object reconstruc-
tion involves a set of criteria applied on the low-level
data, for example, the presence or absence of a track,
the ratio of the energy deposits in the electromagnetic
and hadronic calorimeter, isolation requirements, etc. In
principle, particle identification and reconstruction are
never perfect — sometimes the “wrong” types of parti-
cles may pass the requirements, leading to fake leptons,
fake photons, and so on. This is a potential problem in
the construction of exclusive kinematic variables, which
assume a certain event topology and therefore are defined
in terms of the momenta of the correspondingly identified
objects.

Combinatorial problem. It arises whenever the final
state contains several reconstructed objects of the same
type. The association of reconstructed objects at the
detector level to their parton-level counterparts is not
unique, and one has to deal with the resulting combina-
torial ambiguity. The problem is exacerbated by the fact
that several types of partons, namely the light quarks
and the gluons, yield jets which appear very similar in
the detector and can only be discriminated on a statis-
tical basis [13–15]. In most practical applications, the
combinatorial problem manifests itself as a partitioning
ambiguity whenever we try to select the decay products
of a common parent particle. For example, in the case of
pair-production of two parent particles, the reconstructed
objects need to be separated into two groups, e.g., with
the hemisphere method [16, 17]. References [18, 19] ex-
tended this idea to account for jets from initial state radi-
ation, which are considered as a separate category. Other
techniques to mitigate the combinatorial problem include
event-mixing [20], mixed event subtraction [21, 22], the
use of ranked variables [23], recursive Jigsaw reconstruc-
tion method [24], etc. Since different partitions of the
final state objects typically result in different values for
the kinematic variables, one could use this to select the
correct partition. Specific applications of this idea to
the dilepton tt̄ event topology, using the MT2 and the
constrained M2 variables were considered in Refs. [25]
and [26], respectively.

Imperfect detectors. The observed experimental ob-
jects and their kinematics can be different from the actual
event due to imperfect detectors. Similarly, the observed
objects can differ from the simulated Monte Carlo truth,
which necessitates the detector simulation stage in the

Monte Carlo chain depicted in Figure 1. On the one
hand, the measured energies, momenta, and timing are
in general smeared from their parton-level values. While
this is not necessarily a roadblock for the calculation of
the kinematic variables per se, it should be kept in mind
when interpreting the results. The more serious prob-
lem, already mentioned above, is the misidentification of
particles — e.g., imperfect b-tagging would reintroduce
the combinatorial problem of selecting the correct b-jet
among the many jet candidates in an event. Finally,
an important variable, used either by itself, or in the
construction of many kinematic variables, is the missing
transverse momentum, which is defined as the transverse
recoil against all visible objects in the event, and is there-
fore susceptible to their mismeasurement.

Unknown new physics parameters. For new physics
signals, one does not know a priori the values of the new
model parameters, e.g., the mass of a dark-matter can-
didate. In such cases, the definitions of the kinematic
variables often involve a test value for the corresponding
parameter, which needs to be chosen judiciously. In what
follows, we shall use a tilde to denote such trial parameter
values, e.g., m̃ for the mass of a dark-matter candidate.

Multiple solutions. Whenever the kinematic variables
are defined as solutions to non-linear constraints, there
may appear multiple solutions (e.g., the z-momentum of
the neutrino in a semi-leptonic tt̄ event), and one has to
design a suitable procedure to arrive at a unique answer.

Depending on the case at hand, there are different ap-
proaches to tackling these problems, some of which will
be illustrated in the subsequent sections.

C. Typical uses and applications

In analogy to the “no free lunch theorem” in machine
learning, no single kinematic variable is optimal for all
conceivable tasks in particle phenomenology. Even if we
fix the task, the optimal variable can change with time,
e.g., depending on the running conditions of the experi-
ments or the evolution in our theoretical understanding
of the background processes. This is why a great number
of kinematic variables have been considered in the recent
literature, with a wide range of applications, for example:

• Cleverly chosen kinematic variables are often used
for signal versus background discrimination in new
physics searches. The choice of variable(s) is tied
up to the hypothesized event topology (typically in
the form of a simplified model). The ideal variable
would capture the salient features of the process
at hand and would not be too sensitive to the full
details of the underlying new physics model.

• Kinematic variables are key inputs to modern mul-
tivariate analyses, including machine learning ap-
proaches (see Section XI below).
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• Known kinematic variables can be used to define
new, higher-level, kinematic variables, e.g., by us-
ing the existing correlations between different vari-
ables [27], or by incorporating them into the algo-
rithmic definition [28].

• Kinematic variables can be used to identify events
with special kinematics. For example, one can cut
on the value of the MT2 variable to select a sample
of events in which the true momenta of the invisible
particles are fully determined [29, 30].

• Certain kinematic variables can be used to test and
validate the results from alternative machine learn-
ing approaches [31].

• The distributions of some kinematic variables ex-
hibit features (bumps, edges, kinks, cusps, etc.)
and/or shapes which can be directly correlated
with fundamental parameters in the theory La-
grangian [21, 32–34].

III. CONVENTIONS AND NOTATION

Collider experiments usually employ a Cartesian co-
ordinate system in which the z-axis is aligned with the
beam direction, while the x and y axes define the trans-
verse plane orthogonal to the beam (see Figure 2). For
example, in this system a particle’s three-momentum
~p ≡ (px, py, pz) is decomposed into a longitudinal com-
ponent pz along the z axis and a transverse component
~pT ≡ (px, py) within the transverse plane. As shown in
Figure 2, some of these Cartesian components can be
traded for the magnitude of the transverse momentum

pT ≡
√
p2
x + p2

y, (1)

the azimuthal angle ϕ defined as

ϕ ≡ tan−1

(
py
px

)
∈ [0, 2π), (2)

and/or the polar angle θ

θ ≡ tan−1

(
pT
pz

)
∈ [0, π]. (3)

The energy E and three-momentum ~p of a particle form
a four-vector pµ = (E, ~p ) whose 1+3 dimensional compo-
nents will be denoted with mid-alphabet Greek indices.
The invariant mass m is then defined as

m ≡
√
pµpµ =

√
E2 − ~p 2. (4)

By analogy, the transverse energy ET ≡
√
m2 + p2

T and
the transverse momentum ~pT form a 1+2 dimensional
vector pα = (ET , ~pT ), whose components will be denoted
with Greek letters from the beginning of the alphabet.

FIG. 2. The standard geometry of a collider experiment. The
z axis (in blue) is oriented along the beam, while the x and y
axes (in red) define the transverse plane. Any 3-dimensional

vector ~P can be uniquely decomposed into a longitudinal com-
ponent pz and a transverse component ~pT . Taken from Ref.
[8].

The energy E and the longitudinal momentum com-
ponent pz can be used to define the rapidity

y ≡ 1

2
ln

(
E + pz
E − pz

)
, (5)

which in the case of massless particles reduces to the
pseudo-rapidity

η ≡ − ln

[
tan

(
θ

2

)]
. (6)

In what follows, we shall use the letter p to denote mo-
menta of visible particles seen in the detector, while the
letter q will be reserved for the momenta of invisible par-
ticles (dark-matter candidates, neutrinos, or other very
long-lived weakly interacting particles).

In a collider experiment, the transverse momentum of
the initial state is zero, which places a constraint on the
final state transverse momenta:

∑

a

~paT +
∑

b

~qbT = 0. (7)

The measured total missing transverse momentum /~pT is
therefore given by

/~pT ≡
∑

b

~qbT = −
∑

a

~paT . (8)

See also Section VI B for more detailed discussion.
At lepton colliders, the center-of-mass energy

√
s is

fixed and the longitudinal momentum of the initial state
is also fixed (often zero), while at hadron colliders, the

parton-level center-of-mass energy
√
ŝ varies from one

event to the next, and the longitudinal momentum of
the initial state is a priori unknown. This motivates the
use of kinematic variables like (5) and (6) which have
convenient transformation properties under longitudinal
Lorentz boosts (along the z-axis).
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p(p̄)

p(p̄)

Upstream

visible momentum
Uµ = {u0, ~uT , uz}

Visible daughters, pµ
ai

Invisible daughters, qµ
ai

Visible daughters, pµ
bi

Invisible daughters, qµ
bi

Visible daughters, pµ
ci

Invisible daughters, qµ
ci

Parent A, pµ
A

Parent B, pµ
B

Parent C, pµ
C

FIG. 3. The generic event topology of a collider event. The
result of the initial collision (for definiteness, we show the case
of hadron colliders where the beams consist of protons p or
antiprotons p̄) is a set of final state particles which can be
grouped into collections A,B,C, · · · , each containing sets of
visible and invisible daughters. Adapted from Ref. [8].

Individual final state particles will be labelled with
a, b, c, · · · . Collections of such particles (which, for ex-
ample, are hypothesized to have a common origin) are
labelled with A,B,C, · · · (see Figure 3). For example,
let A = {a1, a2, a3, · · · } be a collection of final state par-
ticles. The four-momentum of the whole collection will
be pµA, while the four-momenta of the individual par-
ticles will be denoted with pµai or qµai , respectively, de-
pending on whether the particle is visible or invisible.
We shall use lowercase m for the masses of final state
particles and uppercase M for kinematic mass variables,
which typically are related to the masses of parent collec-
tions A,B,C, · · · . Taking jets and leptons to be massless
(m = 0) is usually a good approximation, but for W , Z,
t, and dark-matter candidates, we shall keep the explicit
dependence on m. In the case of invisible final state par-
ticles, as mentioned earlier, it is often useful to treat their
mass as a test parameter (denoted with a tilde, m̃χ), re-
gardless of whether the true mass is known or not.

As shown in Figure 3, we shall use U to denote the col-
lection of particles which are not assigned to any other
groups. In practice, those arise from initial state radia-
tion (ISR) or from decays upstream.2

2 As explained later in Section VII B, ungrouped particles down-
stream can be effectively eliminated from the discussion by intro-
ducing the intermediate resonances as effective invisible particles.

IV. STANDARD KINEMATIC INFORMATION

A. Simple kinematic observables

The standard kinematic information is what is di-
rectly measured by detectors for individual particles re-
constructed by Particle Flow (see the left side of Fig-
ure 1). The four-momenta of the particles can be repre-
sented in Cartesian coordinates (E, px, py, pz), or, more
commonly, in cylindrical coordinates (E, pT , ϕ, pz) where
pz can also be traded for the pseudo-rapidity which pre-
serves relative distance under longitudinal boosts. This
kinematic information can then be compared to the ex-
pected distributions from a given theory model, which are
typically done at the parton level (see the right side of
Figure 1). Therefore, one would like to match the parti-
cles observed in the detector to the fundamental (parton-
level) particles in the SM:

• For non-hadronic particles which are stable on the
detector scale (electrons, muons, and photons), this
correspondence is direct.

• The neutrinos, on the other hand, are invisible and
not reconstructed individually. Nevertheless, the
sum of their momenta can be inferred from the im-
balance between the four-momentum of the initial
and final state in the event (see Section VI B).

• The case of hadronic particles is much more compli-
cated, due to confinement — the quarks and gluons
at the parton level appear as collections of hadrons
(“jets”), which necessitates jet reconstruction al-
gorithms to recover the parton level information.
The situation is even more complicated due to the
presence of initial and final state radiation, which
results in additional jets which further muddle up
the picture. In a typical jet reconstruction algo-
rithm, particles are grouped based on their rela-
tive distance in some suitably chosen metric, e.g.,

∆R =
√

∆η2 + ∆ϕ2 in the (η, ϕ) space, where ∆η
and ∆ϕ are the differences in the pseudo-rapidities
and the azimuthal angles of the two objects, respec-
tively.

• The heavy particles in the SM (W , Z, Higgs,
and top) are then reconstructed probabilistically by
grouping their decay products as illustrated in Fig-
ure 3 and demanding that the invariant mass of the
respective collection of decay products is consistent
with the mass of the parent particle.

Additional variables which could be used to cut on (se-
lect events) are the number of reconstructed objects from
each type: Nj/Nb/N`/Ne/Nµ/Nτ/Nγ .

In a traditional cut-and-count analysis, one would i)
narrow down the number of variables to consider (di-
mensionality reduction); ii) place cuts on them to define
a signal region, and iii) perform a counting experiment
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in the signal region. This dimensionality reduction, how-
ever, necessarily leads to some information loss. The goal
of the experimenter is to utilize kinematic variables which
minimize the information loss. In practice, the follow-
ing two approaches (or a combination thereof) have been
used:

• Make direct use of some of the simple kinematic
variables described above, e.g., pT , pseudo-rapidity,
∆R, invariant mass of a collection of particles,
number of reconstructed objects of a given type,
etc. One could even imagine using the full kine-
matic information from the event as an input to
a Machine Learning (ML) algorithm like a Neural
Network (NN) classifier (see Section XI).

• Perform the dimensionality reduction in a more op-
timal way, by forming suitable high-level kinematic
variables, which are functions of the simple observ-
ables, and retain as much of the relevant informa-
tion as possible. The main purpose of the present
article is to review precisely these types of observ-
ables.

The interplay between those two approaches illustrates
the tension between optimality and generalizability. The
simple kinematic variables are robust and universally ap-
plicable (model-independent), but are not as sensitive.
The high-level variables bring about higher sensitivity
and physics performance, but are not easily generaliz-
able to other signal processes. With either of the two
approaches, one must connect the kinematic measure-
ments to the parton-level kinematics. This “unfolding”
needs to overcome the two classes of challenges discussed
in the next two subsections.

B. Experimental uncertainties

Realistic measurements of kinematic variables are af-
fected by various experimental uncertainties. First and
foremost, the low-level measurements are subject to in-
trinsic uncertainties, e.g., missing tracker hits, calorime-
ter activity below the detectable threshold, and instru-
mental noise, etc. In addition, when high-level objects
are reconstructed (e.g., a jet of particles), the measure-
ments are further affected by uncertainties arising from
the definition of the high-level object.

The energy resolution ∆E of a calorimeter is typically
parametrized by a noise (N), a stochastic (S), and a
constant (C) terms

∆E

E
=

√(
N

E

)2

+

(
S√
E

)2

+ C2 , (9)

where the constants N , S, and C are specific to a given
experiment and calorimeter type [4, 35]. The momentum

resolution ∆pT based on a curvature measurement can be
generically expressed as [4, 35]

∆pT
pT

= a pT ⊕ b , (10)

where a and b are resolution parameters specific to the
detector of interest.

The experimental environment brings additional chal-
lenges in the measurements of kinematic quantities. For
example, when the average number of interactions per
bunch crossing significantly exceeds 1, a number of soft
(minimum bias) events accompany the hard scattering
event, confusing its interpretation and biasing the kine-
matic measurements. Such pileup effects may be mit-
igated by installing new precision timing detectors [36]
or by analysis techniques using substructure [37–40] or
machine learning [41, 42].

These effects can be controlled and improved by ex-
ploiting the data itself. Extensive review of the progress
in understanding the experimental systematics is beyond
the scope of this review. For our purposes, the effect of
the detector resolution is to smear the sharp kinematic
features which are expected in the ideal case with per-
fect resolution. For example, the extraction of kinematic
endpoints will have to be done by modelling the shape
of the distribution in the vicinity of the endpoint, tak-
ing into account the detector resolution. This highlights
the importance of designing the right kinematic variables
which are as robust as possible to all these experimental
effects.

C. Theoretical uncertainties

Establishing the usefulness of a kinematic variable,
e.g., in measuring a parameter of the fundamental La-
grangian, requires extensive calculations of i) the theo-
retical predictions for the observable under study; ii) the
sensitivity of the designed kinematic variable to the quan-
tity that we want to extract; iii) a number of auxiliary
quantities that need to be controlled in experiments. It
is crucial to control all the details, and especially approx-
imations, which characterize these theoretical computa-
tions.

Higher orders in perturbation theory. The vast ma-
jority of calculations, especially automated ones, are done
at a fixed-order in perturbation theory. The first cate-
gory of uncertainties arises due to missing next-to-leading
order (NLO) contributions. Corrections of this sort can
arise from QCD or electroweak interactions or both. The
impact of missing higher orders is typically evaluated by
variations of scales and other possible unphysical param-
eters that are introduced just for computational purposes
and should have zero impact for an all-order calculation.

Fragmentation and hadronization modelling. The-
oretical computations in the perturbation theory are
done at the parton level and describe processes limited
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to a small total number of particles. Often this num-
ber is completely fixed, or it can be fuzzily defined if the
calculation is carried out beyond the leading order (LO)
in the perturbation theory and virtual and real correc-
tions are included. The hadronization of colored partons
is described by phenomenological models, which intro-
duce another category of theoretical uncertainties. They
can be estimated by i) comparing the results from dif-
ferent event generators, ii) varying the underlying model
parameters within acceptable ranges, etc.

Parton distribution functions. At hadron colliders,
parton-level calculations need to be convoluted with the
parton distribution functions (PDFs) which contain a lot
of uncertain parameters. In order to propagate the PDF
uncertainty to some kinematic variable, the latter must
be evaluated for each member of the PDF set [43].

Narrow-width approximation. Another commonly
used approximation relies on the fact that in the limit of
a narrow particle width, the Breit-Wigner distribution
approaches a Dirac δ function. This narrow-width ap-
proximation simplifies the treatment of multi-particle fi-
nal states by iteratively factorizing the computation into
the production of parent particles and their subsequent
decay. In this approximation the parent particles are ex-
actly on their mass shell and their quantum numbers,
including polarization, are in well defined quantum me-
chanical pure states. In reality, due to the unstable na-
ture of the parent particles, their momenta should be
smeared over a region close to their mass shell and fur-
thermore, their polarization should be treated as a den-
sity matrix with fully quantum mechanical interference
properly taken into account. Depending on the kinematic
variable under consideration, the offshellness or polariza-
tion effects may play important roles.

Finite Monte Carlo statistics. Yet another source of
theoretical uncertainty is due to the finiteness of the sim-
ulated Monte Carlo (MC) samples for the relevant theory
models under consideration. It is important to keep this
MC-statistical uncertainty under control, so that it does
not bottleneck the overall sensitivity of the experiment.
Fortunately, the MC-statistical uncertainty can be made
arbitrarily small by increasing the simulation statistics.
However, there are often limitations on the amount of
computational resources available, which in turn limits
the number of events that can be produced. In this con-
text, keeping in mind the increased computational de-
mands at future colliders, it is important to i) speed
up the MC production pipelines and ii) achieve a bet-
ter bang for the buck in terms of sensitivity reached per
event simulated. The latter can be accomplished by pref-
erentially producing events with high utility to the exper-
iment (with appropriate biasing techniques) [44, 45].

V. REAL WORLD EXAMPLES: TOP AND W
PHYSICS

In this section we shall review the historical develop-
ments with pointers to the subsequent sections where the
kinematic variables are introduced and explained in more
detail.

Given the above described uncertainties from experi-
ment and from theory, the design of suitable kinematic
variables is a key part of the extraction of useful infor-
mation out of experiments. Kinematic variables need
to be designed taking into account the specific goals of
each experiment with the aim to exploit the strengths
and to minimize the weaknesses of the data obtained in
experiments. A representative situation may be find in
measurements of SM properties concerning the top quark
and the W boson. These SM particles are relatively well
known and it is well established that they decay in several
possible decay modes. Some of these include hadronic
jets and enjoy the largest rate, but also suffer larger ex-
perimental uncertainties due to mismeasurement of jet
properties. Alternative modes not containing jets contain
well measurable charged leptons, but at the same time
are less copious. Decay modes with charged leptons also
bring along neutrinos, which cannot be measured in high
energy experiments at colliders and make complicated
any global reconstruction of the kinematics of a single
event. All these considerations must be weighed care-
fully in the design of a kinematic observables. The opti-
mal solution is typically “evolving with time”, as the ex-
periments accumulate more data and they acquire more
control on the instrumentation thanks to the gained ex-
perience.

It is remarkable to look for instance at the evolution of
the top quark mass measurement, which could be mea-
sured with very little data, one putative tt̄ event at Run
I Tevatron [46], using very heavily the properties of the
top quark predicted in the SM. Modern measurements
instead tend to rely as little as possible on theoretical in-
put, aiming at finding measurement that can withstand
heavy degree of “modeling uncertainty”. The difference
has to do with the accuracy sought in these measure-
ments. Early measurements aimed at extracting the most
information of the data and, given the relatively low pre-
cision of the measurement, could safely ignore a large
number of issues which are instead very important today
for precision measurement. Indeed, measurement from
LHC aim at uncertainties of the order of ΛQCD, where
a number of theoretical issue emerge most prominently.
Measurements that will be carried out at the HL-LHC
will face similar theoretical issues, but the detectors will
be improved compared to the current ones, hence differ-
ent kinematic variables will be the best suited for the
job.

The importance of theory aspects in modern measure-
ments about the W boson and the top quark make them
an ideal place to illustrate the design of kinematic vari-
ables. In addition, the top quark and W boson provide
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useful laboratories to test various ideas motivated by
beyond-the-Standard-Model (BSM) searches and possi-
ble measurements of new physics states. All the more
reasons for which we will use the top quark and the W
boson to illustrate many of the methods which we will
discuss.

Furthermore, as new physics has not been found at the
LHC so far, concrete experience has been accumulated
in Run1 and Run2 only about the measurement of SM
particles masses. In this context the measurement of the
masses of W boson and top quark masses have played
both the role of a playground for new ideas to be used
in future new physics measurements and a test-bench in
which sharpen our more traditional variables and better
understand the delicate theory aspects that enter in their
measurements.

Given the strong motivations for the precision mea-
surement of mt and mW a huge theoretical and experi-
mental effort has taken place in recent years to put these
measurements under control. In fact, current and future
accumulated data at the LHC in principle allows to ex-
tract these masses at a extraordinary precision level [47],
but we are currently unable to exploit this huge data
set because of systematic uncertainties in measurements
and theoretical uncertainties in the computations needed
to even define properly the observables used to extract
mt and mW . The target for these measurement is to
attain a measurement at the 10−3 level and, most im-
portantly, to obtain such level of accuracy through ob-
servables and kinematic quantities that are as robust as
possible to possible mismodeling of detector effects, not
sufficiently accurate theoretical calculations, and other
sources of systematic errors.

In the following we will briefly review the challenges
posed in the measurements of mt and mW . We will
also review the kinematical quantities proposed to ex-
tract these masses in a most reliable and precise way. In
Section V A we deal with mt [48–53], in Section V B we
deal with mW . A discussion on the mass of the Higgs
boson is deferred to a later Section X F, as the measure-
ment itself is rather straightforward in the 4 lepton and
two photon channels, but it requires some care in dealing
with interference effects specific to that case.

A. mt

The measurement of the top quark mass is the sub-
ject of several experimental works at the LHC and at the
TeVatron. Specialized reviews exist [66, 67], so we will
not try not to be comprehensive, but rather we want to
highlight the diversity of efforts put in place to attack
this difficult problem with several possible complemen-
tary strategies.

Methods used for tt̄ pair production at LHC or TeVa-
tron experiments are reported in Table I together with
the decay in which they are used.

The simplest idea, from a point of view of the kine-

Channel Kinematic variables References

``⊕ `j Lx,y [54–56]

eµ “basic” [48, 57, 58]

eµ mb,` [59]

- mJ/ψ` [60, 61]

`j sttj [62, 63]

eµ Eb [64, 65]

TABLE I. A summary of top quark mass measurements using
various kinematic variables.

matic variable used, is the measurement of the invariant
mass of all the decay products of the top quark. This
method is conceptually quite simple and lies at the heart
of the most precise results currently available. Still, it
suffers several effects that are particularly difficult to es-
timate and that we review in the following.

First of all for a full reconstruction of the top decay
products the most straightforwards channel would be
fully hadronic, so that all the hard decay products of the
top quark can be measured, or, in other words, there are
no invisible particles such as neutrinos stemming directly
from the decay and carrying away unknown amounts of
energy. The measurement of hadrons, unfortunately, is
quite imprecise. In fact hadrons are usually dealt with in
jets, which offer the possibility to relate the hadron-level
measurement to perturbative QCD calculations with few
particles. In these measurements one faces the difficulty
to track a large number of particles, some of which are not
even energetic enough to be recorded by the detectors. In
additions there is an inherent problem in the matching of
neutral and charged hadrons, that are measured by dif-
ferent sub-detectors. All in all, hadronic measurements
have serious problem to be very precise (see Ref. [68]
for a recent result) and the best measurements of the top
quark mass are presently obtained from the semi-leptonic
channel. In this channel it is possible to be somewhat less
sensitive to the imprecise measurement of jets, as one can
attempt to measure the invariant mass of the leptonically
decaying top quark. Here the challenge lies in indirectly
reconstructing the momentum of the neutrino from mo-
mentum conservation. For this reconstruction it is neces-
sary to use all the other measured particles in the event,
including hadronic jets, hence there is still a dependence
on the quality of the measurement of hadronic jets which
poses a challenge. Methods to ameliorate the knowledge
of jets in this measurement try to use the knowledge of
the W boson mass to put constraints on the jet recon-
struction [69, 70] as to obtain a measurement of the top
quark mass together with a dedicated calibration of the
jet energy.

In addition to these experimental issues, the defini-
tion of the top quark mass as the peak of an invariant
mass has proven to be difficult to interpret on theoreti-
cal grounds [71–74]. In fact the top quark, being colored,
cannot exist as a long-distance object. It has to turn
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into a color singlet object either forming hadrons of its
own flavor or thanks to the hadronization of its decay
products. The theoretical definition of a mass for the
top quark that can be used beyond the LO of perturba-
tion theory, a very necessary requirement when we aim
for 1 GeV or less uncertainty for this measurement, has
required quite a review of the whole strategy to measure
this quantity. Indeed the extraction of the top quark
mass from templates of theoretical predictions based on
detailed event simulation from fixed (often leading) or-
der approximations, possibly supplemented with leading
logarithm parton showers, is questioned when precisions
around 1 GeV are claimed. Efforts are in place to obtain
more precise theoretical template for this type of method,
see e.g [75–78]. In any case, being these calculations at
the edge of what is currently computable, there is much
need to validate any of the measurements that they will
enable.

For this validation it is key to find new independent
methods, which may suffer less the theory uncertainty
in the definition of the top quark mass itself, as well as
suffer different kind of experimental uncertainty. This
need has spurred a large activity in the proposal of new
mass measurements for the top quark mass.

One method proposed to measure the top quark mass
has to do with a strict inequality for the invariant mass
of a sub-system of the decay products, and in particular,
considering the bottom jet and the charged lepton from
the top decay one can exploit the relation

mb` ≤ mt . (11)

The measurement of the end-point, or the shape around
the end-point, of the bottom-lepton invariant mass distri-
bution has lead to new determinations of the top quark
mass [79], which probe the uncertainty due to jet en-
ergy measurements in a different way than other meth-
ods, as the jets involved are mostly b-jets. In addition
this method has a sensitivity to off-shell effects as the
relation eq.(11) assumes perfectly on-shell top quarks.
Therefore this method can be used as diagnostic for the
importance of off-shell effects in the measurement.

As leptons from the top quark decay are arising from a
color-singlet W boson, it has been proposed to use kine-
matic variables based solely on leptons to measure the
top quark mass [80]. The proposed kinematic variables,
e.g.,

m`+`− =
√

(p`+ + p`−)2 , (12)

the invariant mass of two leptons from the fully leptonic
top decay, being based on inclusive definitions top-like
events with leptons, have the merit to not require any top
quark explicit reconstruction, hence potentially freeing
the measurement from the burden of specifying “what is
a top quark”. This potentially alleviates the issues from
the definition of the top quark mass as it essentially treats
the top quark mass as a parameter of the Lagrangian,
i.e., a couplings, which impacts measurable kinematic

observables. Another important aspect of these inclusive
leptonic measurements has to do with QCD effects. In
fact the importance of QCD corrections and hadroniza-
tion physics in these leptonic observables is expected to
be reduced as they only feel jets physics from recoiling
against hadrons and other similar inevitable interrela-
tions from particles belonging to the same process. At
the same time, the leptons being daughter particles from
the W boson, do not directly feel the top quark mass.
This reduction of sensitivity to both the interesting pa-
rameters (the top quark mass) and the uncertainties that
plague other methods, require a quantitative evaluation
of the concrete merit of these observables. Concrete stud-
ies [80] revealed that a detailed theoretical description of
the hard-scattering and of the parton shower is needed
to obtain reliable measurement at the GeV uncertainty
scale.

Based on purely leptonic measurements it as been pro-
posed to correlate the top quark mass to a suitably de-
fined integral of the energy distribution of leptons [81].
The quantity of interest is an integral of the energy dis-
tribution times a special weight function w, which is de-
rived from kinematic properties of the top quark decay
in perturbation theory

I(m) =

∫
dE`

dΓ(m)

dE`
w(E`) , (13)

such that when the integral is computed for the value m̂
realized in data one expects I(m = m̂) = 0.

The idea of using only leptons to construct an ob-
servable sensitive to the top quark mass has also been
explored in the context of pairs of leptons arising from
the same top quark, e.g., one from the leptonic decay of
the W boson and the muon originating from the semi-
leptonic decay of the b-quark-initiated hadrons. This
type of measurement [52, 82] is called “soft-leptons” as
it uses a (non-prompt, soft) muon from B-hadron decays
that appear in the top decay, which are softer than those
from W boson decays. The computation of templates for

m`µ =

√
(p` + pµ)

2
(14)

relies on the hadronic physics of B hadrons and their
semi-leptonic decays, thus this method is important as it
exposes hadronization effects. Variations of this idea are
considered: for example, it has been proposed to use

m3` =

√(∑
p`

)2

(15)

formed by three leptons from the same top quark, follow-
ing an early proposal to use rare B → J/ψ + X decays,
which can be tagged [83] in clean leptonic modes of the
J/ψ.

Kinematic variables have been studied [84] with the
goal of testing our understanding of hadronization in
top quark events, as to aid sharpening results from the
method of soft-leptons mentioned in the previous para-
graph, as well as other methods based on hadrons, which
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we will discuss below. The exploration of Ref. [84] reveal
that a thorough understanding of QCD up to minute ef-
fects in the description of radiation and hadronization is
in general necessary to warrant sub-GeV precision in the
top quark mass extraction. Keeping in mind this am-
bitious goal for hadron-based measurements, traditional
variables are considered in experiments to calibrate the
tiny but relevant QCD effects that one faces at sub-GeV
precision, see e.g., [85–87]. In additions, new kinematic
variables have been proposed in Ref. [84] to provide a
calibration on data of these minute QCD effects and put
these effects under control using data.

A top quark mass measurement has also been proposed
using only the measured energy of b quarks (see also Sec-
tion VIII A). This method is purely based on the energy
spectrum of the b-jet. Similarly to some of the proposals
based on leptons, this method does not require any defini-
tion of reconstructed top quark. In addition, the position
of the peak of the distribution is predicted to be insen-
sitive to the production mechanism of the top quarks as
long as the sample of measured b jets arises from an equal
mixture of left-handed and right-handed top quarks (i.e.,
unpolarized) [88]. The observable is simple enough that
it can reliably be computed in perturbation theory, so
far up to NLO in QCD both at the jet level and at the
hadronic level [89]. Uncertainties from jet energy mea-
surements and hadronization uncertainties are the most
important ones in application of this method at the jet
level and hadron level method, respectively.

As there is a certain abundance of methods based on
jets or hadron energies, alternative methods have been
proposed, as they may help to get a truly independent
determination of the top quark mass. One proposal
that goes away from energetics has been put forward in
Ref. [90]. The idea is to measure B hadron flight lengths
in the detector, relying on the fact that the hadron de-
cay is controlled by its proper lifetime and its boost, the
latter being larger when the the B arises as a decay prod-
uct of a heavier particle. From the experimental point of
view this method has the advantage to use length mea-
surements, that are very precise, thanks to tracking, and
not at all affected by jet energetics, nor the definition of
jets. So far this method has been implemented in exper-
iments only measuring the transverse decay length Lxy
flown in the plane orthogonal to the beam axis

Lxy =
√
L2
x + L2

y . (16)

The measurement [56] has proven to be quite sensitive to
hadronization effects, which is expected as the nature of
the B hadrons impacts the measurement via their proper
lifetime and boost. A large sensitivity to the top quark
production mechanism has also been remarked in this
measurement. This is in part expected as a production
mechanism characterized by larger top quark boost can
mimic larger boost of the B hadron, as the length flown
by the B hadron is sensitive to the top quark total energy,
without distinction if it is from mass or from momen-

tum. Nevertheless, reduced dependence of the produc-
tion mechanism can be gained by a study more focused
on properties that are stable upon changes of the pro-
duction mechanism, e.g., the peak of the B hadron boost
distribution [91] that is in a one-to-one relation with the
b energy peak discussed above.

Other mass measurement methods have to do with
threshold effects, which manage to exploit basic kine-
matic inequalities in the context of pp collisions in which
some quantities are not readily accessible or controllable.
One key observation is that the production rate of mas-
sive particle is very sensitive to the energy that one has
at disposal to form these particles, e.g., the formation of
a pair of massive particles is very suppressed when the
available center-of-mass energy is below twice the mass
of the particle. The rate quickly rises once the center
of mass energy that goes in the process to produce the
pair of particles passes the threshold of twice the mass of
heavy particle, and then for much larger center of mass
energy compared to the heavy particle mass the cross-
section follows usual geometrical scaling. With this idea
in mind it has been proposed to study ttj events at the
LHC and to use the hardness of the top to control the
total invariant mass that enters the actual partonic pro-
cess giving rise to gg → tt̄j or qq̄ → tt̄j. Exploiting the
dependence of the rate on the hardness of the jet, or us-
ing a more comprehensive measure of the partonic center
of mass energy, such as

√
stt̄j =

√
(pt + pt̄ + pj)2 , (17)

in Ref. [62, 63] a method has been proposed using tem-
plates computed in at NLO in perturbation theory, in-
cluding matching to parton shower. This method, as
other that do not require to reconstruct an object called
“top quark” we saw above, lends itself to an interpreta-
tion of the measurement as the dependence of a suitable
observables on a Lagrangian parameter, hence it is con-
sidered to give theoretically cleaner results compared to
invariant mass peak we saw at the beginning of this sec-
tion.

Related to the threshold of tt̄ production a proposal
has been put forwards to identify the top quark mass
from bound state effects in the diphoton mass spec-
trum [92]. This approach would benefit of a clean defi-
nition of the top quark mass definition in QFT relevant
for this phenomenon.

The need for the evaluation of theoretical uncertain-
ties and precision control of detector effects is even more
marked in the context of measurements to be carried out
at future colliders. That is the case, for instance, of the
measurement of the top quark using the dependence of
the production cross-section on the center of mass en-
ergy [93–96], i.e., a fit of the measurements with precise
theory predictions upon variations of mt and other rele-
vant quantities (e.g., Γt and mt as shown in Figure 4).
In this context is it is of utmost importance to compute
rates taking into account [97–103] bound state dynamics,
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Figure 9: Illustration of a top-quark threshold scan at CLIC with a total integrated luminosity of
100 fb�1, for two scenarios for the luminosity spectrum, nominal (left) and LowCharge (right).
The bands around the central cross section curve show the dependence of the cross section on the
top-quark mass and width, illustrating the sensitivity of the threshold scan. The error bars on the
simulated data points show the statistical uncertainties of the cross section measurement, taking
into account signal efficiencies and background levels.

The analysis is based on the study discussed in detail in [27], which uses signal and background
reconstruction efficiencies slightly above threshold, obtained from full detector simulations for the
CLIC_ILD detector concept. The emphasis of the event selection is on maximising the signal
significance and it considers both fully-hadronic as well as semi-leptonic events, the latter exclud-
ing t final states. The selection proceeds through the identification of isolated charged leptons, jet
clustering into either six or four exclusive jets, flavour-tagging, and pairing of W boson candidates
and b-jets into the two top-quark candidates via a kinematic fit. The constraints imposed by the
kinematic fit already result in a substantial rejection of background. The kinematic fit is followed
by an additional background rejection cut making use of a binned likelihood function combining
flavour tagging information event shape and kinematic variables. After this selection, a highly
pure sample of top-quark pair events is available for the measurement of the cross section. An
overall signal selection efficiency of 70.2%, including the relevant branching fractions, is achieved,
whereas the dominant background channels are rejected at the 99.8% level, resulting in an effective
cross section of 73 fb for the remaining background.

The analysis is combined with higher order theory calculations of the signal process. Here, the
latest NNNLO QCD calculations, available in the program QQbar_threshold [22], are used.
The theory cross section is corrected for ISR and the luminosity spectrum of the collider using the
techniques described in [27]. This corrected cross section is then use to generate pseudo data and
the templates needed to fit the simulated data points to extract the top quark mass.

For the threshold scan, a baseline scenario of ten equidistant points is assumed, with 10 fb per point
and a point-to-point spacing of 1 GeV, in the energy range from 2mPS

t � 3GeV to 2mPS
t + 6GeV.

Such a threshold scan is shown in Figure 9, for two luminosity spectrum scenarios discussed below.

– 19 –

FIG. 4. Top quark mass from high precision rate calculation
at e+e− collider [108].

References

pT,` [109]

mT [110]

derivatives of the energy distribution [111]

singularity variables [112]

TABLE II. Summary of methods proposed for the measure-
ment of the W boson mass.

off-shell effects, non-relativistic corrections, electroweak
effects, soft corrections that may need resummation, and
transfer factors that account for what fraction of the to-
tal cross-section end up in the detector acceptance [104–
106]. Especially for the matching between the measured
fiducial cross-sections and the theoretically cleaner total
ones, it will be key to exploit suitably defined kinematic
variables that can serve as diagnostic of the theoretical
computations. Furthermore, methods (e.g. [107]) appli-
cable at center of mass energies slightly larger than the
threshold (if attainable by the machine that will perform
the threshold scan), will be of key importance to validate
the very precise measurement from the threshold scan.

B. mW

The measurement of the W boson mass is a simple
example to showcase the importance of employing smart
kinematic variables. This measurement is also a good
example of the role of theory in performing precise mea-
surements and scrutinizing possible sources of uncertain-
ties. This measurement has been performed so far at
e+e− colliders [113] and hadron colliders [109, 114–116].
Future prospects for LHC and circular e+e− colliders are

discussed in [117, 118]. As the W boson mass is one of
the possible input parameters to define the SM, this mea-
surement has foundational importance for precision tests
of the SM.

The target is to reach a total uncertainty of order 10
MeV, that is about 10−4 relative accuracy, which would
allow to obtain a comparable precision to that of the
indirect determination of mW from the SM electroweak
fit [119]. Given this ambitious target a great part of the
discussion on how to measure this mass has to do with the
reduction and modeling of both experimental and theo-
retical uncertainties. Kinematic variables have played an
important role in devising measurements robust to these
uncertainties and will continue to provide useful insights
to steer the effort towards a precision measurement of the
W boson mass. A summary of the techniques available
for this measurement is presented in Table II.

Presently employed methods use the spectrum of
transverse momentum of the charged leptons (see e.g.,
[109]) and the transverse mass [110] in W leptonic decays.
Already considering these two quite simple variables it is
possible to see how the evolving performances of the ex-
periments and the depth of the theoretical interpretation
of the measurement forces a continuous evolution of the
kinematic variables best suited for the job. Indeed the
transverse mass is an early example of kinematic vari-
able, which has played a very important role in early
determinations of mW thanks to its robustness against
PDF uncertainties at hadron colliders. In recent years,
as the precision target has shifted toward ever smaller un-
certainties, the transverse mass hit a bottleneck arising
from the necessity of using missing transverse momen-
tum, hence in modern measurements of mW it needs to
be complemented by other observables.

At first sight one might think that in a simple process
such as pp → W → `ν there is very limited choice for
observables alternative to mT , hence the job of designing
new kinematic variables might be deemed trivial by a too
lighthearted judgment. On the contrary quite a number
of alternative approaches have been proposed, starting
from strategies on how to combine the simplest pieces of
information from mT and lepton pT distributions, for ex-
ample, by using the combined information from these two
variables the latest measurements (e.g. [109]). Putting
aside for a moment the great improvement on the deter-
mination of the proton PDF, the combination of these
two methods has been greatly beneficial. In fact the the
bottleneck of mT due to invisible moments involved can
be surpassed thanks to the extra sensitivity to mW from
pT and the PDF sensitivity of pT distributions can be
tamed looking at more stable mT features.

In addition to targeted kinematic variables design, a
great amount of further theory inputs ameliorated the
robustness of this mass measurement in recent years. In
fact, at the precision we aim to carry out the mass mea-
surement, we need to keep under excellent control not
only the effect of PDF uncertainties but also their related
correlations [120–123], as well as high-order QCD and
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EW corrections (see e.g., [124] and references therein)
which can bias the measurement.

Beyond the simple variables pT and mT other ideas
have been explored in the literature. The utility of sin-
gularity conditions and singularity variables has been ex-
plored e.g., in Refs. [112, 125]. The underlying idea is
to formulate a kinematic variable that maximizes the
amount of information on mW that can be extracted
from events at hadron colliders and that helps to focus
the information in particular regions of the phase-space
of visible particles. In this approach a certain amount of
knowledge of partially unknown longitudinal momenta is
still necessary. Therefore PDF are still a necessary in-
put. Still, the concentration of the information on mW

in special features of the distributions, such as singular
points, can help to test the measurement carried out with
the standard methods. We are not aware of experimental
studies using these type of variables nor of theory stud-
ies seeking to quantify their robustness beyond the LO
picture on which the variables are built.

A different approach has been proposed focusing on
just the observable momentum of the charged lepton. Us-
ing the fact that at LO in perturbation theory the decay
of a spin-1 into a pair of spin-half particles can contain
only few spherical harmonics, Ref. [126] has proposed to
use the energy distribution of the leptons from the W bo-
son decay in way similar to Ref. [88, 89]. For the specific
case of the decay of a spin-1 into a pair of spin-half parti-
cles Ref. [126] has identified possible features in the first
and second derivative of the energy distribution, which
can provide further information on the mass of the W
boson, including in cases in which the peak of the energy
distribution does not strictly speaking enjoy the proper-
ties exploited in Ref. [88].

All in all there is a variety of methods that can be
exploited to measure mW at hadron colliders thanks to
careful design of kinematic variables. These methods
leverage different strengths of the measurement and try
to minimize the exposure to the theoretical and exper-
imental weaknesses in different ways. The combination
of the information that can be attained by this variety
of methods will help up gain confidence in the results of
such a challenging measurement.

VI. INCLUSIVE EVENT VARIABLES

In this section we shall focus on inclusive kinematic
variables. They are robust and model-independent since
one does not make any assumptions about the underly-
ing event topology. The downside is that they are not
as sensitive to specific signals as their exclusive cousins
discussed later in Sections VII-IX, which are intention-
ally designed to look for such signals. Nevertheless, due
to their simplicity, inclusive variables have proven to be
valuable and have found wide usage at both the trigger
and the analysis level.

Inclusive event variables are applicable to a generic
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χnχ+2

χnχ+1

p(p̄)
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E,Px, Py, Pz

!"PT

Figure 1: The generic event topology under consideration in this paper. Black (red) lines correspond

to SM (BSM) particles. The solid lines denote SM particles Xi, i = 1, 2, . . . , nvis, which are visible

in the detector, e.g. jets, electrons, muons and photons. The SM particles may originate either from

initial state radiation (ISR), or from the hard scattering and subsequent cascade decays (indicated

with the green-shaded ellipse). The dashed lines denote neutral stable particles χi, i = 1, 2, . . . , ninv,

which are invisible in the detector. In general, the set of invisible particles consists of some number

nχ of BSM particles (indicated with the red dashed lines), as well as some number nν = ninv − nχ of

SM neutrinos (denoted with the black dashed lines). The identities and the masses mi of the BSM

invisible particles χi, (i = 1, 2, . . . , nχ) do not necessarily have to be all the same, i.e. we allow for

the simultaneous production of several different species of dark matter particles. The global event

variables describing the visible particles are: the total energy E, the transverse components Px and

Py and the longitudinal component Pz of the total visible momentum "P . The only experimentally

available information regarding the invisible particles is the missing transverse momentum !"PT .

particles in the event, or their identity, e.g. are they SM neutrinos, new BSM dark matter

particles, or some combination of both? These difficulties are illustrated in Fig. 1, where we

show the generic topology of the missing energy events that we are considering in this paper.

As can be seen from the figure, we are imagining a completely general setup – each event

will contain a certain number nvis of Standard Model (SM) particles Xi, i = 1, 2, . . . , nvis,

which are visible in the detector, i.e. their energies and momenta are in principle measured.

Examples of such visible SM particles are the basic reconstructed objects, e.g. jets, photons,

electrons and muons. The visible particles Xi are denoted in Fig. 1 with solid black lines

– 2 –

FIG. 5. The generic event topology illustrating the use of in-
clusive event variables from Section VI. Taken from Ref. [127].

event topology shown in Figure 5. Unlike the case in
Figure 3, here we make no assumptions about the under-
lying process, hence there is no partitioning of the final
state particles other than dividing them into visible (solid
lines) and invisible (dashed lines). Black solid lines cor-
respond to SM particles which are visible in the detector,
e.g. jets, electrons, muons and photons. The SM parti-
cles may originate either from initial state radiation, or
from the hard scattering and subsequent cascade decays
(indicated with the green-shaded ellipse). Dashed lines
denote neutral stable particles which are invisible in the
detector. In general, the set of invisible particles consists
of some number of SM neutrinos (denoted with the black
dashed lines), as well as some number of BSM particles
(indicated with the red dashed lines) which could be dark
matter candidates. The identities and the masses of the
BSM invisible particles do not necessarily have to be all
the same, allowing for the simultaneous production of
several different species of dark matter particles. A few
global event variables describing the visible particles are:
the total energy E, the transverse components Px and
Py and the longitudinal component Pz of the total visi-
ble momentum ~p. The only experimentally available in-
formation regarding the invisible particles is the missing
transverse momentum /~pT .

A. Event-shape-type variables

In this section we review some classic event shape vari-
ables summarized in Table III. Other modern approaches
involving jet substructure variables will be reviewed in a
sister white paper submitted to Snowmass. The basic
idea of the event shape variables is to give more informa-
tion than just the cross section by defining the “shape” of
an event (pencil-like, planar, spherical etc.) [128]. Event
shape variables describe the patterns and correlations of
energy flow resulting from the particle collisions.

A very common observable is the thrust, which is de-
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Observable Definition
Typical values for

References
Pen. Copl. Iso.

Sphericity
S = 3

2
(λ2 + λ3), λi(λ1 ≥ λ2 ≥ λ3),

0 ≤ 3
4
≤ 1 [129]

eigenvalues of Mij =
∑nj
a=1 pa,ipa,j∑nj
a=1 |~pa|2

with i, j ∈ {x, y, z}
Transverse sphericity ST = 2λ2

λ1+λ2
[129]

Aplanarity A = 3
2
λ3 0 0 ≤ 1

2
[129]

Planarity P = λ2 − λ3 [129]

(Transverse) spherocity S0 = π2

4
min
n̂

(∑
a |~pa,T×n̂|∑
a ~pa,T

)2

0 0 ≤ 1 [128]

Thrust T =max
n̂

(∑
a|~pa·n̂|∑
a|~pa|

)
1 ≥ 2

3
≥ 1

2
[130, 131]

Thrust major Tmajor = max
n̂ma⊥n̂T

(∑
a |~pa·n̂ma|∑
a |~pa|

)
0 ≤ 1

3
≤ 1√

2
[130, 131]

Thrust minor Tminor =
∑
a|~pa·n̂mi|∑
a|~pa|

with n̂mi = n̂T × n̂ma 0 0 ≤ 1
2

[130, 131]

Oblateness O = Tmajor − Tminor 0 ≤ 1
3

0

Normalized hemisphere mass
M2

1(2) = 1
E2

CM

(∑
a∈H1(2)

pa
)2

with H1(2) being

hemispheres divided by the plane normal to n̂T [128]

Heavy jet mass M2
H = max

(
M2

1 ,M
2
2

)
0 ≤ 1

3
≤ 1

2
[128]

Light jet mass M2
L = min

(
M2

1 ,M
2
2

)
[128]

Jet mass difference M2
D =

∣∣M2
1 −M2

2

∣∣ 0 ≤ 1
3

0 [128]

Jet broadening B1(2) =

∑
a∈H1(2)

|~pa×n̂T |
2
∑
b |~pb|2

[128]

Wide/narrow, total broadening BW/N = max /min(B1, B2), BT = BW +BN [128]

Fox-Wolfram moments H` =
∑
i,j

|~pi||~pj |
E2 P`(cos θij) [132]

N -jettiness τN = 2
Q2

∑
k min{qa · pk, qb · pk, q1 · pk, · · · , qN · pk} [133]

N -subjettiness τN = 1∑
k pT,kR0

∑
k pT,k min {∆R1k,∆R2k, · · · ,∆RNk} [134]

Energy-energy correlation EEC(χ) = 1
σ

dΣ
d cosχ

=
∑
i,j

∫ EiEj
Q2 δ(p̂i · p̂j − cosχ)dσ [135, 136]

TABLE III. A summary of event shape variables in their definition, typical values, and associated references. Inspired by
Fabio Maltoni’s lecture [137] given at the 2013 CERN - Latin-American School of High Energy Physics [138].

fined as

T = max
~n




∑
i

∣∣∣~pi · ~n
∣∣∣

∑
i

∣∣∣~pi
∣∣∣


 . (18)

Here the so-called thrust axis ~nT is defined in terms of
the unit vector ~n which maximises T . This definition im-
plies that for T = 1 the event is perfectly back-to-back,
while for T = 1/2 the event is spherically symmetric. The
unit vector which maximises the thrust in the plane per-
pendicular to ~nT is called the “thrust major” direction,
and the vector perpendicular to both the thrust and the
thrust major is called the thrust minor direction. The
thrust major and the thrust minor variables are defined
as

Tmajor = max
~nma⊥~nT




∑
i

∣∣∣~pi · ~nma

∣∣∣
∑
i

∣∣∣~pi
∣∣∣


 , (19)

Tminor =

∑
i

∣∣∣~pi · ~nmi

∣∣∣
∑
i

∣∣∣~pi
∣∣∣

, (20)

where ~nmi = ~nT × ~nma. The oblateness O is defined as
the difference between the thrust major and thrust mi-
nor, O = Tmajor − Tminor. Transverse thrust and its mi-
nor component are defined similarly but using transverse
momenta (~pT,i instead of ~pi) of particles in the events.

The sphericity (S), transverse sphericity (ST ), apla-
narity (A) and planarity (P ) provide additional global
information about the full momentum tensor, M , of the
event via its eigenvalues:

Mij =

nj∑
a=1

piapja

nj∑
a=1
|~pa|2

, (21)

where i, j are the spatial indices and the sum runs over all
particles (or in some applications, over the reconstructed
jets). The ordered eigenvalues λi (λ1 > λ2 > λ3) with the
normalization condition

∑
i λi = 1 define the sphericity,

transverse sphericity, aplanarity, and planarity as follows:

S =
3

2

(
λ2 + λ3

)
, (22)

ST =
2λ2

λ1 + λ2
, (23)
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A =
3

2
λ3 , (24)

P =
2

3

(
S − 2A

)
= λ2 − λ3 . (25)

The sphericity axis is defined along the direction of the
eigenvector of λ1 and the semi-major axis is along the
eigenvector for λ2. The sphericity and transverse spheric-
ity measure the total transverse momentum with respect
to the sphericity axis defined by the four-momenta in the
event. In other words, the sphericity of an event is a mea-
sure of how close the spread of energy in the event is to
a sphere in shape. The allowed range for S is 0 ≤ S ≤ 1.
The transverse sphericity is defined by the two largest
eigenvalues, and the allowed range is again 0 ≤ ST < 1.
Aplanarity measures the amount of transverse momen-
tum out of the plane formed by the two leading jets.
The allowed range for A is 0 ≤ A < 1/2. The planarity
is a linear combination of the second and third eigenvalue
of the quadratic momentum tensor.

A plane through the origin whose normal vector is the
thrust vector (~nT ) divides an event into two hemispheres,
H1 and H2. The corresponding normalized hemisphere
invariant masses are defined as

M2
i =

1

E2
CM

(∑

a∈Hi
pa

)2

, i = 1, 2 , (26)

where pa is the four-momentum of the a-th jet. The
larger of the two is called the heavy jet mass MH and
the smaller is called the light jet mass ML,

MH = max(M2
1 ,M

2
2 ) , (27)

ML = min(M2
1 ,M

2
2 ) . (28)

The difference between the two is called the jet mass
difference MD = MH −ML.

A measure of the broadening of particles in the trans-
verse momentum with respect to the thrust axis ~nT is
calculated as follows

Bi =

∑
a∈Hi

|~pa × ~nT |

2
∑
b

|~pb|2
i = 1, 2 , (29)

where b runs over all particles and a runs over particles
in one of the two hemispheres. The larger of the two
hemisphere broadenings is called the wide jet broaden-
ing [BW = max(B1, B2)], while the smaller is called the
narrow jet broadening [BN = min(B1, B2)]. The total
jet broadening is the sum of the two, BT = BW +BN .

The C-parameter

C = 3(λ1λ2 + λ2λ3 + λ3λ1) , (30)

is derived from the eigenvalues (λi) of the linearized mo-
mentum tensor Θij ,

Θij =
1∑
a |~pa|

∑

b

pibpjb
|~pb|

, i, j = 1, 2, 3 . (31)

Many of these shapes variables are used to analyze data
at both lepton colliders [139, 140] and hadron colliders
[141–145].

The Fox-Wolfram moments [132, 146] are defined as

H` =
∑

i,j

|~pi||~pj |
E2

total

P`(cos θij) , (32)

where θij is the opening angle between energy clusters i
and j, Etotal is the total energy of the clusters (in the
event center-of-mass frame), P`(x) is the Legendre poly-
nomial. For an event which has the structure of two
back-to-back jets in the center-of-mass frame, H0 = 0,
H` ≈ 1 for even `, and H` ≈ 0 for odd `. Often the ra-
tio between the Fox-Wolfram moments could be a useful
discriminating variable against backgrounds — see Refs.
[147–149] for application of the Fox-Wolfram moments in
Higgs physics and in jet-substructure.

The transverse spherocity [128] is defined as

S⊥ =
π2

4
min
~nT



∑
i

|~piT × ~nT |
∑
i

piT




2

, (33)

where the minimization is performed over all possible
unit transverse vectors ~nT = (nx, ny, 0) [not to be con-
fused with the thrust axis defined in (18)]. This variable
ranges from 0 for pencil-like events, to a maximum of 1
for circularly symmetric events.

The centrality

C =

∑ |~pvis,i|∑
Evis,i

(34)

is a measure of how much of the event is contained within
the central part of the detector.

The energy-energy correlation (EEC) function [135,
136] is defined as

EEC(χ) =
dΣ

d cosχ
=
∑

i,j

∫
EiEj
E2

total

δ(p̂i · p̂j − cosχ)dΦ ,

(35)
where i, j run over all final state particles, which have
four-momenta pµi = (Ei, ~pi) and pµj = (Ej , ~pj), Etotal is
the total energy of the system in the center-of-mass frame
and dΦ is the phase space measure [150]. The unit vec-
tors p̂i and p̂j point along the spatial components of pi
and pj , respectively. EEC measures the differential an-
gular distribution of particles that flow through two cells
in the calorimeter separated by an angle χ ∈ (0, π) and is
defined as an energy-weighted cross section correspond-
ing to the process of interest.

Another example of a simple shape variable is y23, a
measure of the third-jet pT relative to the sum of the
transverse momenta of the two leading jets in a multi-jet
event, which is defined as [151, 152]:

y23 =
p2
T,j3

(pT,j1 + pT,j2)2
, (36)
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where pT,j1 , pT,j2 and pT,j3 represent the leading, sub-
leading, and third-leading jet in the event, respectively.
The allowed range for y23 is 0 ≤ y23 < 1/4.

There are many other event shape variables not dis-
cussed in this review. We refer to Ref. [153] for new in-
sight in the energy correlation functions, Refs. [133, 134]
for N-jettiness, Refs. [154, 155] for event isotropy using
the energy mover’s distance (EMD) and Ref. [128] for
other interesting event shape variables.

B. Missing momentum

Missing energy (missing momentum) refer to the
amount of energy (momentum) that is not measured or
detected in a particle detector, but can be inferred from
the laws of energy-momentum conservation. In hadron
colliders, the initial momenta of the colliding partons
along the beam axis are unknown, so the missing energy
and the missing total momentum cannot be determined.
However, the total momentum of initial particles in the
plane orthogonal to the beam is zero, and therefore, any
net visible momentum in the transverse direction is in-
dicative of missing transverse momentum, /~pT .

Missing (transverse) momentum arises whenever the
final state includes particles that do not interact with
the electromagnetic or strong forces, and therefore es-
cape the detector. A typical example in the SM is neu-
trino production. More importantly, dark-matter candi-
dates in BSM models are also invisible in the detector,
making the /~pT signature a smoking gun for the existence
of non-gravitationally interacting dark matter. There-
fore, an extensive range of dark-matter searches have
been performed in collider experiments, centered around
the missing transverse momentum signature: for exam-
ple, /~pT plus mono-jet [156, 157], mono-photon [158, 159],
mono-Z/W [156, 160–163], and mono-higgs [164–166].

The missing transverse momentum, /~pT , of the hard
scattering interaction is defined as the negative vectorial
sum of the transverse momenta of the set of reconstructed
objects including hard and soft objects [167, 168]:

/~pT = −
∑

i∈hard objects

~pT,i −
∑

j∈soft objects

~pT,j , (37)

whose magnitude and angle on the transverse plane are
respectively defined as

/ET = Emiss
T = /pT =

√
/p

2
Tx

+ /p
2
Ty

(38)

ϕ = tan−1

(
/pTy

/pTx

)
. (39)

As indicated in (38), it has become a custom to refer
to the magnitude of the missing transverse momentum
as the “missing transverse energy”, or MET for short.
Here the hard objects consist of selected e±, µ±, and
accepted γ, τ±, and jets, while the soft objects are not
associated with any of the aforementioned hard objects

but identified as the unused tracks from the primary ver-
tex [168]. In order to reduce effects from pile-up, in AT-
LAS [168], these tracks are required to have pT > 0.4
GeV, |η| < 2.5 and transverse (longitudinal) impact pa-
rameter |d0| < 1.5 mm (|z0 sin θ| < 1.5 mm). The scalar
sum of all transverse visible momenta is defined as

HT =
∑

i∈hard objects

pT,i +
∑

j∈soft objects

pT,j . (40)

The quantities defined in Eqs. (37) through (40) are often
used to estimate the hardness of the hard scattering event
in the transverse plane, and thus provide a measure for
the event activity in physics analyses.

C. Variables sensitive to the overall energy scale

In the case of fully visible final states, the total invari-
ant mass in the event provides an estimate of the energy
scale

√
ŝ of the hard scattering, where ŝ is the parton-

level Mandelstam variable. However, if the final state in-
cludes invisible particles as in Figure 5, the task becomes
more challenging, which has motivated the introduction
of several inclusive variables for this purpose.

One class of such variables were originally explored in
the context of supersymmetry, where strong production
of gluinos and/or squarks results in a multijet plus /ET
signature. Several versions of an “effective scale” variable
Meff for that case have been used throughout the litera-
ture [21, 169]; they are closely related to (40) and differ
by i) the number of jets Nj included in the sum - typical
choices for Nj are either 4 or “all”, and ii) whether the
value of the /ET is added as well or not:

Meff(Nj , I)=

Nj∑

i

pT,i + I ∗ /ET , (41)

where I ∈ {0, 1} parametrizes the binary choice for in-
cluding the /ET or not. The main advantage of the ef-
fective mass variable (41), which led to its widespread
usage in the LHC community, is its simplicity. However,
it also has drawbacks — for example, it misses the poten-
tial dependence on the masses of any invisible particles.
Being empirically derived, it is not on a firm theoretical
footing, which explains the large number of different Meff

variants being used.
An alternative approach, advocated in Ref. [127], was

to enforce the missing energy constraint in Eq. (37) and
then utilize a minimum energy principle to fix the mo-
menta of the invisible particles and thus arrive at a more
precise estimate of

√
ŝ,

√
ŝmin(Minv)=

√
E2 − P 2

z +

√
/E

2
T +M2

inv, (42)

where E and Pz are the total visible energy and the total
longitudinal visible momentum in the event, respectively.
The hypothesized parameter Minv is the total mass of all
invisible particles in the event. By construction,

√
ŝmin is
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FIG. 6. Unit-normalized distributions of various inclusive
event variables (/ET , Meff , HT , M1,

√
ŝmin) for top quark pair

production (pp → tt̄ → bb̄`+`−νν̄). The yellow-shaded his-

togram shows the true
√
ŝ distribution in the sample. Taken

from Ref. [8].

the minimum possible center-of-mass energy (for a given
value of Minv) which is consistent with the measured val-
ues of the total energy E and the total visible momentum
~P and thus has a well-defined physical meaning. How-
ever, when applied to the full event,

√
ŝmin receives large

contributions from the intense QCD radiation in the for-
ward direction, which disrupt the connection to the un-
derlying new physics parameters [170]. This motivated

“subsystem” variants of
√
ŝmin where one focuses on the

central region, with measured total energy E(sub) < E
and total longitudinal momentum Pz(sub), away from the
dangers of the forward QCD radiation [171, 172]:

√
ŝ

(sub)

min (Minv) =

{(√
E2

(sub) − P 2
z(sub) (43)

+

√
/E

2
T +M2

inv

)2

− ~u2
T

} 1
2

,

where ~uT = ~PT − ~PT (sub) is the upstream transverse mo-
mentum due to QCD radiation and/or visible particle
decays outside the subsystem (see Figure 3). The smin

variables have been further extended including additional
constraints during the minimization [173] and such con-
strained smin variables have been applied to physics pro-
cesses like h→ ττ [174, 175]. A sample menagerie of in-
clusive event variables is shown in Figure 6 for the case of
dilepton top quark pair production (pp→ tt̄→ `+`−νν̄)
[8].

VII. EXCLUSIVE EVENT VARIABLES:
INVARIANT MASS

In the following three sections we discuss kinematic
variables that can be constructed and evaluated by pro-
cessing information restricted to/associated with a par-
ticular set of final-state visible particles in an event by
a suitable partitioning as illustrated in Figure 3. The
current section will be devoted to invariant mass vari-
ables, which can be reconstructed from collections of vis-

ible particles only (Section VII A) or from semi-invisible
collections of particles (Section VII B).

Mass variables have played a major role not only for
measuring the masses of new particles but for discover-
ing new physics in resonance-type searches. Techniques
utilizing mass variables received a major boost in the
LHC era, and have been actively and extensively in-
vestigated for LHC phenomenology. Examples range
from traditional (1+3)-dimensional invariant masses and
(1+2)-dimensional transverse masses to the stransverse
mass [28] and its variations, M2 [176], the razor [177],
∆4 [178], etc. In the following we discuss the main ideas
and mathematical understanding of these variables, their
collider implications, and typical applications.

A. Mass variables of collections of visible particles

In this subsection we review mass variables3 which do
not make use of the measured /ET . The standard example
is the invariant mass of a set of visible particles, Mvis,

M2
vis =

(∑

i

pi

)2

=

(∑

i

Ei

)2

−
(∑

i

~pi

)2

, (44)

where i runs over the visible particles of interest. Since it
is a Lorentz-invariant quantity by definition, its physical
implications can be understood consistently irrespective
of the frame in which one performs measurements or anal-
yses. This is why (44) is routinely being used in a wide
range of high energy experiments including accelerator-
based ones.

The simplest (but sufficiently nontrivial) application is
a heavy resonance, A1, decaying to a pair of visible par-
ticles a1 and a0, i.e., A1 → a1a0. The energy-momentum
conservation, i.e., pA1 = pa1 + pa0 , implies that the reso-
nance mass can be reconstructed from the four-momenta
of the visible decay products:

M2
A1

= p2
A1

= (Ea1
+ Ea0

)2 − (~pa1
+ ~pa0

)2 . (45)

Mathematically, the distribution of MA1 is δ-function-
like at the true mass mA1 of A1. However, the virtuality
of the unstable A1 forces events to spread and populate
the region around mA1 according to the Breit–Wigner
distribution in MA1 as follows

dN

dMA1

∝ 1

(M2
A1
−m2

A1
)2 +m2

A1
Γ2
A1

, (46)

where ΓA1
is identified as the decay width of A1. As a

consequence, the MA1
distribution allows for a simulta-

neous determination of mA1
and ΓA1

. Since most events

3 We remind the reader that in our convention the masses of in-
dividual particles are denoted with lowercase m, while any mass
of a collection of particles is denoted with a capital M , see Sec-
tion III.
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FIG. 7. (a) Two-step two-body cascade decay topology, (b)
Antler decay topology, (c) Three-step two-body cascade decay
topology.

lie within a few ΓA1
from mA1

, by restricting to a narrow
invariant mass window around mA1

, one can efficiently
isolate the resonance events from unwanted background
events. Due to this great background-rejection capabil-
ity, the invariant mass variable (44) has played a crucial
role in the discovery of many particles including the Z
gauge boson [179, 180], hadrons such as J/ψ [181, 182]
and Υ [183], and the SM higgs [184, 185].

Once some of the decay products are invisible in the de-
tector, the resonance feature is no longer available. Nev-
ertheless, the invariant mass of the remaining visible de-
cay products still provides useful information about the
underlying dynamics, and its features have been thor-
oughly investigated. To have a nontrivial invariant mass
variable, at least two visible final-state particles are re-
quired on top of the invisible particle(s). The most
renowned example is the leptonic decay of a top quark,
i.e., t→ bW, W → `ν`, giving rise to the invariant mass
mb` formed by the bottom quark and the lepton

mb` = (pb + p`)
2 . (47)

When it comes to models of BSM, there exist many such
processes in connection with dark-matter candidates, for
example, the decay of a supersymmetric lepton to a pair
of leptons and the lightest neutralino (an invisible dark-
matter candidate) via a heavier neutralino intermediary
state.

Let us work out the generic two-step two-body cascade
decay case, A2 → a2A1, A1 → a1a0, and assume that a2

and a1 are visible and massless while a0 is invisible [see
Figure 7(a)]. For simplicity, we further assume that all
particles are spinless or produced in an unpolarized fash-
ion, and focus on decay kinematics purely governed by
phase space. Since a1 and a2 were assumed to be mass-
less, the invariant mass squared M2

a2a1
is simply given

by

M2
a2a1

= 2Ea2Ea1 (1− cos θa2a1) , (48)

where θa2a1
is the angle between ~pa2

and ~pa1
.

Using Lorentz-invariance, one can evaluate this quan-
tity in a convenient frame. In the A1 rest frame, the
energies of a2 and a1, E∗a2

and E∗a1
are

E∗a2
=
m2
A2
−m2

A1

2mA1

, (49)

E∗a1
=
m2
A1
−m2

a0

2mA1

. (50)

Note that in this frame the distribution of cos θ∗a2a1
be-

comes flat. Then, using Eqs. (48-50), we can derive the
unit-normalized distribution of Ma2a1 , 1

Γ
dΓ

dMa2a1
, as fol-

lows:

1

Γ

dΓ

dMa2a1

=
Ma2a1

2E∗a2
E∗a1

Θ(Mmax
a2a1
−Ma2a1

)

=
2Ma2a1

Mmax
a2a1

Θ(Mmax
a2a1
−Ma2a1

) , (51)

where Mmax
a2a1

denotes the maximum value of Ma2a1
aris-

ing at cos θ∗a2a1
= −1, i.e., when a2 and a1 move in the

back-to-back direction. It is a function of the three input
mass parameters:

(
Mmax
a2a1

)2
= m2

A2
(1−R12)(1−R01), (52)

where we introduce a mass ratio symbol for purposes of
later convenience4

Rij ≡ m2
Ai/m

2
Aj . (53)

As suggested by Eq. (51), the Ma2a1 distribution in-
creases linearly and sharply falls off at the kinematic end-
point defined in Eq. (52). Therefore, the Ma2a1

invariant
mass variable can be used as a kinematic cut to define
the signal-rich region, and the measurement of the kine-
matic endpoint provides a relation among the three un-
derlying mass parameters. Numerous experimental and
phenomenological studies have adopted this variable for
various physics applications. Examples include the top
quark mass measurement [59], as well as new particle
searches and mass determinations in the context of su-
persymmetry, extra dimensions, and other BSM exotica.

The shape described in Eq. (51) is valid as far as A1

is either scalar or unpolarized and is produced on mass-
shell with a negligible particle width. A nontrivial matrix
element reshuffles and reweighs the relevant phase-space
density, resulting in a shape distortion while keeping the
endpoint unchanged. Indeed, many new physics models
conceive the same experimental signatures, potentially
along with the same decay topology [186]. It has been
realized that the shape analysis can be an important tool
to understand the underlying dynamics [33, 187–192].
Different spin correlations between the visible particles
result from different spin assignments of A2, A1, and
a0, giving rise to different shapes of the Ma2a1 distribu-
tions. For example, supersymmetric models and extra-
dimensional models often give rise to an identical set of
final-state visible particles under the same event topol-
ogy; the shape analysis allows to discriminate the under-
lying scenarios [33, 187–194]. A departure from Eq. (51)

4 Note that R01 ≡ m2
a0
/m2

A1
.
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may also arise even in the absence of non-trivial spin
correlations. It has been demonstrated that the non-
negligible particle width of the intermediary particle A1

encoded in its propagator can affect the shape, result-
ing in the extension of the Ma2a1

distribution beyond its
nominal endpoint in Eq. (52) [195]. The study of this
sort has been generalized in a more systematic manner
to the case where not only A1 but A2 and a0 also have
non-negligible particle widths [196]. Again the distribu-
tions are extended beyond the nominal endpoint, and,
depending on the underlying mass spectrum, this end-
point “violation” effect can be appreciable for Γ/m as low
as 1%, even in the presence of detector smearing [196].
In particular, this effect allows to test the nature of the
invisible a0, which is typically assumed to be a stable
dark-matter candidate. However, it is also possible that
it has a non-zero width due to its invisible decays to
lighter dark-sector states. Therefore, this kind of shape
analysis could discriminate between a true dark-matter
candidate or an unstable (invisibly-decaying) dark-sector
state [196].

The shape in Eq. (51) may differ from the expectation
if the underlying physics does not obey the assumed two-
step two-body cascade decay topology. For example, the
intermediary state A1 could be highly off-shell, or more
invisible particles could be involved in the process in ad-
dition to a0, or A2 may decay to a pair of A1’s, each
of which decays to a0 and a1 [i.e., the so-called “antler”
topology [34, 197, 198], A2 → A1A1 → a1a0a1a0 de-
picted in Figure 7(b)]. The Ma1a1

distribution resulting
from the antler event topology is given by

1

Γ

dΓ

dMa1a1

∝





2ηMa1a1
0 <

Ma1a1

Mmax
a1a1

< e−2η

Ma1a1
ln

Mmax
a1a1

Ma1a1
e−2η <

Ma1a1

Mmax
a1a1

< 1
,

(54)

where cosh η =
√
R12

2 and the endpoint Mmax
a1a1

is given by

(
Mmax
a1a1

)2
= m2

A1
e2η(1−R01)2. (55)

It is noteworthy that the distribution shows a derivative
discontinuity, i.e., cusp, at Ma1a1 = e−2ηMmax

a1a1
[34]. This

is a kinematic feature unaffected by the underlying dy-
namics; the cusp feature remains intact in the presence
of non-trivial spin correlations [198].

In general, different event topologies resulting in only
two visible particles a1 and a2 will give different Ma2a1

distributions, and the phase-space shape information al-
lows one to distinguish the underlying physics without
any prior assumptions on the process and its detailed dy-
namics [199]. As an application, one can infer the number
of invisible or dark-matter particles from the shape anal-
ysis and check whether or not the associated dark-matter
stabilization symmetry is a Z2 parity [200]. As another
application, it has been demonstrated that these various
Ma2a1

distributions can mimic resonance-induced distri-
butions with a broad width especially at earlier stages
of experiments, in the context of the 750 GeV diphoton
excess [201].

These considerations have been extended to other
event topologies resulting in a larger number of visible
particles, e.g., three-step cascade decays [23, 27, 200,
202–209] and ≥3-body invariant mass variables [23, 191,
204, 210]. Let us illustrate the three-step two-body cas-
cade decay case, A3 → a3A2, A2 → a2A1, A1 → a1a0,
and assume again that a3, a2 and a1 are visible and mass-
less, while a0 is invisible and potentially massive [see Fig-
ure 7(c)]. The shapes and endpoints of the Ma3a2

and
Ma2a1

invariant mass distributions follow Eqs. (51) and
(52) with mass parameters appropriately replaced. The
unit-normalized Ma3a1

distribution is [205]

1

Γ

dΓ

dMa3a1

=





2Ma3a1
lnR21

(Mmax
a3a1

)2(1−R12) 0 <
Ma3a1

Mmax
a3a1

<
√
R12

2Ma3a1
ln

(Mmax
a3a1

)2

M2
a3a1

(Mmax
a3a1

)2(1−R12)

√
R12 <

Ma3a1

Mmax
a3a1

< 1

,

(56)
where the endpoint Mmax

a3a1
is given by

(
Mmax
a3a1

)2
= m2

A3
(1−R23)(1−R01). (57)

Note that the distribution again features a cusp at
Ma3a1 = Mmax

a3a1

√
R12, as in the “antler” topology. The

existence of the cuspy structure can be utilized in a
model-independent fashion to distinguish Z3-stabilized
dark-matter models from Z2-stabilized dark-matter mod-
els [200], as it is unaffected by the underlying model de-
tails.

As discussed in Section II B, it is often rather diffi-
cult to uniquely identify a1, a2 and a3 on an event-per-
event basis. For example, (light) quarks and gluons are
never observed as isolated objects but as a clustering of
hadronic objects, and it is very difficult to tell them apart
on an individual case basis. For charged leptons, their
electric charges are identified, but the order of appear-
ance is not resolvable unless they come from the decay
of long-lived particles and timing is appropriately mea-
sured. Therefore, the two-body invariant mass variables
in the process accompanying ≥ 3 visible particles are
generally plagued by this combinatorial ambiguity.

The classic example from supersymmetry, which is of-
ten referred to as the “q`` chain”, is the decay of a su-
persymmetric quark q̃ to a quark, an opposite-sign lepton
pair, and a lightest neutralino χ̃0

1 through two interme-
diary states: a heavier neutralino χ̃0

2 and a supersym-

metric lepton ˜̀, i.e., q̃ → qχ̃0
2, χ̃

0
2 → `±n ˜̀∓, ˜̀∓ → `∓f χ̃

0
1.

Here `n(f) denotes the final-state lepton closer (further)
to the quark. Due to the combinatorial ambiguity asso-
ciated with the leptons, Mq`n and Mq`f are not experi-
mentally measurable quantities. One possible trial would
be to put them together into a single combined distribu-
tion Mq` ≡Mq`n ∪Mq`f [208]. The larger endpoint, i.e.,

max
(
Mmax
q`n

,Mmax
q`f

)
, is measurable, whereas the smaller

one may be buried in the middle of the Mq` distribu-
tion. Nevertheless, this approach may be advantageous
in the sense that the associated mass inversion formulas
have a two-fold rather than a three-fold ambiguity [208].
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On the other hand, the two ordered invariant masses,
M>
q` ≡ max

(
Mq`n ,Mq`f

)
and M<

q` ≡ min
(
Mq`n ,Mq`f

)
,

are experimentally measurable, and their respective end-
points can provide two independent mass relations de-
pending on the underlying particle mass hierarchy. These
ordered invariant masses have been extensively studied
in the context of the supersymmetric q`` chain [27, 202–
205, 207, 208], and in a seesaw scenario [211].

The idea of ordering the invariant masses was later gen-
eralized to the case where all visible particles in the final
state are completely indistinguishable [23]. For a chosen
fixed number of final state particles sampled from the
final state, all possible invariant mass combinations are
formed and then ranked, and the corresponding distribu-
tions are then inspected for the appearance of any upper
kinematic endpoints. This systematic approach allows to
access particular phase-space configurations through the
respective kinematic endpoints and thus obtain indepen-
dent mass relations which would be unavailable with the
standard unranked invariant mass combinations.

B. Mass variables of semi-invisible collections of
particles

In this section we discuss invariant mass-type variables
whose definition takes advantage of the knowledge of the
missing transverse momentum /~pT in the event. They usu-
ally target parent particles, whose decay products may
include invisible particles.

The first kinematic variable we introduce is the trans-
verse mass MT which is applicable to the case when a
parent particle of mass mP decays semi-invisibly to a
collection of visible daughter particles with total momen-
tum pµ = (Evis, ~pvis,T , pvis,z) plus an invisible daughter
particle with total momentum qµ = (Einv, ~pinv,T , qinv,z).
Two examples of such semi-invisible decays are shown in
Figures 7(a) and 7(c). The momentum of the decaying
parent particle is therefore pµ+qµ and the reconstructed
parent invariant mass MP is

M2
P =

(
p+ q

)2
= m2

vis +m2
inv (58)

+2
(
Evis,TEinv,T cosh(∆η)− ~pvis,T · ~qinv,T

)
,

where the invariant mass mvis of the visible sector is de-
fined by m2

vis = pµp
µ, the mass minv of the invisible

daughter is given by m2
inv = qµq

µ, and ∆η = ηvis − ηinv

is the pseudo-rapidity difference between pµ and qµ. The
corresponding transverse energies are given by

Evis,T =
√
m2

vis + ~p 2
vis,T , (59)

Einv,T =
√
m2

inv + ~p 2
inv,T . (60)

If both pµ and qµ were observable, a particle of mass
mP would appear as a resonance peak at MP = mP in
the invariant mass distribution dN/dMP [see Eq. (46)].
However, if the daughter particle with momentum q es-
capes the detector, one can only infer ~qinv,T from the
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FIG. S33: Distributions of mT for W boson decays to µν (left) and eν (right) final states in simulated (histogram)
and experimental (points) data. The simulated distribution is based on the true W -boson mass value that
maximizes the likelihood in data and includes backgrounds (shaded). The likelihood is computed using events
between the two arrows.

of EM and hadronic energies to the track momentum of the electron in the crack. The acceptance for this background
is validated with the CDF geant-based simulation. Following the same procedure as used to estimate the Z/γ∗ → µµ
background (Sec. IXA), we estimate the Z/γ∗ → ee background fraction to be (0.134 ± 0.003)%.

We model the W → τν background using our custom simulation, as with the W → µν channel, and find a
background fraction of (0.94 ± 0.01)%, which is consistent with the CDF geant-based prediction.

Multijet events are a source of background because hadronic jets can be misreconstructed as electrons. As described
in Ref. [43], the background fraction is determined by fitting the sum of signal and background templates to the
W → eν sample template. The template variables used are the track isolation, an NN-based electron discriminant,
and missing transverse energy. Comparing the results from these three fits, the multijet background fraction and its
systematic uncertainty is estimated to be (0.34 ± 0.08)%.

The custom simulation is used to obtain the distributions of the MW fit variables for the W and Z boson back-
grounds. Electron candidates in the W → eν data sample with non-electron-like NN discriminant values are used to
provide the hadronic jet background distributions. After including these background distributions in the MW fits, the
uncertainties on the background normalizations and shapes result in uncertainties of 2.6, 6.6, and 6.4 MeV on MW

from the mT , pe
T , and pνT fits, respectively (Table S7).

X. LIKELIHOOD FITS FOR THE W -BOSON MASS

The W boson mass is extracted by performing binned maximum-likelihood fits to a sum of background and simulated
signal templates of the mT , p"T , and pνT distributions, as described in Ref. [43]. Templates are generated in 0.2 MeV
steps in the boson mass and are normalized to the data in the fit range. The likelihood is a function of the pole
mass MW , defined by the relativistic Breit-Wigner mass distribution [43]. We use the standard model value, ΓW =
2 089.5±0.6 MeV [10], for the W boson width. Its uncertainty has a negligible impact on the measured value of MW .

A. Fit results

The mT fit is performed in the range 65 < mT < 90 GeV, while the p"T and pνT fits are both performed in the range
32 < pT < 48 GeV. Figures S33–S35 show the respective distributions in data with the best-fit simulation overlaid,
and Figs. S36–S38 show the differences between data and simulation divided by the statistical uncertainties on the
predictions. Table S8 lists the uncertainties in detail, and all results are summarized in Table I of the main text.

The best linear unbiased estimator is used to combine individual fit results [66]. Sources of systematic uncertainty
are taken to be independent of each other for a given fit. The statistical correlation between fits to the mT , p"T , and pνT
distributions was estimated from pseudoexperiments in Ref. [43]. The values of these combinations, their respective

FIG. 8. Distribution of MT for W boson to µνµ (left) and
eνe (right) final states for minv = 0. Simulation and data
points are shown as histogram and data points, respectively.
Taken from Ref. [214].

momentum conservation on the transverse plane as

~qinv,T = /~pT . (61)

The longitudinal component qinv,z remains unknown and
most of the discussion in the literature on kinematic vari-
ables has centered around the question how to deal with
such missing information not just in this simple example,
but in more general cases as well [3, 8].

One very general approach is to obtain a variable which
provides an event-wise lower bound on the parent mass
mP [8]. For this purpose, one considers all possible values
of the unknown invisible momentum components (in this
simple case qinv,z) and picks the smallest resulting value
of the reconstructed parent mass (58). By minimizing Eq.
(58) over qinv,z [or simply by noticing that cosh(∆η) ≥ 1]
one obtains the so-called transverse mass

M2
TP (~qinv,T ,minv) = m2

vis +m2
inv

+2
(
Evis,TEinv,T − ~pvis,T · ~qinv,T

)
, (62)

where ~qinv,T is given by (61). By construction (since the
minimization over qinv,z would inevitably include its true
value in the event), the transverse mass satisfies the in-
equality

MTP ≤ mP . (63)

The equality holds for events with ∆η = 0. The most
famous example for the use of the transverse mass is the
discovery of the W boson [212, 213]. A recent measure-
ment of the W mass done by the CDF Collaboration
(see Figure 8), which shows some tension with the SM
and with previous measurements, is also based on the
transverse mass [214], since MTP is less sensitive to the
modelling of the W -pT spectrum. The distributions in
Figure 8 exhibit an upper kinematic endpoint, which,
however, is smeared beyond the naive theoretical pre-
diction (63) due to the finite W width and the detector
resolution. We note that such use of the transverse mass
relies on the assumption that there is only one missing
particle in each event, so that (61) can be used to find its
transverse momentum ~qinv,T . Next we shall discuss the
case of multiple invisible particles in the same event.

A well-motivated class of new physics models which
generically predict a /ET signature, are models with dark-
matter candidates. In such models, the lifetime of the
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FIG. 9. Event topologies of pair-produced heavy resonances
each of which undergoes (a) a one-step two-body decay, (b)
a two-step two-body decay, and (c) a three-step two-body
decay.

dark-matter particle is typically protected by an exact
discrete symmetry, which implies that the collider signals
will involve not one, but two decay chains, each terminat-
ing in a dark-matter particle invisible in the detector. A
few simple examples of such event topologies are shown
in Figure 9.

Let us start with the simplest case of a single two-body
decay on each side of the event as in Figure 9(a) which
was the inspiration for inventing the famous Oxbridge
MT2 variable [28, 215]. Now we can form two transverse
parent masses: MTP1

(~q1T ,ma0
) for the first parent parti-

cle P1 = A1, which depends on the transverse momentum
~q1T and the mass ma0 of the invisible particle a0; and
MTP2(~q2T ,mb0) for the second parent particle P2 = B1,
which depends on the transverse momentum ~q2T and the
mass mb0 of the invisible particle b0. For simplicity, in
what follows we shall assume symmetric event topologies,
in which the parents A1 and B1, as well as the daughters
a0 and b0 are the same (this assumption can be easily
avoided, see Refs. [216, 217]). In that case, the kinemat-
ics is governed by a single parent mass mP = mA1

= mB1

and a single daughter mass m0 = ma0
= mb0 . If ~q1T and

~q2T were separately known, we would be assured that

max[MTP1(~q1T ,m0),MTP2(~q2T ,m0)] ≤ mP . (64)

However, ~q1T and ~q2T are not uniquely fixed by the /~pT
constraint, as they are related by

~q1T + ~q2T = /~pT , (65)

and the best we can do is to perform a minimization over
all possible partitions of the /~pT into ~q1T and ~q2T . This
naturally leads to the definition of the Oxbridge MT2

variable as [28, 215]

MT2(m̃) ≡ min
~q1T ,~q2T

{max [MTP1
(~q1T , m̃), MTP2

(~q2T , m̃)]} ,

/~pT = ~q1T + ~q2T , (66)

where the a priori unknown daughter mass m0 has been
replaced with a test mass parameter m̃. This construc-
tion guarantees on an event-by-event basis that

m0 ≤MT2(m̃ = m0) ≤ mP . (67)

This fact can be used by constructing the MT2 distribu-
tion, reading off its upper kinematic endpoint Mmax

T2 and

FIG. 10. Left: MT2 distribution for slepton production
pp → ˜̀̀̃ ∗ → `+`− + /~pT at the LHC, assuming the actual
value for the test mass m̃. Slepton and neutralino masses are
set to m˜̀ = 157.1 GeV and mχ̃0

1
= 121.5 GeV, respectively.

Right: Values of m˜̀ as a function of the test mass. Taken
from Ref. [28].

interpreting it as

Mmax
T2 (m̃ = m0) = mP . (68)

The MT2 concept can be readily applied to the more
complex event topologies in Figures 9(b) and 9(c), where
one has several choices of designating parent and daugh-
ter particles, leading to a menagerie of different “sub-
system” MT2 variables [218, 219]. In general, the min-
imization in Eq. (66) has to be done numerically (see
Table V). However, for certain special cases, analytical
solutions have been derived [18, 32, 215, 220–222]. For
example, when the minimization results in the case of
MTP1 = MTP2 , which is known as the balanced solution
MB
T2, the analytic expression for the symmetric MT2 vari-

able is given by [18, 32]
[
MB
T2(m̃)

]2
= m̃2 +AT (69)

+

√(
1 +

4m̃2

2AT −m2
1 −m2

2

)
(A2

T −m2
1 m

2
2) ,

where mi, ~piT , and EiT are respectively the mass, the
transverse momentum, and the transverse energy of the
visible particles in the ith decay chain (i = 1, 2) and AT
is a convenient shorthand notation introduced in [222]

AT = E1TE2T + ~p1T · ~p2T . (70)

A sample distribution of MT2 [28] for slepton produc-

tion pp → ˜̀̀̃ ∗ → `+`− + /~pT at the LHC is shown in the
left panel of Figure 10 for slepton mass m˜̀ = 157.1 GeV
and neutralino mass mχ̃0

1
= 121.5 GeV. The test mass

m̃ is taken to be equal to the true mass of the missing
particle, m̃ = mχ̃0

1
. The distribution clearly shows the

expected endpoint (68) at Mmax
T2 = m˜̀ = 157.1 GeV.

The right panel of Figure 10 shows the measured values
of Mmax

T2 as a function of the test mass. Interpreting the
endpoint (Mmax

T2 ) of MT2 as the mass of the decaying par-
ticle according to (68), Figure 10 reduces the two dimen-
sional mass parameter space (mχ̃0

1
, m˜̀) to one dimen-

sion. One additional independent measurement would
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FIG. 11. Mmax
T2 as a function of the test mass for gluino pair

production at the LHC pp → g̃g̃ → jjjj + /~pT . Taken from
Ref. [32].

then be able to fix both the masses of the parent and the
daughter particles. In fact, the MT2 itself could provide
such measurement via a kink structure, which may arise
for a number of reasons, e.g., due to non-trivial invariant
mass in the visible sector [32, 222], due to initial state ra-
diation [223, 224], or due to upstream momentum from
decays further up the chain [219]. Figure 11 shows an
example of such a kink structure which appears in the
gluino pair production at the LHC pp→ g̃g̃ → jjjj+ /~pT
[32]. The black dots are data points generated via simu-
lation and the blue and red curve represent the best fit
for m̃ < mχ̃0

1
and m̃ > mχ̃0

1
, respectively. Their inter-

section corresponds to the true mass input, (mχ̃0
1
, m˜̀)

= (780.3, 97.9) GeV. Another example of an MT2 kink
structure will be discussed in Figure 20 below.

An interesting and important observation is that the
result from the minimization involved in the MT2 defi-
nition provides an ansatz q̃iT for the transverse momen-
tum of each missing particle [29]. The accuracy of this
approximation improves in the vicinity of the upper kine-
matic endpoint (68) of the MT2 distribution, i.e., when
MT2 ≈ mP . Armed with the ansatz for the transverse
invisible momenta, one can use on-shell conditions to re-
construct the longitudinal momenta of the missing par-
ticles. In other words, fixing ~qiT = q̃iT , the longitudinal
momenta of the missing particles can be determined as

q̃±iL(m̃) =
1

(EiT )2

[
piLAi (71)

±
√
p2
iL + (EiT )2

√
A2
i − (EiTE

χ
iT )2

]
,

where EiT =
√
m2
i + |piT |2, EχiT =

√
m̃2 + |q̃iT |2, and

Ai = 1
2

{
[Mmax

T2 (m̃)]2 − m̃2 −m2
i

}
+ ~piT · q̃iT for ~qiT =

q̃iT . This method of finding the momenta of missing
particles is known as MT2-Assisted On-Shell (MAOS)
reconstruction [29]. Figure 12 illustrates the accuracy
of the MAOS reconstruction for gluino pair production
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FIG. 12. The distributions of q̃±− qtrue for the full event set
(left), and for the top 10% events closest to the MT2 endpoint
(68) (right). Here the MAOS momenta were constructed with
m̃ = 0. Taken from Ref. [29].

at the LHC, pp → g̃g̃ → (jjχ̃0
1)(jjχ̃0

1) with mχ̃0
1

= 122
GeV, and mg̃ = 779 TeV. The MAOS reconstruction has
been used for many collider studies including Higgs bo-
son searches [225–227], heavy resonance searches [228],
spin measurement [229] etc.

In the presence of upstream (ISR) transverse momen-

tum ~PT and for arbitrary configurations of the visible
transverse momenta ~p1T and ~p2T , a general analytical
formula for the calculation of MT2 is still lacking. Refer-
ences [230, 231] discussed an interesting way of removing
the effect of the ISR and retrieving an analytic solution.
The basic idea is to decompose the transverse momenta
~p1T and ~p2T further onto the direction (T‖) defined by

the ~PT vector and the direction (T⊥) orthogonal to it:

~piT‖ ≡
1

P 2
T

(
~piT · ~PT

)
~PT , (72)

~piT⊥ ≡ ~piT − ~piT‖ =
1

P 2
T

~PT ×
(
~piT × ~PT

)
, (73)

and similarly for the transverse momenta ~q1T and ~q2T of
the daughters and for /~pT . Now consider the correspond-
ing 1D decompositions of the transverse parent masses

M2
T‖Pi ≡ m

2
i + m̃2 + 2

(
EiT‖E

χ
iT‖
− ~piT‖ · ~qiT‖

)
,

M2
T⊥Pi ≡ m2

i + m̃2 + 2
(
EiT⊥E

χ
iT⊥
− ~piT⊥ · ~qiT⊥

)
,

in terms of the 1D projected analogues of the transverse
energy

EiT‖ ≡
√
m2
i + |~piT‖ |2, EiT⊥ ≡

√
m2
i + |~piT⊥ |2,

EχiT‖ ≡
√
m̃2 + |~qiT‖ |2, EχiT⊥ ≡

√
m̃2 + |~qiT⊥ |2.

Now we define 1D MT2 decompositions in complete anal-
ogy with the standard MT2 definition (66):

MT2‖ ≡ min
~q1T‖+~q2T‖=~/PT‖

{
max

[
MT‖P1

,MT‖P2

]}
, (74)

MT2⊥ ≡ min
~q1T⊥+~q2T⊥=~/PT⊥

{max [MT⊥P1
,MT⊥P2

]} .(75)
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FIG. 13. Distributions of various doubly projected variables
in the case of dilepton top quark production: M2>⊥ (black),
M>2⊥ (cyan), M>⊥2 (magenta), M2◦⊥ (red), M◦2⊥ (green)
and M◦⊥2 (blue). The yellow shaded distribution gives the
average top quark mass in the event. The different types
of projections (mass-preserving ‘⊥’, speed-preserving ‘∨’ and
massless ‘◦’) are defined in Ref. [8]. Taken from Ref. [8].

By construction, MT2⊥ does not suffer from ISR effects,
since it concerns the direction orthogonal to the ISR.
Therefore one can use the existing formula (69) to com-
pute MT2⊥ analytically. Some examples of the doubly
projected variables are shown in Figure 13 taking dilep-
ton top quark production as an example. We refer to
Ref. [8] for more details on the different types of pro-
jections (mass-preserving ‘⊥’, speed-preserving ‘∨’ and
massless ‘◦’ projections) and the order of projection and
agglomeration of visible particles.
MT2 has various applications in collider physics and

has been further developed for more complicated topolo-
gies. Examples include MTGen (avoiding the combina-
torics problem by iterating over all possible partitions of
the visible set of final state particles) [18, 215] asymmet-
ricMT2 (associated production and non-identical pair de-
cays) [216, 217, 232], generalization to the case with mul-
tiple invisible particles [233], application to dark-matter
stabilization symmetries [232, 234], CDF top quark mass
measurement usingMT2 [235], CMS top quark mass mea-
surement using Mb`, MT2, and MT2,⊥/MAOS [236, 237],
and ISR tagging [19, 238] etc. Since the analytic ex-
pression for the general case is unknown, one must use
a code to compute MT2 numerically [239, 240]. Special
algorithms have been suggested for faster and more ac-
curate calculation [241, 242]. Some of these codes are
summarized in Table V.

Another mass-constraining variable is the M2 variable
[8, 176, 239, 243], which is the (3+1)-dimensional version
of Eq. (66):

M2(m̃) ≡ min
~q1,~q2
{max [MP1

(~q1, m̃), MP2
(~q2, m̃)]} ,

~q1T + ~q2T = /~pT , (76)

where we use the actual parent masses MPi from (58)
instead of their transverse masses MTPi from (62). Note
that the minimization is now performed over the 3-
component momentum vectors ~q1 and ~q2 [8, 176, 239,
243]. In fact, at this point the two definitions (66) and
(76) are equivalent, in the sense that the resulting two
variables, MT2 and M2, will have the same numerical
value [8, 176, 244].

However, M2 begins to differ from MT2 when apply-
ing additional kinematic constraints beyond the missing
transverse momentum condition ~q1T + ~q2T = /pT . Then
the M2 variable can be further refined and one can obtain
non-trivial variants as shown below [176]:

M2CX(m̃) ≡ min
~q1,~q2
{max [MP1

(~q1, m̃), MP2
(~q2, m̃)]} ,

~q1T + ~q2T = /pT (77)

MP1 = MP2

M2XC(m̃) ≡ min
~q1,~q2
{max [MP1

(~q1, m̃), MP2
(~q2, m̃)]} ,

~q1T + ~q2T = /pT (78)

M2
R1

= M2
R2

M2CC(m̃) ≡ min
~q1,~q2
{max [MP1

(~q1, m̃), MP2
(~q2, m̃)]} .

~q1T + ~q2T = /pT (79)

MP1 = MP2

M2
R1

= M2
R2

Here MPi (MRi) is the mass of the parent (relative) par-
ticle in the ith decay chain and a subscript “C” indicates
that an equal mass constraint is applied for the two par-
ents (when “C” is in the first position) or for the relatives
(when “C” is in the second position). A subscript “X”
simply means that no such constraint is applied. In any
given subsystem, these variables are related as follows
[176]

MT2 = M2CX ≤M2XC ≤M2CC . (80)

Besides constraints enforcing mass equality between
two different particles, we can also enforce the measured
values of some masses. For example, in the tt̄ event
topology, we could use the experimentally measured W -
boson mass, mW , and introduce the following further
constrained variable:

M
(b`)
2CW (m̃ = 0) ≡ min

~q1,~q2
{max [Mt1(~q1, m̃), Mt2(~q2, m̃)]} .

~q1T + ~q2T = /~pT (81)

Mt1 = Mt2

MW1 = MW2 = mW

Similarly, using the measured mass mt of the top
quark, we can define a new variable in the (`) subsys-
tem:

M
(`)
2Ct(m̃ = 0) ≡ min

~q1,~q2
{max [MW1

(~q1, m̃), MW2
(~q2, m̃)]} .
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FIG. 14. Comparison of the MAOS andM2-assisted methods
for top mass reconstruction. The left panel shows distribu-
tions of the reconstructed top mass M̃t with methods which
use two mass inputs (the W -boson mass and the neutrino
mass): the three MAOS methods, MAOS4(ab) (blue solid
line), MAOS1(b) (green dot-dashed line), and MAOS4(a)
(cyan dotted line), and the two M2-based methods, M2CR(ab)
(red solid line) and M2CR(a) (orange dashed line). The
right panel shows distributions of the reconstructed top mass
M̃t with methods which use a single mass input (the neu-
trino mass): MAOS2(b) (blue dotted line) and MAOS3(b)
(green dot-dashed line) and M2CX(b) (orange dashed line)
and M2CC(b) (red solid line). Taken from Ref. [30].

~q1T + ~q2T = /~pT (82)

MW1
= MW2

Mt1 = Mt2 = mt

Just like the minimization in the MT2 calculation
allowed for the MAOS reconstruction of invisible mo-
menta, the minimization in the M2 computation pro-
vides a flexible and convenient reconstruction of the full
missing momenta (M2-assisted onshell reconstruction).
Figure 14 compares the reconstructed top mass using a
variety of MAOS and M2 reconstruction schemes. In
general, the momentum ansatz obtained from M2 al-
lows a sharper distribution with a shorter tail. This is
due to better precision in the missing momentum re-
construction, as illustrated in Figure 15. In addition
to invisible momentum reconstruction [30], the M2 has
been used in various collider analyses including appli-
cations to Higgs mass measurement [175], new particle
mass measurements [30, 245, 246], distinguishing sym-
metric/asymmetric events [245], resolving combinatorial
ambiguities [26, 247], measurement of the Top-Higgs
Yukawa CP structure [248, 249], applications to com-
pressed stop search [243], Z ′ search [250], and application
in the antler-topology [251], etc [173, 175, 251, 252].

There are a few other variants of the transverse mass.
The cotransverse mass MC and the contransverse mass
MCT are defined as [253]

M2
C =

(
E1 + E2

)2

−
(
~p1 − ~p2

)2

= m2
1 +m2

2 + 2(E1E2 + ~p1 · ~p2) (83)

M2
CT =

(
E1T + E2T

)2

−
(
~p1T − ~p2T

)2

FIG. 15. Correlations between ∆qz and ∆qx for

MAOS1(b`;mt) (left) and M
(`)
2Ct (right). Taken from Ref. [26].

= m2
1 +m2

2 + 2(E1TE2T + ~p1T · ~p2T ) , (84)

where Ei and ~pi are the visible energy and three-
momentum in the ith branch, and EiT and ~piT are the
corresponding transverse energy and transverse momen-
tum. They satisfy MC ≥ MCT , just like M ≥ MT . An
interesting property of the MC variable is that it is in-
variant under the back-to-back boost of the two visible
systems.

Similar to the stransverse mass MT2, the constrans-
verse mass variable MCT2 is defined as [254–256]

MCT2 = min
~q1T+~q2T=/pT

[
max

{
M

(1)
CT ,M

(2)
CT

}]
, (85)

where each M
(i)
CT (i = 1, 2) is applied to the semi-invisible

decay of parent particle Pi.
Another mass variable, M2C , is defined as the mini-

mum four-dimensional mass

M2
2C = min

q1,q2

(
p1 + q1

)2

, (86)

under the following constraints

(
p1 + q1

)2
=
(
p2 + q2

)2
(87)

q2
1 = q2

2 (88)

~q1T + ~q2T = /~pT (89)√(
p1 + q1

)2 −
√(

q1

)2
= mP −m0 , (90)

where the parent-daughter mass difference in the last
constraint is assumed to be known from a preliminary
measurement of an invariant mass endpoint (52) [244].
The M2C mass variable is bounded by the parent mass,
M2C ≤ mP .

Another set of kinematic variables extensively used by
the CMS Collaboration in its searches for supersymme-
try is the razor kinematic variables [257–259]. They are
known to be sensitive to large mass differences between
the parent particle and the invisible particles at the end
of a decay chain. The razor variables are defined as [177]

M2
R = (E1 + E2)2 − (q1z + q2z)

2 , (91)

(MR
T )2 =

1

2

[
/ET (q1T + q2T )− /~pT · (~q1T + ~q2T )

]
,(92)

R2 =

(
MR
T

MR

)2

. (93)
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2

FIG. 1: A schematic diagram describing the relation between
the full phase space and the projected observable phase space.

The amount that the rank is reduced is the degree of the
singularity; a wall (cusp) has degree one (two).

Finding the reduced rank condition of an arbitrary ma-
trix is not an easy problem. However, for the special case
of an a�ne variety, the given set of polynomial equations
can be substituted by another set with the same solution
space. The set of all such equivalent equations is called
an ideal, which is generated by a finite set of polynomials
known as a basis. We focus here on the Gröbner basis, in
which variables are eliminated sequentially as follows:

g1(x1, x2, x3, . . . , xn) = 0,

g2(x2, x3, . . . , xn) = 0,

...

gN (xN , xN+1, . . . , xn) = 0. (3)

The algorithm for finding the Gröbner basis for a general
coupled polynomial system is known [9]. For the pro-
cesses of interest, it is tractable to obtain it analytically.

The reduced rank condition implies that one or more
row vectors of the restricted Jacobian are linearly depen-
dent. In the Gröbner basis, the restricted Jacobian is of
upper triangular form. Therefore, a necessary but not
su�cient condition for linear dependency is that one of
the diagonal components vanishes, resulting in an ana-
lytic condition for the singularity position.

Singularity Coordinates. The next step is to construct
an optimized one-dimensional variable that we call the
singularity coordinate. This is an implicit variable be-
cause the location of the singularity is defined by the re-
duced rank condition of the restricted Jacobian matrix,
which is an implicit function of the mass parameters. The
singularity coordinate must satisfy the following criteria:
(i) it must be zero at the singularity, (ii) its direction

must be perpendicular to the singularity hypersurface in
observable phase space, and (iii) it must be normalized
such that every event can give the same significance.

To see this, we note that the reduced rank condition
implies that one linear combination

P
i ci(@gi/@xk) be-

comes a null vector at the singularity point. The perpen-
dicular direction is determined by (~v)j =

P
i ci(@gi/@qj),

(recall qj are the visible momenta). The singularity coor-
dinate in this direction is maximally e�cient for reveal-
ing the singularity structure. To assign an unambiguous
value to each event, the singularity coordinate is scaled
so that events with the same invisible phase space volume
around the nearest singularity have the same value. This
requires a knowledge of the local phase space properties
around the singularity at quadratic order.

As shown in Fig. 2, a local orthonormal coordinate
system around a given reference point can be split into
tangent directions tr, (r = 1, . . . n + m � N) and nor-
mal directions ns, (s = 1, . . . , N). A general phase space
point near this reference point is labeled by the tangent
coordinate. The normal coordinate is determined by a
quadratic function of the tangent coordinate (the second
fundamental form): ns ⌘ IIs(tr) = Ms

rr0trtr
0
, where

IIs(tr) = �
✓
@gp

@ns

◆�1
@2gp

@tr@tr0
trtr

0
. (4)

We define ⌃̃ ⌘ ~v · II(tr) ⌘ Mrr0trtr0 . To find the ap-
propriate scale factor, we need to obtain the phase space
volume in the tangent directions that correspond to in-
visible momenta. The phase space in the invisible mo-
mentum directions in the diagonalized basis t̃r is given by
a1t̃

2
1+· · ·+aM t̃2M = ⌃̃, where M is the number of invisible

tangent directions and the eigenvalues ar determine the
shape of the invisible phase space around the singular-
ity. For positive eigenvalues, the ellipsoid-shaped phase

space volume scales as (Vol) / (a1a2 . . . aM )
�1/2

⌃̃M/2.
The singularity coordinate ⌃ that satisfies all three cri-
teria is thus given by

⌃ ⌘ (a1 . . . aM )
�1/M

⌃̃. (5)

⌃ is an implicit kinematic variable, since the location of
the zero, the normal direction ~v and the scale factor can
be defined only when mass parameters are given.

Simple Cascade Decay. Our first example is the sim-
ple cascade decay process shown in Fig. 3 (e.g. neutralino
decay in the MSSM, with Y = �̃0

2, L = l̃, and X = �̃0
1).

The on-shell equations of this system are

x2 = m2
X , (x + qf )2 = m2

L, (x + qf + qn)2 = m2
Y . (6)

mX , mL, and mY are trial masses, x is the invisible parti-
cle momentum, and qn,f are the visible particle momenta.
Taking the z-axis in the direction of the 3-momentum of
ln in the center of mass (CM) frame of the visible par-
ticles ln,f , we have qcm

n,f = (Ecm/2, 0, 0, ±Ecm/2), where

FIG. 16. A schematic depiction of the projection of the full
phase space onto the space of observable momenta illustrat-
ing how folds in the allowed full phase space result in wall
singularities in the observable space. Taken from Ref. [125].

For QCD multijet background events, the distributions
in both MR and R2 fall exponentially, while for signal
events they peak at finite values.

C. Singularity Variables

The geometrical features of the high-dimensional phase
space available to a given event topology are largely
washed out when projecting to a single one-dimensional
event observable. The so-called singularity variables
[125, 260–262], however, provide an intuitive way to
retain high-dimensional features as singularities in the
corresponding one-dimensional kinematic distributions.
The origin of such singularities is very well understood—
similar to the phenomenon of caustics in optics, they
are formed at points where the projection of the allowed
phase space onto the observable space gets folded; see
Figure 16 for a cartoon illustration.

As previously discussed, such projections are inevitable
in the presence of invisible momenta in the event, {q},
since event observables must be constructed out of visi-
ble momenta {p} only. The geometrical structure in the
allowed higher-dimensional phase space is imposed by a
certain set of kinematic conditions (constraints)

fα({p}, {q}) = 0, α = 1, 2, . . . (94)

which arise in the assumed event topology. Mathemat-
ically the singularity condition is then expressed as the
reduction in the rank of the Jacobian matrix of the coor-
dinate transformation from the relevant set of kinematic
constraints fα to {q}, which is why such singularities are

sometimes known as Jacobian peaks. Explicitly,

det

(
∂fα
∂qµ

)
= 0. (95)

Given an event topology, the general procedure for de-
riving the singularity coordinate from Eq. (95) was dis-
cussed and illustrated in Ref. [262] for the case of square
Jacobian matrices and in Ref. [125] for the general case.
Among the set of singularity variables one finds well-
known examples like the transverse invariant mass MT

discussed in Section VII B [260–262], the invariant mass
Ma2a1

of the visible decay products in the two-step two-
body cascade decay of Figure 7(a) in three [125] or two
[262] spatial dimensions, and the Cambridge MT2 vari-
able from Section VII B [263]. However, there are also
more recently discovered singularity variables like the ∆4

variable [264, 265], which is applicable to the three-step
two-body decay chain in Figure 7(c), the ∆antler variable
[262, 266] relevant to the event topology of Figure 7(b),
and the ∆tt̄ variable [262, 267] relevant for the tt̄ dilepton
topology of Figure 9(b). The singularity variables are ex-
cellent analysis tools and can serve a dual purpose: in the
age of discovery, they can be used to target signal-rich
regions of phase space, and post-discovery, they form the
basis for the focus point method for mass measurements
discussed below in Section X B.

VIII. EXCLUSIVE EVENT VARIABLES:
ENERGY, TIME, DISTANCE

In this section, we discuss a few basic quantities that
are directly available in experiments and their non-trivial
utilization. We begin with the energy variable followed
by the timing and distance variables.

A. Energy peak

While energy is not a Lorentz-invariant quantity, the
peak position in the energy distribution of a visible
particle coming from a two-body decay of the heavier
resonance/parent particle carries a boost-distribution-
invariant property. Suppose that particle A1 is a scalar
or produced in an unpolarized way and decays into a
massless visible particle a1 and another paricle a0 which
may be visible or invisible. In the rest frame of A1, the
energy of a1 E

∗
a1

is simply given by

E∗a1
=
m2
A1
−m2

a0

2mA1

. (96)

In the laboratory frame, one should perform a Lorentz
transformation to find the laboratory-frame energy of a1

Ea1 :

Ea1
= γA1

E∗a1
(1 + βA1

cos θ∗a1
) , (97)
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where γA1
= (1−β2

A1
)−1/2 is the boost factor of A1 in the

laboratory frame and θa1
is the emission angle of a1 in

the A1 rest frame with respect to ~βA1
. One can see that

for any γA1
, E∗a1

is the (only) commonly included value in
the distribution of Ea1

. Since A1 is assumed unpolarized
or scalar, cos θ∗a1

is a flat variable and so is Ea1
. There-

fore, whatever distribution of γA1
is given, the final Ea1

distribution shows a peak at E∗a1
[64]. This observation

was made in the context of the cosmic π0 decay [268], and
then extended and generalized to the two-body decay of
an unpolarized resonance at colliders [64, 269].

This energy-peak feature can be viewed in the loga-
rithmic energy space. In Eq. (97), the maximum and
minimum laboratory-frame energy values E±a1

arise at
cos θ∗a1

= ±1, resulting in

E±a1
= γA1

E∗a1
(1± βA1

) , (98)

from which one can see that the rest-frame energy E∗a1

is the geometric mean of the maximum and minimum
laboratory-frame energoies E±a1

for any boost factor γA1
:

(
E∗a1

)2
= E+

a1
E−a1

. (99)

This further implies that lnE∗a1
is the mean of lnE+

a1

and lnE−a1
and the rectangular distribution in Ea for a

given γA1
is log-symmetric with respect to lnE∗a1

. Once
such log-symmetric rectangular distributions, which are
weighted by the γA1

distribution, are stacked up, the fi-
nal Ea1

distribution is automatically log-symmetric with
respect to lnE∗a1

.
As suggested by Eq. (96), the extraction of E∗a1

im-
plies the measurement of a mass relation between A1

and a0. This kinematic feature is particularly useful
in a hadron collider environment where the longitudi-
nal boosts of individual events are a priori unknown,
i.e., the γA1

profile is unknown. In addition, since the
method involves no combinatorial ambiguity, its appli-
cability is nearly unaffected by high particle multiplic-
ity. If the a0 mass is known through independent mea-
surements and if the peak in the a1 energy distribution
is extracted, the mass of A1 can be readily determined
using Eq. (96). A well-motivated and practical physics
application is the top quark mass measurement in the
top quark decay, t→ bW , through the b-jet energy-peak
method [64] and the weight function method [81]. The
CMS Collaboration has measured the top quark mass by
extracting the peak in the b-jet energy distribution in
the eµ channel [270] as shown in Figure 17 where the
aforementioned log-symmetric feature is evident. An-
other SM example is the W mass determination, using
the lepton energy spectrum in the case of associate pro-
duction of leptonic W along with other particles, i.e.,
pp → WX,W → `ν` [126]. The method is not just re-
stricted to SM processes but straightforwardly applicable
to new particles mass measurements; examples include
mass measurements of new resonances in models of su-
persymmetry [22, 126, 271–273] and in the context of
potential cosmic γ-ray excesses [274–278].
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FIG. 17. The CMS top quark mass measurement using the
energy-peak method in the energy distribution of b-jets from
the top quark decay, t → bW . The distribution is log-
symmetric with respect to lnE∗b , and the fit was performed
with a Gaussian template. Taken from Ref. [270].

The crucial assumptions to retain the boost-invariant
feature of the energy peak are that the visible decay prod-
uct is massless and it comes from a two-body decay of
an unpolarized (or scalar) heavy resonance. As some of
them loosen, the validity of the method would be gradu-
ally degraded and a certain extent of prescriptions would
be needed.

First of all, if the visible decay product has a non-zero
mass, the relation in Eq. (97) is modified to

Ea1 = γA1(E∗a1
+ p∗a1

βA1 cos θ∗a1
) , (100)

where p∗a1
is the magnitude of the a1 momentum mea-

sured in the A1 rest frame. Unlike the massless case, E∗a1

is no more commonly contained in the Ea1
distribution

for any boost γA1
. One can find that if γA1

> γcr
A1
≡

2γ∗a1
− 1 with γ∗a1

being the boost factor of a1 in the A1

rest frame, the minimum Ea1
occurring with cos θ∗a1

= −1
becomes larger than E∗a1

[64]. Therefore, for the γA1
pro-

file extending beyond γcr
A1

, the peak in the overall Ea1

distribution may be larger than E∗a1
. In the example of

top quark decay, γ∗b ≈ 15 and hence γcr
t ≈ 450. At the

LHC, such a large boost factor of top quark is kinemati-
cally inaccessible, so the energy-peak method can safely
go through for the top quark decay at the LHC. How-
ever, if ma1 is too large with respect to mA1 −ma0 , the
shift of the energy peak is unavoidable. Nevertheless,
one can still extract E∗a1

, modeling the energy distribu-
tion by appropriately accommodating the shift. We refer
to Ref. [273] for a more detailed discussion.

Second, once the decay of interest accompanies addi-
tional decay products, cos θ∗a1

is no more a flat variable
and hence the argument breaks down. It was analytically
demonstrated that the resulting peak position is always
less than E∗a1

predicted in the associated multi-body de-
cay process of A1 [279]. In the top quark decay, the b
quark often comes with a hard gluon emission in the final
state which is not captured as part of the b jet, and thus
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the contamination from such t→ bWg inevitably induces
a systematic error in the E∗b extraction.5 The systemat-
ics was carefully assessed in the top quark decay at the
next-to-leading order in Ref. [280] and it claimed that a
. 0.5% level of the associated systematic error would be
achievable for a 1% jet energy scaling uncertainty. An-
other approach to treat the multi-body decays involving
an invisible decay product is to interpret the A1 decay
as an effective two-body decay to a0 and a composite
visible system. Assuming that the visible particles are
all massless, their invariant mass Mvis spans from 0 to
mA1 −ma0 . One can then divide Mvis space into pieces,
and for each such phase-space slice, the method for the
massive visible particle that is briefly discussed earlier
can be applied [22].

Finally, polarized production of (non-scalar) A1 in-
duces a non-trivial angular dependence of a1, i.e., cos θ∗a1

is non-flat. Therefore, the peak position in the overall
Ea1

distribution can be larger or smaller than E∗a1
de-

pending on the underlying decay dynamics [64]. At the
LHC, the top quarks are predominantly produced via
QCD, hence they are unpolarized. However, if certain
new-physics dynamics produces polarized top quarks, an
appreciable deviation from the b-jet energy peak can be
interpreted as a sign of new physics. This further implies
that the energy variable can be utilized as a cut to iso-
late the signal from SM backgrounds. This aspect of the
energy peak was extensively investigated in Ref. [271] in
the context of supersymmetric top quark decays.

Energy peaks can also be applied in lepton colliders,
where the predominance of electroweak interactions can
potentially bring in more effects related to polarization.
As one of the main top quark sources in e+e− programs
is the production close to the threshold, where particular
care is needed to account for the production of bound
state and slowly-moving top quarks. Reference [105] has
studied threshold effects on the energy spectrum of a b
quark at a 380 GeV e+e− collider. As the production of
top quarks at threshold strengthens the validity of the
arguments behind the invariance of the energy peak, the
correction to the energy distribution are found to be very
localized compared to the corrections to the transverse
momentum.

The utility of the energy peak is not limited to particle
mass measurements and cutting for signal versus back-
ground discrimination. A representative example is to
distinguish the two-body decay topology from the ≥ 3-
body ones. Imagine two scenarios where each of the pair-
produced A1’s follows either A1 → a1a0 (i.e., two-body
topology) or A1 → a1a0a

′
0 (i.e., ≥ 3-body topology) with

A′0 representing additional invisible particle(s). It was
demonstrated that half the µ parameter extracted from
the MT2 distribution is the same as (greater than) the

5 By contrast, initial state radiation from either incoming partons
or top quark itself simply reshuffles the γt profile, and hence it
does not ruin the boost-invariant feature [64].

peak position Epeak
a1

for the two-body (three-body) decay
scenario [279]:

µ

2
=
m2
A1
−m2

a0

2mA1





= Epeak
a1

for the two-body decay,

> Epeak
a1

for the three-body decay.
(101)

B. Timing

The variables in the preceding sections involve quanti-
ties in energy-momentum space. Likewise, one may uti-
lize the information in time-position space. These next
two subsections are devoted to discussing variables de-
signed with time and position information.

In principle, the timing information is useful for the
following situations including: i) the case where the sig-
nals of interest differ from the unwanted signals (or back-
grounds) by the timing at which they hit the detector
system; ii) the case where the subprocesses of the sig-
nal process come along in a time-ordered manner (e.g.,
sequential decays of heavy resonances). In practice, the
timing information becomes useful when the resolution in
the timing measurement is sufficiently good and the un-
certainty stemming from the particle-beam pulse spread
is small enough. In many of the collider experiments
(more generally accelerator-based experiments) including
the LHC, beam parameters are well under control and
sufficiently narrow beam pulses can be generated. When
it comes to the timing resolution, it is a few hundred
pico-seconds as of Run II of the LHC and thus its utiliza-
tion is somewhat limited especially for the (new) physics
processes where all relevant hard interactions take place
instantly.

The use of timing information is receiving increasing
attention, however, as higher-resolution timing informa-
tion allows for improved pile-up-origin background sup-
pression [281, 282] and it provides a unique handle in
the search for long-lived particles (LLPs) [283–285] which
were targeted marginally in the earlier LHC operation as
its detectors (e.g., ATLAS, CMS, and LHCb) were de-
signed to be optimal to prompt processes. Therefore, the
ATLAS [281], CMS [282], and LHCb [286] Collaborations
are planning to install dedicated timing modules and de-
velop appropriate trigger algorithms, expecting them to
operate from Run IV.

Indeed, it has been pointed out that the timing vari-
able allows for a powerful separation between delayed
new physics signal events and SM background events,
given projected upgrades and implementations of high-
capability timing modules and dedicated triggers at the
LHC detectors [283–285]. For example, massive enough
LLPs at the LHC can travel for a finite amount of time
such that their decay products arrive at detectors with
time delays around nanosecond scale, unlike the light SM
particles. The strategies for utilizing this time delay fea-
ture can be applied in the search for LLPs, using the ini-
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FIG. 18. The 95% CL limits on BR(h → XX) for signal
process pp→ jh followed by subsequent decays h→ XX and
X → jj with X being a new particle. Taken from Ref. [283].

tial state radiation as a way of setting a reference timing
and requiring at least one LLP to decay within the detec-
tor [283]. It has been demonstrated that the strategies
can improve the sensitivity to the lifetime of the LLPs by
two orders of magnitude or more [283], in comparison to
conventional search strategies for LLPs [287–289], e.g.,
displaced vertex searches. Example sensitivity reaches
for the scenario where the SM Higgs decays to a pair of
LLPs X are shown in Figure 18 in terms of limits on
the branching fraction of h → XX as a function of the
proper decay length of X [283].

The timing information is useful not only for the dis-
covery opportunities of LLPs but for the resonance mass
reconstruction of the new particles involved in the asso-
ciated decay process. The authors in Ref. [284] investi-
gated the case where LLPs are pair-produced and each
of them decays to an invisible particle and visible par-
ticle(s). They showed that the particle mass spectrum
can be completely determined event by event, using the
missing transverse momentum condition and the timing
information, even in the case where the pair-produced
LLPs are not identical. Another possibility that allows
for the event-by-event mass measurement is the so-called
“tumbler” scenario where a LLP decays to lighter LLPs
sequentially. The authors in Ref. [285] studied the sim-
plest tumbler process, A2 → a2A1 followed by A1 → a1a0

with A2 and A1 being LLPs, a2 and a1 being visible
particle systems, and a0 being a collider-stable particle
or dark-matter candidate. They demonstrated that the
masses of A2, A1, and a0 can be determined with the aid
of timing information but without the recourse to the
missing transverse momentum measurement.

Timing is also considered as a discriminating variable
to suppress the beam-induced background activities due
to muon decays in muon beam machines [290–293]. Due
to the unstable nature of the particles in the beam, the
muon beams are a source of particles that go outside
the control of the machine optics. The primary particles

come from muon decay products: electron and neutrinos.
They can interact with the accelerator apparatus and ev-
ery material surrounding the beam, generating secondary
radiation which can eventually reach the detectors. The
tracking of these secondary particles is usually quite dif-
ficult, as they are a very large number of low-momentum
particles. They can still be discriminated based on the
fact that the production of secondary particles happens
during the whole time of beam circulation, while interest-
ing particles from the hard collisions appear only at beam
crossing. The discrimination is further helped from the
fact that only a limited length before the detector, hence
a specific time window, actually behaves as a source of
secondaries that are potentially harmful for the physics
analyses.

C. Distance variables

Mass measurements are inherently energy scale mea-
surements. However, excellent measurements of masses
can, in principle, be conducted by accurately measuring
the distances travelled by particles. The key relation is

〈d〉 = cβ · γτ0 =

√
E2 −m2

m
· cτ0 , (102)

where 〈d〉 is the average distance travelled before decay-
ing, τ0 is the proper lifetime of the particle at hand, and

γ = E/m =
(
1− β2

)−1/2
is the usual Lorentz boost fac-

tor that governs the time dilation and length contraction.
In essence a mass measurement can be carried out from
a sample of particles all of which have identical boost
factor – or equivalently identical energy – by measuring
the average decay length of the sample and measuring
elsewhere (or using theory predictions for) the proper
lifetime τ0.

A practical difficulty of pursuing this method is that
in general it is very hard to come across a sample of
particles perfectly monochromatic in energy. A non-
monochromatic particle sample can be used to carry out
a mass measurement if the energy distribution of these
particles is sufficiently well known. The case of particles
produced by parton collisions in pp or pp̄ colliders clearly
shows how measurements of this sort need very accurate
knowledge of the source (i.e., PDFs in this case).

This idea can be exploited even for particles whose
lifetime is short enough to make it impossible to measure
〈d〉. If the prompt-decaying particle produces an unstable
long-lived particle as a decay product, it can be viewed
as the source of a new sample of particles as it inherits
a certain extent of relevant information of the decaying
particle. The average decay length of the unstable decay
product can now be measured and turned into a mass
measurement, provided that the proper lifetime and the
energy distribution of the measurable decay product are
sufficiently well known.

Measurements of this sort have been proposed for SM
particles such as the top quark [55]. Concrete results
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for this strategy appeared from the CDF [294] and CMS
[56] experiments. A great deal of work in these mea-
surements is devoted in understanding the source of the
unstable particles whose decay length is measured and a
number of issues having something to do with the forma-
tion of hadrons and other aspects of QCD that impact
the kinematics of top quark decay products.

In fact, in the case of the top quark mass measurement
the accessible unstable states are B-flavored hadrons
(e.g., B+, B0

s , B0, Λ0
b , ...) whose cτ0’s are in the range

of 100 µm hence can be measured in modern detectors,
especially when they enjoy typical Lorentz boost factor
of O(10) as expected from top quark decays. Relating
the top quark mass to the observed decay lengths of the
B-hadrons has significant complications with respect to
the simple one-step monochromatic case sketched at the
beginning of this section. Indeed, one has to deal with
multiple species of B hadrons, each of which has a dif-
ferent mass and a different proper lifetime. As a conse-
quence, the actual yield of each type of B-hadrons does
affect a measurement that is blind to the identification of
each species. For this reason, the analyses of CDF [294]
and CMS [56] are filled with details on the treatment
of hadronization effects, which become of primary inter-
est when a sub-percent measurement is attempted to be
competitive with other top quark mass determinations.
We refer to the above studies for a detailed discussion of
these effects.

Concerning the use of kinematic variables, we remark
that so far the CDF [294] and CMS [56] Collaborations
have managed to relate the top quark mass and the
length distribution of the B-hadrons only by producing
templates of the length distribution with a full chain of
MC simulations. However, the insights on the peak of the
energy distribution can be translated into properties of
the length distribution, as entailed by the relation among
energy, mass, and decay length as in Eq. (102). Work is
underway to formulate new mass measurement strategies
exploiting this insight [295, 296].

In addition to mass measurements, distance variables
are useful discriminators for the identification of heavy
flavor quarks and leptons. Particles with a measurably
long proper lifetime, e.g., B-hadrons, result in a measur-
able impact parameter, defined as the transverse distance
of closest approach of a track to the primary interaction
vertex. This quantity can be shown [297] to be largely
unaffected by the boost of the decaying particle, as time
dilation contributes to displace further the decay point in
the laboratory frame, but at the same time length con-
traction makes the direction of the decay product tend
to align with the decaying particle momentum. As a con-
sequence, the characteristic decay times of particles are
translated to the characteristic impact parameters, which
are very useful for particle identification.

Modern experiments use impact parameter informa-
tion, among many other inputs, to give a likelihood for
particle identification. For a detailed explanation of the
role played by the impact parameter in heavy flavor tag-

ging, we refer to e.g., Ref. [298]. A modern incarnation
that leverages the impact parameter in a neural network
classifier is described in Ref. [299].

A major difficulty in analyzing collider events is the
necessity to disentangle the useful particles potentially
bearing information on interesting phenomena from the
particles stemming out of ordinary collisions not carry-
ing any useful information. Especially at hadron colliders
the collision rate is so high that a number collisions can
happen for each bunch crossing. A basic tool to discrim-
inate particles from the collisions recorded at once is the
position from which these particles momenta originate
if extrapolated to the beam axis [300, 301]. This sim-
ple observable keeps being a basic ingredient for current
and future experiments and it is used in conjunction with
the most theoretically sophisticated tools [302] to remove
pile-up effects.

New physics models have provided many examples of
signatures involving LLPs and other exotic states (e.g.,
Refs. [285, 303–312]) that can be analyzed with observ-
ables referring to length measurements. The most basic
measurements involve the euclidian distance between the
primary interaction point and the displaced vertex where
the exotic particle decays. A summary of the power of
this approach to search for exotic states is given, for ex-
ample, in Ref. [313] together with a comparison of the
coverage of new physics models parameter space of the
equivalent “prompt” searches not exploiting length mea-
surements. The typical prompt search gets quickly inef-
fective when one considers distances greater than 100 µm
÷ 1 cm for the lifetime of the exotic state, or the equiva-
lent parameter that controls the appearance of displaced
vertices in more complicated models. The threshold for
the beginning of degradation of the prompt searches is
process-dependent, but the general message that the dis-
placed vertex searches can fully fill in this gap is very
robust. As a matter of fact, when the experiments have
looked for these exotic signals (e.g., Refs. [314–318]),
the bounds from displaced vertices are stronger than the
prompt counterparts.

IX. OTHER EXCLUSIVE EVENT VARIABLES

A. Dimensionless variables

The variables in the preceding sections are dimension-
ful hence they allow to infer the scale information of the
underlying physics processes. By contrast, dimensionless
variables make it possible to extract scale-independent
information. Here we briefly review a few dimensionless
exclusive event variables most of which are developed for
particular processes and/or event topologies.

The first example is the αT variable [319] which is in-
troduced to efficiently reduce multijet events without a
significant missing transverse momentum /~pT . For dijet
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events, it can be defined as [320]

αT =
Ej2T
mT

, (103)

where Ej2T is the transverse energy of the second hard-

est jet and mT =
√

(Ej1T + Ej2T )2 − (~p j1T + ~p j2T )2 is the

transverse mass of the dijet system. For a perfect dijet
system where the two jets are back-to-back, Ej1T = Ej2T
and ~p j1T = −~p j2T which leads to mT = 2Ej2T and αT = 0.5.
αT is significantly larger than 0.5, when the two jets are
not back-to-back, recoiling against /~pT .

In the case of events with three or more jets, one can
form an equivalent dijet system by combining the jets in
the event into two pseudo-jets. One chooses the combi-
nation such that the ET difference (∆HT ) between the
two pseudo-jets is minimized. This simple clustering cri-
terion provides a good separation between QCD multijet
events and events with true /~pT . In this case, the αT is
generalized as

αT =
1

2

HT −∆HT√
H2
T − /H

2
T

(104)

=
1

2

1−∆HT /HT√
1− ( /HT /HT )2

, (105)

where HT =
∑Njets

j=1 EjT and /HT = |∑Njets

j=1 ~pjT |. Here
Njets is the number of jets with ET greater than a certain
threshold, typically chosen to be 50 GeV [321].

The second example is topness and higgsness for which
the main idea is to use the value of χ2 as a cut. This
method becomes more powerful, especially when one can
define two (or more) independent χ2 values. Topness
was originally introduced to reduce the tt̄ background
in the search for supersymmetric top quarks [322] and
later further fine-tuned in the search for double Higgs
production [323–325]. Topness basically aims to check
the consistency of a given event with tt̄ production. It is
a minimized chi-square value constructed by using four
on-shell constraints, mt, mt̄, mW+ and mW− , and 6 un-
knowns (the three-momenta of the two neutrinos, ~pν and
~pν̄)

χ2
ij ≡ min

/~pT=~pνT+~pν̄T




(
m2
bi`+ν

−m2
t

)2

σ4
t

+

(
m2
`+ν −m2

W

)2

σ4
W

+

(
m2
bj`−ν̄

−m2
t

)2

σ4
t

+

(
m2
`−ν̄ −m2

W

)2

σ4
W


 , (106)

subject to the constraint, /~pT = ~pνT + ~pν̄T . Here σt and
σW determine the relative weight of the on-shell condi-
tions, and should not be less than typical resolutions.
Due to the twofold ambiguity in paring a b-jet (out of b1
and b2) and a lepton (out of `+ and `−), we define Top-
ness as the smaller of the two possible chi-square values,

χ2
12 and χ2

21:

T ≡ min
(
χ2

12 , χ
2
21

)
. (107)

Similarly, Higgsness aims to probe the consistency of
a given event with double Higgs production. The chal-
lenge here is to find the sufficient number of constraints,
as there are four unknowns, while there are only two in-
termediate on-shell particles.6 The Higgsness is defined
by

H ≡ min

[(
m2
`+`−νν̄ −m2

h

)2

σ4
h`

+

(
m2
νν̄ −m2

νν̄,peak

)2

σ4
ν

+min



(
m2
`+ν −m2

W

)2

σ4
W

+

(
m2
`−ν̄ −m2

W∗,peak

)2

σ4
W∗

,(108)

(
m2
`−ν̄ −m2

W

)2

σ4
W

+

(
m2
`+ν −m2

W∗,peak

)2

σ4
W∗





 ,

where mW∗ is bounded from above, mW∗ ≤ mh −mW ,
and its location of the peak can be estimated by

mpeak
W∗ =

1√
3

√
2 (m2

h +m2
W )−

√
m4
h + 14m2

hm
2
W +m4

W

≈ 40 GeV . (109)

The mpeak
νν̄ = mpeak

`` ≈ 30 GeV is the location of the
peak in the invariant mass distribution of two neutrinos
dσ
dmνν̄

(or dσ
dm``

), which is bounded from above by mmax
νν̄ =

mmax
`` =

√
m2
h −m2

W . The phase space distribution of
dσ
dmνν̄

is given by

dσ

dmνν̄
∝
∫
dm2

W∗λ
1/2(m2

h,m
2
W ,m

2
W∗)f(mνν̄), (110)

where λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx is
the kinematic triangular function and f(mνν̄) is the in-
variant mass distribution of the antler topology (see also
Section VII A) with h→WW ∗ → `+`−νν̄

f(mνν̄) ∼
{
ηmνν̄ , 0 ≤ mνν̄ ≤ e−ηE,
mνν̄ ln(E/mνν̄) , e−ηE ≤ mνν̄ ≤ E,

(111)

where the endpoint E and the parameter η are defined
in terms of the particle masses as [199]

E =
√
mWmW∗ eη, (112)

cosh η =

(
m2
h −m2

W −m2
W∗

2mWmW∗

)
. (113)

6 See Ref. [326] for the heavy Higgs decaying to two on-shell W
bosons.
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FIG. 19. Scatter plot distribution of (lnH, lnT ) for dou-
ble Higgs production (hh) and backgrounds (tt̄, tt̄h, tt̄V , ``bj
and ττbb) after loose baseline selection cuts. The black-solid
curves in both panels are the same and represent the opti-
mized cut. Taken from Ref. [323]

The actual peak of 30 GeV is slightly less than the result
for pure phase space due to a helicity suppression in the
W -`-ν vertex.

The definitions of Topness and Higgsness involve σ hy-
perparameters which represent experimental uncertain-
ties and particle widths. However, in principle, they can
be taken as free parameters. The precise values of these
parameters are not crucial, as results are not sensitive to
their numerical values.

As mentioned previously, the χ2 method becomes more
useful when applied in more than one dimension. For
example, Figure 19 shows a scatter plot distribution
of (lnH, lnT ) for double Higgs production and back-
grounds. The black-solid curves in both panels are the
same and represent the optimized cut.

The third example is ratios of energy and transverse
momenta which have been recognized as useful kinematic
variables very early on, especially for problems in which
part of the information on the kinematics is not accessible
due to production of invisible particles. The ratio of ener-
gies and pT from cascade decays A2 → A1a2 → a1a0 can
provide extra information [327] on top of the “classic” in-
variant mass Ma1a2

of the visible decay products. Indeed,
by properly combining information from the transverse
energy ratio lnE1,T /E2,T and the invariant mass Ma1a2

,
it is possible to reconstruct the full information on the
three masses involved in the cascade decay [328].

Another interesting application is for the case where
the numbers of final state invisible particles are differ-
ent in the decays of pair-produced heavy resonances.
For example, dark-matter “partners” charged under a
Z2 symmetry decay to a single dark-matter candidate,
e.g., A1 → a1a0 with A1, a1, and a0 being dark-matter
partner, visible particle(s), and dark-matter candidate,
respectively. By contrast, those charged under a Z3 sym-
metry can decay with one or two dark-matter candidates,
namely, A1 → a1a0a0 or A1 → a1a0. This implies that
if Z3-charged A1’s are pair-produced, each of their de-
cays terminates with different numbers of a0, the ratios
of energy or pT of a1 in both decay sides are likely to be
unbalanced, whereas it is more likely to be balanced in
the Z2 case. The authors of Ref. [232] defined the ratio

RpT as

RpT =
max

(
p

(1)
T,a1

, p
(2)
T,a1

)

min
(
p

(1)
T,a1

, p
(2)
T,a1

) , (114)

where p
(i)
T,a1

denotes the pT of the visible particle in the

i-th decay side (i = 1, 2). Therefore, if the underly-
ing physics is Z3 (Z2), the ratios are typically larger
than (close to) 1, and thus these models can be distin-
guished [232].

Finally, likelihood methods such as the MELA and
other matrix-element based techniques can be catego-
rized as dimensionless variables. Although fitting in the
definition of dimensionless variables suitable for this sec-
tion, they will be discussed separately in Section X D.

B. ISR methods

In this subsection, we discuss kinematic effects due to
the presence of initial state radiation (ISR). We begin
with a method which attempts to identify ISR. At hadron
colliders, the production of heavy new particles is often
accompanied by additional jets with a significant trans-
verse momentum. These extra jets make the combina-
torial problem worse and complicate the reconstruction
of new particle masses. In Ref. [19], a novel technique
was discussed to reduce these effects and to reconstruct a
clear kinematical endpoint, taking gluino pair production
and decay at the LHC as an example. That analysis con-
sidered the three-body decay of the gluino, which leads to
4 jets plus missing transverse momentum, in which case
the mass reconstruction is done via MT2. To isolate the
ISR jet, the authors introduced Mmin

T2 = min
i=1,··· ,5

MT2(i),

where MT2(i) is calculated from the five highest pT jets,
excluding the i-th highest pT jet. Then the imin-th jet
which satisfies MT2(imin) = Mmin

T2 is tagged as the ISR
jet. After all this, a strong correlation was found between
the reconstructed ISR jet and true ISR jet.

Occasionally, the ISR helps measurement of particle
masses. The author of Ref. [223] considered the two-
body decay of a particle at a hadron collider into a vis-
ible and an invisible particle, generalizing W → `ν`,
where the masses of the decaying particle and the in-
visible daughter particle are unknown. It was proved
analytically that the transverse mass, when maximized
over all possible kinematic configurations, can be used
to determine both of the unknown masses. The authors
of Ref. [224] generalized the idea for more complex de-
cays of a singly-produced mother particle and for pair-
produced particles. On the other hand, in the absence
of ISR, one can in principle consider the upstream trans-
verse momentum (UTM) playing the role of ISR, placing
the system of interest under different momentum config-
urations [219]. In all cases, the mass variables (MT , MT2,
or total invariant mass) optimized over all possible mo-
mentum configurations, which are given by either ISR or
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FIG. 20. The transverse mass of the mother particle de-
caying semi-invisibly as a function of the daughter particle
mass for the phase space Monte Carlo in which the mother
has been constrained to be at rest in the laboratory frame
with vanishing pT (left) and for the phase space Monte Carlo
in which the mother can have large transverse momentum in
the laboratory frame (right). Taken from Ref. [224].

UTM, exhibit a kink structure at the true values of the
mother and daughter particle masses, as illustrated in
Figure 20. An application of these ISR and kink meth-
ods is illustrated in Ref. [329] to determine the masses
of the supersymmetric chargino and sneutrino in an in-
clusive manner, i.e. using the two well measured lepton
momenta, while treating all other upstream objects in
the event as a single entity of total transverse momen-
tum /~pT . This method takes full advantage of the large
production rates of colored superpartners, but does not
rely on the poorly measured hadronic jets, and avoids
any jet combinatorics problems.

ISR plays a crucial role in studying dark-matter pro-
duction at colliders as well. Under the hypothesis of clas-
sical weakly interacting massive particles (WIMPs), one
can consider pair annihilation of dark matter (χ) into
a pair of SM particles, χ + χ → Xi + X̄i, with Xi =
`, q, g, · · · . The detailed balancing equation [330, 331]
relates the pair-annihilation cross section and its inverse:

σ(χ+ χ→ Xi + X̄i)

σ(Xi + X̄i → χ+ χ)
= 2

v2
X(2SX + 1)2

v2
χ(2Sχ + 1)2

, (115)

where vi and Si denote the velocity of initial-state species
i and the spin number of species i, respectively, and where
the cross sections are averaged over spins but not other
quantum numbers such as color. Then the WIMP pro-
duction rate can be obtained as

σ(XiX̄i → 2χ) =

22(J0−1) κiσann
(2Sχ + 1)2

(2SX + 1)2

(
1− 4m2

χ

s

)1/2+J0

,(116)

where the initial state particles are assumed to be rel-
ativistic (mX � mχ). Eq. (116) is written in terms
of a small number of parameters with a clear physical
meaning: the mass mχ and the spin Sχ of the WIMP,
the value of J0 (either 0 or 1, depending on whether
dark-matter annihilation is s-wave or p-wave annihila-

tion), and the annihilation fraction κi for the given ini-
tial state. Importantly, the overall scale for this predic-
tion, the total annihilation cross section quantity σann

is provided by cosmology. This formula is only valid at
center of mass energies slightly above the 2χ threshold,

v = 2vχ = 2
√

1− 4m2
χ/s � 1, and receives corrections

of order v2. Taking Xi = q or g (or even W , Z) for a
hadron collider or Xi = e for an electron-positron ma-
chine, Eq. (116) provides a prediction of the WIMP pro-
duction rate.

Unfortunately, this dark-matter production process is
not directly observalbe at colliders. At least one de-
tectable particle is required for the event to pass the
triggers and be recorded on tape. Therefore it is de-
sirable to consider the production of two WIMPs in as-
sociation with a photon or a gluon radiated from the
known initial state. We consider a simple example given
in Ref. [331], e+e− → 2χ + γ. If the emitted photon
is either soft or collinear with the incoming electron or
positron, soft/collinear factorization theorems provide a
model-independent relation. The emission of collinear
photons is given by

dσ(e+e− → 2χ+ γ)

dx d cos θ
≈ F(x, cos θ) σ̂(e+e− → 2χ),

(117)
where x = 2Eγ/

√
s (Eγ is the photon energy), θ is the

angle between the photon direction and the direction of
the incoming electron beam, F denotes the collinear fac-
tor:

F(x, cos θ) =
α

π

1 + (1− x)2

x

1

sin2 θ
, (118)

and σ̂ is the WIMP pair-production cross section evalu-
ated at the reduced center of mass energy, ŝ = (1− x)s.
Note that upon integration over θ, the above equation
reproduces the familiar Weizsacker-Williams distribution
function. The factor F is universal: it does not depend
on the nature of the (electrically neutral) particles pro-
duced in association with the photon. Combining Eq.
(116) and Eq. (117), one can easily obtain the expres-

sion for
dσ(e+e− → 2χ+ γ)

dx d cos θ
. The left panel in Figure 21

shows the comparison between the photon spectra from
the process e+e− → /ET + γ in the explicit supersym-
metric models (red) and the spectra predicted by above
procedure [331]. At hadron colliders, the corresponding
distributions show different shapes, as illustrated in the
right panel, which shows the jet pT distribution for an
EFT leading to mono-jet plus /~pT at the Tevatron [332].

Similar to γ+ /ET at LC, one can consider dark-matter
production at hadron colliders. Dark-matter particles
could lead to events with the large missing transverse
momentum, if another visible object (e.g., an energetic
jet) is produced at the same time. Such mono-jet pro-
cess has been widely studied at the Tevatron, LHC and
future colliders [332–335]. The same idea has been ex-
tended to other standard model particles (such as W/Z,
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FIG. 2: Comparison between the photon spectra from the
process e+e− → 2χ0

1+γ in the explicit supersymmetric models
defined in the text (red/dark-gray) and the spectra predicted
by Eq. (9) for a p-annihilator of the corresponding mass and
κe (green/light-gray).

This formula, applicable for collinear photons (θ → 0 or
θ → π), is the main result of this letter.

Validity of Collinear Approximation — Eq. (9) pre-
dicts the rate of events with a single collinear photon
and missing energy due to WIMP production in e+e−

collisions. However, very collinear photons cannot be de-
tected in an experiment, due to an incomplete electro-
magnetic calorimeter coverage around the beam pipe as
well as the lower cut on the pT,γ ≡ Eγ sin θ that has to be
imposed to reject backgrounds such as e+e− → e+e−γ
where electron and positron are too forward to be de-
tected. Do the predictions made using the collinear fac-
torization approach have any value in realistic circum-
stances? To address this question, we have compared the
event rates obtained by integrating Eq. (9) with realistic
cuts with those obtained in explicit models containing
WIMPs without making any approximations. For this
comparison, we have chosen

√
s = 500 GeV, assumed the

electromagnetic calorimeter acceptance sin θ > 0.1 [8],
and required pT,γ > 7.5 GeV corresponding to the mask
calorimeter acceptance of 1 degree. The results of the
comparison are shown in Figure 2. The red (dark-
gray) histograms show the photon spectra from the re-
action e+e− → χ0

1χ
0
1γ within the minimal supersym-

metric standard model (MSSM) [9] with the parameters
suitably chosen to provide the correct neutralino relic
density [10]. (Explicitly, for Mχ = (100, 150, 200, 225)
GeV, the MSSM parameters take the following values
at the weak scale: M1 = (115, 168, 217, 242) GeV, µ =
(185, 225, 275, 300) GeV, and m#̃R

= (115, 177, 237, 268)

FIG. 3: The reach of a 500 GeV unpolarized electron-positron
collider with an integrated luminosity of 500 fb−1 for the dis-
covery of p-annihilator WIMPs, as a function of the WIMP
mass Mχ and the e+e− annihilation fraction κe. The 3 σ
(black) and 5 σ (green/light-gray) contours are shown. The
dashed lines include only statistical uncertainty, whereas the
solid lines include a systematic uncertainty of 0.3% [8].

GeV; for all four points, M2 = 2M1, tanβ = 10, and all
the mass parameters not listed above are fixed at 1 TeV.)
The green (light-gray) lines on the same figure show the
spectra predicted by Eq. (9) for a “generic” p-annihilator
of the corresponding mass and κe. We conclude that our
approach works quite well. The photon spectrum near
the endpoint is correctly reproduced for all Mχ. Eq. (9)
fails for lower values of Eγ ; this effect is especially no-
ticeable for low Mχ. This is due not to the failure of
collinear approximation, but rather to the fact that the
relative motion of the produced χ particles becomes rel-
ativistic in this regime, and the higher-order terms in
the v2 expansion of Eq. (2), not captured by σan, are
important. Model-independent WIMP searches at e+e−

colliders, which we discuss below, should take this limi-
tation into account by concentrating on the photons near
the endpoint of the spectrum. Note that we did not have
to impose an additional cut to eliminate central photons:
collinear emission naturally dominates the signal.

Experimental Searches for WIMPs — The main ir-
reducible background to the search for anomalous
γ+missing E events is provided by the Standard Model
reaction e+e− → νν̄γ. At the energies well above the Z
peak, this reaction is dominated by the t-channel W ex-
change contribution, and has a rather large cross section.
Nevertheless, the enhancement of the rate predicted by
Eq. (9) may well be observable. In Figure 3, we show
the reach of a 500 GeV linear collider (LC) with an inte-
grated luminosity of 500 fb−1 to p-annihilator WIMPs in
terms of the values of κe that can be probed at 3 and 5
σ level, as a function of the WIMP mass Mχ. (For com-
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Figure 7: (a) Comparisons of the shapes of the signal, the SM background and CDF measured events.
The SM predictions are shown in the green and the CDF observed data are shown in red. (b)
Comparisons of simulated signal events from two different Monte-Carlo tools and for the parton and
the particle levels. The cutoff Λ ≡ M/

√
gχgq is chosen to be 1 TeV.

cases, the constraints coming from the strange quarks are the most stringent. This is due to a small

matrix element for the strange quark in equation (14).

5 Discussions and conclusions

It is worthwhile to consider possible improvements to the dark matter search at the Tevatron, and in

the future at the LHC. Here we placed bounds on dark matter using only the total rate of mono-jet

signal events above a certain pT cut. An analysis that takes the spectrum shape into account may

yield more powerful bounds. We show the spectral shape of the signal compared to the background

in Figure 7(a). We find that the signal spectrum is somewhat harder than the background, especially

when the messenger mass is much higher than the dark matter mass. We find that including showering,

hadronization (using Pythia [34]) and a detector simulation (PGS [35]) does not change the signal

shape significantly, particularly above 100 GeV, as is shown in Figure 7(b). This may allow us to

place tighter constraints using a multi-bin analysis as compared with a simple counting experiment,

since signal predicts more deviations in high pT bins. However, this would require knowledge of the

theoretical uncertainty on a bin-by-bin basis which is not presently available. Furthermore, a bound

may be extracted from mono-photon events.

In this work we show that the Tevatron mono-jet search places competitive bounds on dark matter-

14

FIG. 21. (left) Comparison between the photon spectra from
the process e+e− → /ET + γ in the explicit supersymmetric
models (red) and the spectra predicted by Eq. (117) (Eq. (9)
in Ref. [331]) for a p-annihilator of the corresponding mass.
Taken from Ref. [331]. (right) Comparisons of simulated sig-
nal events from two different Monte-Carlo tools for the parton
and the particle-level at Tevatron. Taken from Ref. [332].
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Figure 4: Comparison between data and the background prediction in the monojet signal re-
gion before and after the simultaneous fit. The fit includes all control regions and the signal
region in all categories and both data taking years, and the background-only fit model is used.
The resulting distributions are shown separately for 2017 (left) and 2018 (right). Templates for
two signal hypotheses are shown overlaid as black and dark red solid lines. The last bin in-
cludes the overflow. In the middle panels, ratios of data to the pre-fit background prediction
(red solid points) and post-fit background prediction (blue solid points) are shown. The gray
band in the middle panels indicates the post-fit uncertainty after combining all the systematic
uncertainties. Finally, the distribution of the pulls, defined as the difference between data and
the post-fit background prediction divided by the quadratic sum of the post-fit uncertainty in
the prediction and statistical uncertainty in data, is shown in the lower panels.
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Figure 5: Comparison between data and the background prediction in the mono-V signal re-
gions before and after the simultaneous fit. The fit includes all control regions and the signal
region in all categories and both data taking years, and the background-only fit model is used.
The resulting distributions are shown separately for 2017 (left column) and 2018 (right col-
umn), as well as for the low- and high-purity categories (upper and lower rows, respectively).
Templates for two signal hypothesis are shown overlaid as black and dark red solid lines. The
last bin includes the overflow. In the middle panels, ratios of data to the pre-fit background
prediction (red solid points) and post-fit background prediction (blue solid points) are shown.
The gray band in the middle panels indicates the post-fit uncertainty after combining all the
systematic uncertainties. Finally, the distribution of the pulls, defined as the difference be-
tween data and the post-fit background prediction divided by the quadratic sum of the post-fit
uncertainty in the prediction and statistical uncertainty in data, is shown in the lower panels.

FIG. 22. Comparison between data and the background pre-
diction in the monojet (left) and monoV (right) signal region
before and after the simultaneous fit. Taken from Ref. [337].

b/t, h, etc and a new particle such as Z ′) being produced
together with dark-matter candidates. Such searches are
often called mono-X searches [336] and are one of primary
methods looking for dark-matter particles at the LHC.
Figure 22 (taken from Ref. [337].) shows the missing
transverse momentum comparison between data and the
background prediction in the monojet (left) and monoV
(right) signal region before and after the simultaneous
fit. A similar result can be found from Ref. [338]. (see
Ref. [339] for summary of recent results.)

ISR plays an important role in the search for new
physics models, where the mass spectrum is generate
(i.e., see Refs. [340, 341] for compressed supersymme-
try and Refs. [186, 342, 343] for universal extra dimen-
sions). For example, when the squark (q̃) and the lightest
neutralino (χ̃0

1) are degenerate, the pair-produced squark
leads to very soft decay products with little missing trans-
verse momentum, which will be completely hidden under
the QCD backgrounds. By requiring a hard ISR, one
can boost the squark system with substantial pT , and
improve the signal sensitivity, especially in the region of
mχ̃0

1
≈ mq̃.

Another situation where the ISR is crucial is the low
mass dijet resonance searches. The low mass dijet res-
onance is completely hidden under QCD backgrounds.
Similarly to SUSY searches with degenerate mass spec-
trum, one requires a hard radiation (γ, Z, j etc) from the
initial state, which boosts the resonance to a high trans-
verse momentum. Such boosted resonance will appear
as unresolved fat-jet. The appropriate tagging algorithm
and the hard radiation can overcome the huge QCD back-
ground [344, 345]. Mono-jet searches can therefore be
interpreted in several different ways — as dark-matter
production in association with a jet, squark production in
SUSY with degenerate spectrum, or Z ′ production with
invisible decay.

Finally, initial state radiation is also useful in the mea-
surement of particle properties such as top quark mass
measurement at the LHC [62, 346] and ILC [107].

X. VARIABLES AND METHODS USING
ENSEMBLES OF EVENTS

So far we have considered kinematic variables which
can be calculated on an event-by-event basis. In this
section, we introduce a variety of different types of kine-
matic methods, which use ensembles of events. For con-
creteness, let us consider the generic event topology in
a collider analysis displayed in Figure 23. The parti-
cles Xi, 1 ≤ i ≤ n, are BSM particles which appear
as promptly decaying, on-shell intermediate resonances.
The particles xi are the corresponding SM decay prod-
ucts, which are all visible in the detector. We begin with
the so-called polynomial method [241, 347, 348].

A. Polynomial method

We use the experimentally measured four-momenta pµi
(of all SM particles) as well as the missing transverse
momentum /~pT in the event. We then impose the mass
shell constraints for the intermediate BSM particles Xi

and attempt to solve the resulting system of equations for
the 8 unknown components of the four-momenta qµ0 of the
two missing particles X0. With the (n+1) unknown BSM
masses mi for Xi, the number of unknown parameters Np
is given by

Np = 8 + (n+ 1) = n+ 9 . (119)

The number of measurements (constraints) Nm includes
the two components of the missing transverse momentum
condition and 2(n + 1) mass-shell conditions (for each
BSM particle Xi belonging to one of the two decay chains
shown in Figure 23):

Nm = 2(n+ 1) + 2 = 2n+ 4 . (120)

Then the number of undetermined parameters for any
given event is readily obtained from Eqs. (119) and (120)

Np −Nm = 5− n. (121)
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Figure 1: The generic event topology under consideration in this paper. The particles Xi, 1 ≤ i ≤ n,

are new BSM particles which appear as promptly decaying, on-shell intermediate resonances. The

particles xi are the corresponding SM decay products, which are all visible in the detector, i.e. we

assume that there are no neutrinos among them. ISR stands for generic initial state radiation with

total transverse momentum !pT . X0 is a BSM particle which is invisible in the detector. The integer

n counts the total number of intermediate BSM particles in each chain, so that the total number of

BSM particles in each chain is n + 1. For simplicity, in this paper we shall only consider symmetric

events, in which the two decay chains are identical. The generalization of our methods to asymmetric

decay chains is straightforward.

The dark matter problem therefore greatly motivates the study of missing energy signatures

at the Tevatron and the LHC [2].

The long lifetime of the dark matter particle is typically ensured by some new exact

symmetry1, under which the SM particles are neutral, while the BSM particles are charged.

This setup implies that the new particles will be pair-produced, and each of the two cascades

will terminate in the dark matter candidate, giving rise to missing energy in the detector. (A

generic example of this topology is shown in Fig. 1.) Since the energies and momenta of the

final two invisible particles X0 are not measured, one cannot directly apply resonance mass

reconstruction techniques2. This represents a significant challenge for determining the masses

Mi of the new particles Xi. In recognition of this problem, there has been a recent resurgence

of interest in the development of different methods for mass measurements in cascade decays

with missing energy [12–48]. Most of these techniques fall into one of the following three

categories:

• I. Endpoint methods. They rely on the kinematic endpoints [12,14–16,20,21,25] or

shapes [22,23,46] of various invariant mass distributions constructed out of the visible

(SM) decay products xi in the cascade chain.

• II. Polynomial methods. Here one attempts exact event reconstruction using the

measured momenta of the SM particles and the measured missing transverse momentum

1Some well known examples are: R-parity in supersymmetry [3], KK parity in models with extra dimensions

[4–7], T -parity in Little Higgs models [8,9], U -parity [10,11] etc.
2See, however, Section 2.2.

– 2 –

FIG. 23. The generic event topology under consideration in
Section X. The particles Xi, 1 ≤ i ≤ n, are BSM particles
which appear as promptly decaying, on-shell intermediate res-
onances. The particles xi are the corresponding SM decay
products, which are all visible in the detector, i.e., we as-
sume that there are no neutrinos among them. ISR stands for
generic initial state radiation with total transverse momentum
~pT . X0 is a BSM particle which is invisible in the detector.
The integer n counts the total number of intermediate BSM
particles in each chain, so that the total number of BSM par-
ticles in each chain is n+ 1. For simplicity, in this review we
shall only consider symmetric events, in which the two de-
cay chains are identical. The generalization of the methods
discussed here to asymmetric decay chains is straightforward
[216, 217]. Taken from Ref. [219].

Therefore if n ≥ 5, one can in principle solve for the mo-
menta of the invisible particles and reconstruct the entire
final state (up to the combinatorial issue mentioned in
Section II B).

However, one might do better than this, by combining
the information from two or more events [218, 348–350].
For example, consider another event of the same type.
Since the (n+ 1) unknown masses were already counted
in Eq. (119), the second event introduces only 8 new
parameters (the four-momenta of the two X0 particles
in the second event), bringing up the total number of
unknowns in the two events to

Np = 8 + 8 + (n+ 1) = n+ 17 . (122)

At the same time, all the constraints are still valid for
the second event, which results in (2n + 4) additional
constraints. This brings the total number of constraints
to

Nm = (2n+ 4) + (2n+ 4) = 4n+ 8 . (123)

Subtracting (122) and (123), we get

Np −Nm = 9− 3n. (124)

Comparing the previous result (121) with (124), we see
that the latter decreases much faster with n. Therefore,
when using the polynomial method, combining informa-
tion from two different events is beneficial for large n (in
this example, for n ≥ 3).

Following the same logic, one can generalize this pa-
rameter counting to the case where the polynomial
method is applied for a group of Neve different events

FIG. 24. The dependence of the number of undetermined
parameters Np −Nm as a function of the number n of inter-
mediate heavy resonances in the decay chains of Figure 23,
for various mass determination methods: MT2 method (green,
open squares), endpoint method (red, open circles), polyno-
mial method for Neve = 2 (blue, × symbols), or a hybrid
method which is a combination of the latter two methods
(magenta, ⊗ symbols). Within the yellow-shaded region the
number of unknowns Np does not exceed the number of mea-
surements Nm for the corresponding method, and the mass
spectrum can be completely determined. Taken from Ref.
[219].

of the same type at a time. The number of unknown
parameters is

Np = n+ 1 + 8Neve, (125)

the number of constraints is

Nm = (2n+ 4)Neve, (126)

and therefore, the number of undetermined parameters
is given by

Np −Nm = n+ 1− 2(n− 2)Neve. (127)

For Neve = 1 and Neve = 2 this equation reduces to
Eqs. (121) and (124), respectively. What is the optimal
number of events Neve for the polynomial method? The
answer can be readily obtained from Eq. (127), where
Neve enters the last term on the right-hand side. If this
term is negative, increasingNeve would decrease the num-
ber of undetermined parameters, and therefore it would
be beneficial to combine information from more and more
different events. From Eq. (127) we see that this would be
the case if the decay chain is sufficiently long, i.e., n ≥ 3.
On the other hand, when n = 1, considering more than
one event at a time is actually detrimental – we are
adding more unknowns than constraints. In the case of
n = 2, the number of undetermined parameters Np−Nm
is actually independent of Neve and one might as well
consider the simplest case of Neve = 1.

Figure 24 summarizes the dependence of the number
of undetermined parameters Np − Nm as a function of
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FIG. 25. The left panel shows a plot of 20 extreme curves in
the (m̃A1 , m̃A2) plane for fixed m̃a0 = ma0 = 700 GeV, for
the the tt̄-like topology of Figure 9. The right panel shows
the fractional density of extreme curves, i.e., the fraction of
events whose extreme curves pass through a given 10 × 10
GeV pixel. (Taken from Ref. [267].)

the number n of intermediate heavy resonances in the
decay chains of Figure 23, for various mass determina-
tion methods: MT2 method (green, open squares), end-
point method (red, open circles), polynomial method for
Neve = 2 (blue, × symbols), or a hybrid method which
is a combination of the latter two methods (magenta,
⊗ symbols) [219]. Within the yellow-shaded region the
number of unknowns Np does not exceed the number of
measurements Nm for the corresponding method, and
the mass spectrum can be completely determined. For
readers who are interested in counting the number of un-
determined parameters of various methods, we refer to
Ref. [219] for more details including a hybrid method
combining the techniques of the polynomial and endpoint
methods [351]. A similar idea on the mass determination
in sequential particle decay chains is discussed in Ref.
[352].

The polynomial method described in this section relies
on the presence of a sufficient number of kinematic con-
straints, so that the event kinematics becomes exactly
solvable for the components of the invisible momenta.
This typically requires complex event topologies, with
several successive decays in each decay chain. Therefore,
the method cannot be applied to simpler event topolo-
gies with fewer kinematics constraints, and new ideas
are needed. Some of those alternative techniques are de-
scribed in the following subsections.

B. Focus point method

The focus point method for mass measurement pro-
posed in [262, 267] can be applied to certain event topolo-
gies with underconstrained kinematics. The method re-
lies on the fact that the projection onto the visible space
will result in a relatively large number of events in the
vicinity of a singularity, as illustrated in Figure 16. Turn-
ing the argument around, one could ask, for any given
event, what choice of the unknown mass parameters
would place a singularity at that point. This condition

delineates a hypersurface in mass parameter space, and
we have one such “extreme” surface for each event in the
data. As shown in [267], the extreme surfaces for many of
the events in the dataset pass close to the true values of
the unknown masses. This leads to a technique for esti-
mating the unknown masses simply as the “focus-point”
of the extreme surfaces in the mass-parameter space.
This is illustrated in Figure 25 for the tt̄-like topology
of Figure 9(b), for mA2 = 1000 GeV, mA1 = 800 GeV
and ma0 = 700 GeV. The left panel in the figure shows
the kinematic boundaries of 100 events in the trial mass
parameter space (m̃A1

, m̃A2
), with m̃a0

fixed to its true
value ma0

= 700 GeV. Notice that the kinematic bound-
aries tend to focus at the true values of the masses of the
parent particles A2 and A1 in this example. The right
panel in Figure 25 shows a heatmap of the density of
extreme surfaces (curves in this case) per 10 × 10 GeV
bin. The bright spot in the figure clearly marks the true
values of the masses. This technique can be readily gen-
eralized from tt̄ events to more general event topologies
in SUSY and beyond [267].

C. Kinematic endpoint methods

As we have discussed in preceding sections, the distri-
butions of kinematic variables often allow us to infer the
mass values of the (new) particles involved in the physics
process of interest. For example, the endpoints of in-
variant mass, transverse mass, MT2, and M2 variables
and energy peaks are determined purely by kinematics,
regardless of detailed dynamics (see also Section VII).
Therefore, those observables have received great atten-
tion and a host of ideas have been proposed especially in
the context of mass measurements of new particles be-
cause they do not require any prior knowledge about the
exact details of the associated new physics.

The classic supersymmetric “q``-chain” introduced in
Section VII A is one of the most extensively studied
benchmark processes in this regard [23, 27, 202–209].
There are up to four unknown mass parameters, namely,
mq̃, mχ̃0

2
, m˜̀, and mχ̃0

1
, and four kinematic endpoints are

readily available, e.g., Mmax
q`n

, Mmax
q`f

, Mmax
`` , and Mmax

q`` .

To avoid the combinatorial ambiguity between `n and
`f , one uses instead the set M<,max

q` , M>,max
q` , Mmax

`` ,

and Mmax
q`` (see Section VII A). Therefore, in principle,

all the unknown mass parameters can be completely de-
termined by “inverting” the four endpoint measurements.
However, this mass determination can be sometimes am-
biguous or underconstrained, and several degenerate so-
lutions for the masses may arise [203, 206, 353–355].

There are several reasons for these challenges in the
mass determination. First of all, depending on the un-
derlying mass spectrum, the four observables are not
completely independent; in certain regions of parameter
space, the following relation holds [203]:

(
Mmax
q``

)2
=
(
M>,max
q`

)2

+ (Mmax
`` )

2
. (128)
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In this case, another independent measurement is needed,
and one such example is the lower kinematic endpoint
Mmin
q``,const. [27]. Here the constrained variable Mq``,const.

is the usual Mq`` subject to the condition Mmax
`` /

√
2 <

M`` < Mmax
`` which forces to choose events where the

opening angle between the two leptons is greater than
π/2 in the rest frame of ˜̀. Second of all, the finite detec-
tor resolution smears each of the measured endpoint val-
ues away from the theoretically predicted ones, resulting
in multiple and/or unphysical solutions [203, 204, 354].
Similarly, if an endpoint is identified as the (long) tail
of the associated distribution, its measurement is highly
sensitive to the data statistics and “false” solutions can
emerge. However, even in the ideal case of a perfect ex-
periment, it is possible that different mass spectra can
result in the same set of endpoints so that an application
of relevant inversion formulas (see Ref. [207] for the full
sets of formulas) would yield “fake” solutions [207]. A
possible way of resolving this ambiguity is to study the
shapes of the boundaries of the bivariate distributions in{
M<
q`,M

>
q`

}
and {M``,Mq``} [207].

The above discussion requires one sufficiently long de-
cay chain to determine the full mass spectrum. However,
for the event topologies involving pair-produced heavy
resonances, the mass determination can often be done
in combination with transverse variables such as MT2.
A well-studied prototypical example is the fully-leptonic
SM tt̄ production. The b` invariant mass endpoint en-
codes the mass relation

Mmax
b` =

1

mW

√
(m2

t −m2
W )(m2

W −m2
ν) , (129)

and the two combinatorics-free subsystems, leptonic and
bottom respectively, when applied to MT2 or MT2,⊥, al-

low one to extract two independent mass relations µ(``)

and µ(bb), respectively (see also Section VII B):

µ(``) =
mW

2

(
1− m2

ν

m2
W

)
, (130)

µ(bb) =
mt

2

(
1− m2

W

m2
t

)
. (131)

The CMS Collaboration performed the top quark mass
measurement using this idea at

√
s = 7 TeV [236, 356]

and
√
s = 8 TeV [237], and achieved a ∼ 2 GeV-level and

a . 1 GeV-level systematics in the respective measure-
ments by constraining the W and ν masses from other
independent measurements.

In a similar fashion, the three mass parameters ap-
pearing in the two-step two-body cascade decay topol-
ogy shown in Figure 7(a) can be determined in com-
bination with the peak values in the a2 and a1 energy
distributions, if both of A2 and A1 are either scalar or
unpolarized. Again, the kinematic endpoint in the Ma2a1

distribution is

Mmax
a2a1

=
1

mA1

√
(m2

A2
−m2

A1
)(m2

A1
−m2

a0
) , (132)

and the two energy-peak values are given by

Epeak
a2

=
m2
A2
−m2

A1

2mA2

, (133)

Epeak
a1

=
m2
A1
−m2

a0

2mA1

. (134)

The last three mass relations are completely independent,
allowing one to determine the three mass parameters.
The generic idea was first proposed in Ref. [272], and
applied to a supersymmetric gluino decay process, g̃ →
bb̃, b̃ → bχ̃0

1, with combinatorial ambiguity in the b-jet
energy distribution appropriately prescribed.

D. Matrix element and likelihood methods

The Matrix Element Method (MEM) is one of the like-
lihood methods which utilizes the quantum amplitude of
a process. The probability to observe visible particles
{P vis

i }, i = 1, · · · , Nvis under the assumed process and
parameters {α} for a single event is given by

P({P vis
i }|α) =

1

σα

[Nvis∏

i=1

∫
d3pi

(2π)32Ei

]
W ({P vis

i }, {pi})

×
[Ninv∏

j=1

∫
d3qj

(2π)32Ej

]∑

a,b

fa(x1)fb(x2)

2sx1x2
|Mα({pi}, {qj})|2

×(2π)4δ4


pa + pb −


∑

i

pi +
∑

j

qinv
j




 , (135)

where {pa, pb} are the four-momenta of the initial-state
partons a and b and {fa, fb} are their correspond-
ing PDFs. Here one integrates out the unknown mo-
menta {qj} of invisible particles j = 1, · · · , Ninv and
considers various non-partonic effects including detec-
tor response and QCD activity with a transfer func-
tion W ({P vis

i }, {pi}) between the parton-level momen-
tum {pi} and the reconstructed momentum {P vis

i }. In-
tegrating the transfer functions often takes up most of
the computing resources for a MEM analys. In the
case where the visible particles consist of only light lep-
tons (electron and muon), we can neglect the transfer
functions, which leads to an important simplification for
purely leptonic channels like Higgs to four leptons [357–
359]. We can construct the likelihood specific to {α}, Lα,
for a set of N events with individual likelihoods for each
event n as

Lα ≡
N∏

n

P({P vis
i }n|α). (136)

Thus one can expect to find the model parameters {α}
by maximizing Lα. By constructing a likelihood function,
one can measure not only particle properties such as the
mass and width of new particles but also coupling struc-
tures in the interaction vertices as demonstrated in [360].
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E. Edge detection

The identification of kinematic endpoints in a certain
one-dimensional distribution is often indicative of bound-
aries in the high-dimensional phase space that is being
projected onto the one-dimensional subspace (see Fig-
ure 16). At the same time, such kinematic endpoints
can also be formed by signal events piling up on top of
a smooth background distribution, and thus can be used
for discovery [361].

The traditional endpoint techniques (usually in the
context of supersymmetry, see Ref. [209] for a recent
review) were typically applied to one-dimensional his-
tograms, but that does not necessarily have to be the case
— while dimensional reduction increases the statistics
near the kinematic endpoint, it may also result in the loss
of useful information. This is why recent work advocated
for edge detection in a two-dimensional space of observ-
ables [206, 207, 362, 363] and even for a (surface) bound-
ary detection in three or more dimensions [264, 364, 365].

The traditional approach to edge detection is to bin the
data in a lower-dimensional observable space and iden-
tify a kinematic edge by comparing the counts in adja-
cent bins, looking for a significant variation [232, 366].
Conventional edge-detection algorithms for machine vi-
sion have been developed mostly for two-dimensional im-
age data and are not necessarily aligned with the goals
of particle physics analyses, which need to account for
smearing of the edges due to detector resolution, particle
widths, etc.

When it comes to detecting kinematic features in the
data, an alternative approach to binning is offered by the
tessellation of the data, where we can treat the full set
of collider events as a point pattern in the observable
multi-dimensional kinematic space. There exist differ-
ent tessellation methods. For example, Ref. [361] pro-
posed a phase-space edge detection method based on the
Voronoi tessellation, which divides the original space into
non-overlapping regions (Voronoi cells) so that the points
within each region are closest to one of the original data
points [367]. It was shown that the value of the scaled
standard deviation,

σa
ā

=
1

ā

√√√√
∑

n∈Ni

(an − ā)2

|Ni| − 1
, (137)

where Ni is the set of neighbors of the i-th Voronoi cell
and ā(Ni) is their mean area, is indicative of whether
the i-th cell is close to a boundary. This result can be
easily understood intuitively by noting that for bound-
ary cells, the neighbors on the dense side have small ar-
eas while the neighbors on the sparse side have large ar-
eas. Therefore, edge cells are expected to show relatively
large scaled standard deviation. The method was subse-
quently tested on the classic supersymmetric “q``”chain,
q̃ → χ̃0

2j, χ̃
0
2 → ˜̀±`∓, ˜̀± → χ̃0

1`
±: Reference [361]

considered edge detection in the two-dimensional space

{
m2
``, (m

2
j`` −m2

``)/6
}

, while Ref. [368] demonstrated

a surface boundary detection in the three-dimensional

space
{
m2
j`n
,m2

``,m
2
j`f

}
. The method can also be

adapted to mass measurements of new particles [364] and
for enhancing the discovery opportunities in combination
with the ∆4 variable [265].

The Delaunay triangulation is a tessellation that is the
dual graph of a Voronoi tessellation. Therefore, Ref. [369]
proposed an alternative edge detection method which uti-
lizes the Delaunay tessellation of the data instead. Since
edge detection necessarily involves computing the gradi-
ent of the phase space density, the Delaunay cells, being
formed by several neighboring data points, are the natu-
ral objects for computing local gradients.

F. Interference effects

When high precision is required in measurements of
masses or other kinematic properties, subtle quantum ef-
fects can modify the theoretical predictions in ways that
can be hard to predict or to interpret without a full the-
oretical understanding of kinematic variables.

Even relatively simple observables like the invariant
mass can be affected by subtle effects which may give
apparently inconsistent results between measurements of
the mass of a particle in two different channels. This
is the case for instance for the Higgs boson whose most
precise mass measurements are in the γγ and 4` chan-
nels. The key difference between these two channels is
that the 4` channel is essentially free from background,
whereas the γγ channel has substantial background from
QED+QCD production of two photons. The presence
of large background opens the possibility to have non-
resonant features to redefine the expected signal shape
even for perfect detectors. The studies in Refs. [370–375]
have pointed out that the γγ peak in the Mγγ distri-
bution is expected to be shifted and broadened by the
interference between gg → γγ and gg → h→ γγ. There-
fore, the mass measured as the peak of the Mγγ dis-
tribution will differ from that measured in background-
free channels such as 4`. The subtraction of the peak
from 4` events into the extraction of the peak in the
Mγγ distribution may help to highlight this effects in a
model-independent way. As the effect has to do with
the Higgs boson width, it has also been pointed out that
the mass shift can be used to constrain the Higgs boson
width [376, 377].

The shift also depends on experimental conditions such
as the the diphoton mass resolution. Depending on how
the measurement in the γγ channel is performed, the
shift may range from a fraction of 100 MeV to a frac-
tion of 1 GeV, which would be significantly large to be
observed [371]. The ATLAS Collaboration has evalu-
ated the impact of this theoretical effect on a realistic
mass measurement and has found a non-vanishing effect
around 35 MeV for the specific procedure used to extract
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FIG. 26. Various possible analysis chains for some physics-
motivated task. (a) The traditional (non-ML) analysis tech-
nique using kinematic variables; (b) ML-based analysis us-
ing only raw or low-level data as inputs; (c) ML-based anal-
ysis using in addition reconstructed objects and/or human-
engineered high-level variables as inputs; (d) construction of
sensitive analysis variables using machine learning techniques.

the Higgs boson mass in the γγ channel [378].
The present Higgs boson mass appearing in the up-to-

date Particle Data Group report is 125.25 ± 0.17 [379],
stemming from slightly disagreeing measurements from
CMS [380] mγγ

h = 125.78 ± 0.26 GeV, m4`
h = 125.46 ±

0.16 GeV and ATLAS [381] m4`
h = 124.79 ± 0.37 GeV,

mγγ
h = 124.93 ± 0.40 GeV. Future HL-LHC measure-

ments, exploiting a dataset about two orders of mag-
nitude larger, could reach a measurement with a much
smaller uncertainty than the present one. Systematic un-
certainties will be relevant for such a large dataset, but
a purely statistical rescaling of the present measurement
would hint at the necessity to take into account these sub-
tle effects from interference. For example, in Ref. [382] a
precision on mh in the γγ channel around 10-20 MeV is
foreseen [383, 384], thus calling for a careful evaluation
of the interference effects.

XI. KINEMATIC VARIABLES IN THE
MACHINE LEARNING ERA

Recently, there has been an explosion of studies em-
ploying ML for various tasks in the analysis of high en-
ergy data. A collection of references is maintained at
HEPML-LivingReview [385]. So far we have discussed
traditional (i.e., non-ML) analysis techniques using kine-
matic variables [Figure 26(a)]. Here we will discuss the
multifaceted synergy between ML and kinematic vari-
ables in particle physics.

A. Feature engineering

Feature Engineering for ML. Kinematic variables
are often used as input event-features in ML approaches.
While in principle, one can train machines using only raw

or low-level data as inputs [Figure 26(b)], the dimension-
ality of such feature vectors will typically be large. When
we feed low-level data, the machine could spend a lot
of resources trying to extract useful information from it.
Furthermore, inaccuracies in the simulation models could
lead to unknown and unquantified errors in the high-
dimensional low-level simulated data, which could lead
to unquantified errors in the subsequent ML-based anal-
ysis. Both these issues can be ameliorated by using re-
constructed objects and/or human-engineered high-level
variables as inputs in ML applications [Figure 26(c)]. Op-
tionally, one can also pass the low-level information to the
machine, in addition to the high-level features. Carefully
chosen high-level input features can efficiently retain the
information from low-level data that is relevant to the
task at hand, and facilitate efficient training of ML ap-
proaches. Furthermore, reducing the dimensionality of
the input allows for easier and more meaningful valida-
tion of the simulation models (in the low-dimensional in-
put space), for the purposes of the analysis at hand.

Feature Engineering with ML. An interesting de-
velopment in the last few years is the construction of
sensitive analysis variables using machine learning tech-
niques [Figure 26(d)]. Any ML-approach, in which a ma-
chine (e.g., neural network, boosted decision tree) takes
individual events as input and returns an output, can
be thought of as constructing an analysis variable or ob-
servable. However discussing all such applications of ma-
chine learning, including classifiers [386], likelihood ratio
estimators [387], etc. is beyond the scope of this paper.
Instead, we will focus on ML-approaches for constructing
event observables, which are functionally similar to more
traditional event observables.

At an abstract level, many ML-approaches for con-
structing collider observables share the following basic
procedure. 1) Construct a trainable, machine-learning-
based function which maps a high-dimensional event de-
scription to a low-dimensional observable. 2) Construct
an evaluation metric to quantify the performance of the
ML-based observable, for some task at hand. 3) Train
the ML-based observable by optimizing the evaluation
metric. Several novel ML-based observables have been
proposed in recent years, each differing in the implemen-
tation details of the steps listed above [31, 388].

For example, in Ref. [388], jet observables are con-
structed as products of powers of N -subjettiness vari-
ables with unknown (trainable) exponents. The perfor-
mance of the observable for distinguishing between dif-
ferent signatures (H → bb vs. g → bb; Z ′ vs. quarks
and gluons) is used as the performance metric to be min-
imized in order to choose the exponents in the observable.

In Ref. [31], kinematic variables for different event
topologies are constructed as neural-network-based func-
tions of reconstructed parton-level data. The variables
are trained by maximizing the sensitivity of their dis-
tributions to the value of underlying parameters in the
corresponding event topologies, as captured by the mu-
tual information between the parameters and the vari-
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able. Variables trained using such an approach are sen-
sitive over a range of unknown theory parameter values,
and can subsequently be used for signal discovery or pa-
rameter measurement analyses involving the concerned
topology.

B. Domain-inspired machine learning

Several HEP-inspired neural network architectures
have been invented for use in ML for HEP. For ex-
ample, Energy Flow Networks and Particle Flow Net-
works [389], based on Deep Sets [390] and Energy Flow
Polynomials [391], are neural network architectures de-
signed for learning from collider events represented as
unordered, variable-length sets of particles. As another
example, Lorentz Boost Networks (LBN) [392–394] al-
low for the construction of composite particles and rest
frames (both represented by combinations of particles)
within the trainable layers of the network, using four-
momenta of final state particles as input. The LBNs
also Lorentz boost the composite particles into the con-
structed rest frames. The features thus constructed
within the layers of the network can then be used to per-
form relevant physics tasks like classification or regres-
sion. Such domain-specific network architectures have
been observed to outperform other domain-unspecific
neural network architectures for collider event classifica-
tion tasks [392]. Furthermore, they also allow for inter-
pretation of the intermediate layers of the trained neural
network.

C. Interpretability and explainability

Most machine learning approaches, including neural
networks and boosted decision trees, act as blackbox sys-
tems with varying degrees of “blackboxness”, depending
on their architecture. This poses a challenge to the trust-
worthiness of ML-based analyses. This problem can be
approached from three directions. The first approach is
to interpret and explain the ML blackbox. The second
approach is to try and make the machine less of a black
box. The third approach is to design ML-based analy-
ses techniques that are robust despite the blackbox na-
ture of the machine. Kinematic variables can play a role
in each of these approaches. For example, one can use
kinematic variables to interpret and explain the decisions
made by the machine learning algorithms [395–398]. Us-
ing kinematic-variable-inspired neural architectures like
energy flow and particle flow networks [389] and lorentz
boost networks [392–394] can reduce the black-box na-
ture of neural networks. Finally, using machine learning
to construct low-dimensional event observables that are
not tuned to specific study points (i.e., are sensitive to
the underlying physics over a range of unknown model
parameters) [31], akin to kinematic variables, allow for
meaningful control-region validation of the simulations

TABLE IV. The number of inequivalent event-topologies as
a function of 1 ≤ Nv ≤ 4 and 1 ≤ Nχ ≤ 5. Taken from Ref.
[199].

Nχ

Nv 1 2 3 4 5

1 1 2 4 8 16

2 2 7 20 55 142

3 4 20 78 270 860

4 8 55 270 1138 4294

which in turn leads to robust analysis techniques.

D. Advantage of quantum computation for
identifying event-topologies

So far, most kinematic analyses are based on an as-
sumed event topology which makes it possible to opti-
mize a kinematic variable in each case. Due to the com-
plicated structure of phase space and the limited infor-
mation from invisible particles, various machine learning
algorithms become useful, but their training data is also
generated only for particular event topologies.

Given the lack of any clear signal of new physics so
far at the LHC, we need to ask how one can perform
an optimized analysis without any assumptions on the
new physics model. This question is related to identi-
fying the event-topology of the signal from data alone.
Checking all possible event-topologies can be a very time-
consuming task. For example, the number of possi-
ble event-topologies with Nv = 5 visible particles and
1 ≤ Nχ ≤ 4 “assumed” invisible particles is O(5000)
as shown in Table IV [199]. As the number of visible
and invisible particles increases, the number of possible
event-topologies grows exponentially, making the prob-
lem of identifying the event-topology an NP-hard prob-
lem. Since it is in the category of combinatorial optimiza-
tion problems, where various quantum algorithms have
been introduced [399, 400] and shown to be successful,
this suggests the use of quantum computers for this task.

When the produced particles are boosted, their decay
products are organized into groups exhibiting character-
istic structures and substructures. One can then utilize a
shape variable used in clustering a jet with either a gate-
type quantum computer or a quantum annealer [401–
404]. Unlike QCD jet activity, the phase space of a
hard process can exhibit a more complicated structure,
in which case one can try to minimize some basic kine-
matic quantity, for example, the total invariant mass or
sum/difference of invariant masses of the clusters. If
one restricts to a 2 → 2 process, one can directly use a
Quadratic Unconstrained Binary Optimization (QUBO)
with an Ising model to cluster visible particles as in Fig-
ure 27 [405]. Once we identify the event-topology, we can
proceed to optimize the analysis to measure the masses



40

PP → {vi} PP → {vi} ∪ {vj} PP → A ∪ B

(a) (b) (c)

FIG. 27. (a) n-observed particles, (b) dividing n particles
into two groups for a 2→ 2 process, and (c) identified event-
topology with A and B. Taken from Ref. [405].

and spins of the new particles as usual.

XII. KINEMATIC VARIABLES IN DIFFERENT
EXPERIMENTS

While most of the recent developments in kinematic
variables have been motivated by the phenomenology
in collider experiments, especially hadron colliders, they
are readily applicable to other experiments including
accelerator-based experiments [e.g, fixed target or beam-
dump type (neutrino) experiments], reactor-based (neu-
trino) experiments, dark-matter (in)direct detection ex-
periments, and cosmic-particle telescopes. Here we
briefly review existing usage of kinematic variables in
non-collider experiments, and discuss future prospects of
applications of kinematic variables to upcoming experi-
ments.

One of the crucial differences of non-collider experi-
ments from collider-based experiments is that the trans-
verse plane for a given event is usually ill-defined. In typ-
ical collider experiments, the initial-state particles have
their momenta aligned with the beam axis, so that the
transverse plane is literally transverse to the beam di-
rection and most of the transverse variables are defined
with respect to this plane. By contrast, this is not al-
ways the case for non-collider experiments. For example,
in the beam-focused neutrino experiments, source parti-
cles of neutrinos (e.g., charged pions, kaons, and muons)
are focused and aligned to the particle beam axis by the
magnets in the horn system and then decay to neutri-
nos. Although the source particles are highly boosted in
the forward direction, the neutrinos come with a non-
zero angular spread with respect to the beam axis and
as a consequence, we do not know the “neutrino beam”
direction event-by-event. Likewise, in dark-matter or
cosmic-ray detection experiments, the incoming direction
of dark matter or cosmic particles is not known a priori.
In these experiments, therefore, any variables defined on
the beam-transverse plane do not allow for robust phys-
ical interpretations unless they are re-defined with ap-
propriate prescriptions. Instead, basic quantities (e.g.,
energy, timing, etc), invariant quantities (e.g., invariant
mass), or their combinations are more straightforwardly
applicable.

Energy: Energy is one of the most widely used variables
in particle physics experiments, as it is a basic physics
quantity to measure at detectors. A few example uses
follow.

(a) In conventional dark-matter direct detection experi-
ments targeting WIMP dark-matter candidates, the
shape of the nuclear recoil energy spectrum carries
information about the dark-matter properties. One
can estimate the mass scale of dark matter [406] or
test whether the observed events are caused by in-
elastic dark matter [407].

(b) In stopped-pion neutrino experiments (e.g., CO-
HERENT [408–410] and CCM [411]), the energy is
used to eliminate the pion-induced muon neutrino
events in the search for low-mass dark matter. Since
the beam energy of these experiments is small, π+’s
produced in the beam target material lose their ki-
netic energy and stop before decaying to a µ+ and a
νµ. The energy of νµ is single-valued at ∼ 30 MeV
so that the recoil energy of νµ scattering events is
bounded from above. By contrast, vector-portal
dark matter coming from the π0 decay through a
dark photon is typically more energetic hence de-
posits more energy in the detector. An energy cut
rejects νµ-induced events, leading to a dark-matter
signal-rich region [411–415].

(c) The energy peak is useful in the energy distribution
of cosmic photons from neutral pion decays. In a
cosmic shower, π0’s are produced with various boost
factors. Since π0 is a scalar and its decay is a two-
body process, the peak position is identified as half
the π0 mass [268] as also discussed in Section VIII A
in a more general context.

Timing: Timing is also a readily accessible quantity in
many of the aforementioned experiments. As discussed
in Section VIII B, it is important to set the reference time
(i.e., t0) in order to render the timing values meaningful.
This is deeply connected to the event triggering. In fixed
target type experiments, the beam-on time is often set
to be t0. Three example applications are given below.

(a) In the stopped pion neutrino experiments mentioned
earlier whose proton beam energy is ∼ 1 GeV, beam-
related neutrons would give rise to an enormous
amount of background. However, due to the scale
of the beam energy, most of the produced neutrons
are slowly moving so that their arrival timing at the
detector is rather delayed, compared to the pion-
induced neutrino events. Therefore, restricting to
the prompt region, one can reject beam-related neu-
trons very efficiently (see, e.g., Refs. [411, 415]).

(b) In a similar manner, neutrinos from muon decays
can be vetoed using a timing cut in the stopped
pion neutrino experiments. Since a muon is much
longer-lived than a charged pion, the muon-induced
neutrinos typically arrive at the detector much later
than a pion-induced neutrino. In other words, the
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muon-induced neutrino events usually fall in delayed
timing bins. The low-mass dark matter mentioned
before is also prompt as it comes from the rare π0

decay, and therefore, a timing cut can reduce signif-
icantly not only beam-related neutron backgrounds
but also muon-induced “delayed” neutrino events,
while keeping as many dark-matter events as possi-
ble [413, 414].

(c) An inverted timing cut can be utilized in the beam-
focused neutrino experiments. The MiniBooNE Col-
laboration sets the limit for WIMP dark-matter can-
didates, based on the fact that no significant num-
ber of events are observed in their delayed timing
bins [416, 417]. If a WIMP candidate with a sub-
GeV or greater mass were produced in the Mini-
BooNE target, it would travel rather slowly because
the beam energy is as small as ∼ 8 GeV.

Angle or directionality: The angle variable is useful
if the source point is well known, the momenta of visible
particles can be measured, and the angular resolution is
good enough. In typical accelerator-based experiments,
the angle is usually defined with respect to the beam
axis, visible particles are energetic enough to measure
their three-momentum, and detectors (e.g., calorimeters,
liquid argon time projection chamber detectors) are ca-
pable of measuring angles precisely.

An angle can also be defined in the search for cosmo-
genic signals. For example, a class of boosted dark mat-
ter models built upon a non-minimal dark-sector frame-
work [418] predict that a certain dark-matter compo-
nent can be produced with a significant boost factor in
the present universe by the pair-annihilation of the halo
dark-matter component [419]. Therefore, visible parti-
cles (e.g., recoil electrons) induced by the scattering of
boosted dark matter can be not only energetic enough to
allow for the measurement of their three-momenta but
forward-directed enough to be aligned with the momen-
tum of the incoming boosted dark matter. The domi-
nant fraction of the flux of this so-called boosted dark
matter comes from the regions where halo dark matter
is densely populated, e.g., galactic center [234, 419, 420],
dwarf galaxies [421], and the sun [420, 422, 423] in the
solar-captured boosted dark matter scenarios. Therefore,
the line extended between these source points and the de-
tector location can be taken as a reference axis. If a de-
tector features a good angular resolution, one may define
a signal-rich region by selecting the events in which the
angles of visible particles with respect to the reference
axis are within a certain range. The Super-Kamiokande
Collaboration used angle cuts to perform a search for
galactic boosted dark matter and solar-captured boosted
dark matter that is interacting with electrons, and set
the first limits for models of two-component boosted dark
matter [424].

Complex variables: Beyond the basic quantities that
have been discussed thus far, complex kinematic vari-
ables constructed with basic quantities are being used

in a wide range of non-collider experiments as they are
equipped with high-capability detectors with good an-
gular, spatial, and/or energy-momentum resolutions. A
couple of examples are given below.

(a) A wide range of dark-sector scenarios predict the
production of low-mass dark matter (say, χ) in vari-
ous beam-induced neutrino experiments. An exten-
sively investigated detection channel is the elastic
scattering of dark matter off an electron inside the
detector material: χ+e− → χ+e−. One of the ma-
jor backgrounds to this signal is the charged-current
quasi-elastic (CCQE) scattering of electron neutri-
nos, i.e., νe + n → e− + p or ν̄e + p → e+ + n,
where the final-state nucleon is not energetic enough
to be detected. It was demonstrated that this type of
signal-faking events can be significantly rejected by
an application of the Eeθ

2
e cut with Ee and θe being

the energy and the angle of the final-state electron.
For example, a Eeθ

2
e < 5 MeV·rad2 cut can reduce

about 99% of CCQE events at the NOνA near detec-
tor [425] and a Eeθ

2
e < 2 MeV·rad2 cut can suppress

the CCQE events by ∼ 99.9% at the DUNE near
detector [426].

(b) A class of well-motivated new physics models that
can be tested at neutrino experiments predict up-
scattering of the incoming particles: for example,
upscattering of a SM neutrino to a heavier sterile
neutrino (say, NR) through mixing [427] and upscat-
tering of dark matter to a heavier dark-sector state
(say, χ′) [407, 428, 429]. These upscattered states
may decay into a set of visible particles in addition
to the recoiling particle emerging from the primary
scattering of the incoming neutrino or dark matter.
Thus there can be multiple visible particles in the
final state, allowing for constructing complex vari-
ables such as invariant masses [429].

XIII. CONCLUSIONS AND OUTLOOK

In general, the outcome of any particle physics experi-
ment (whether studying scattering or decay processes) is
a measured probability distribution in the relevant phase
space of the final state. Unfortunately, in typical situa-
tions, the phase space is high-dimensional, and the ob-
served features are difficult to visualize. Furthermore, for
many interesting signals, some information, e.g., related
to the kinematics of invisible particles like neutrinos or
dark-matter candidates, may be missing. In that case
it makes sense to perform dimensional reduction to the
lower-dimensional observable slice of the phase space. In
doing so, a major goal is to use the proper kinematic
variables which retain as much information as possible
about the underlying physics, features, etc.

The higher-level variables which are derived from the
measured particle kinematic information are generically
referred to as “kinematic variables”. Depending on the
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type of experimental signature and/or the goal of the
analysis, many different kinematic variables have been
introduced and discussed over the years in the particle
phenomenology literature. The main purpose of this re-
view was to collect and summarize all those recent devel-
opments in one place. We also provided the motivation
for introducing each variable, its applicability and limi-
tations, together with a guide to the relevant references.

Many of the traditional questions and approaches in
particle kinematics are now being reevaluated using ma-
chine learning. The ability of ML to better capture the
high-dimensional correlations in the data may lead to
superior performance, at the expense of introducing un-
physical hyperparameters and perhaps less transparency
and interpretability. At the same time, kinematic vari-
ables can be incorporated into the ML approaches, thus
boosting their performance and interpretability. The
general methods which have guided particle phenomenol-
ogists in deriving these kinematic variables can be used in
other fields of science and are therefore of interest outside
the domain of particle physics.

Appendix A: Tools and codes for kinematic variables

For the benefit of the users of kinematic variables, in
Table V we list a few popular public codes for numerically
computing some of the kinematic variables described in
the main text. Note that the name of each code in the
table is hyperlinked to the respective web-page or repos-

itory. We also provide the corresponding reference, lan-
guage, and system requirements.
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[104] B. Chokoufé Nejad, W. Kilian, J. M. Lindert,
S. Pozzorini, J. Reuter and C. Weiss, NLO QCD
predictions for off-shell tt and ttH production and
decay at a linear collider, JHEP 12 (2016) 075,
[1609.03390].

[105] F. Bach, B. C. Nejad, A. Hoang, W. Kilian, J. Reuter,
M. Stahlhofen et al., Fully-differential Top-Pair
Production at a Lepton Collider: From Threshold to
Continuum, JHEP 03 (2018) 184, [1712.02220].

[106] A. H. Hoang and M. Stahlhofen, The Top-Antitop
Threshold at the ILC: NNLL QCD Uncertainties,
JHEP 05 (2014) 121, [1309.6323].

[107] M. Boronat, E. Fullana, J. Fuster, P. Gomis, A. Hoang,
V. Mateu et al., Top quark mass measurement in
radiative events at electron-positron colliders, Phys.
Lett. B 804 (2020) 135353, [1912.01275].

[108] Abramowicz et al., Top-quark physics at the clic
electron-positron linear collider, 1807.02441v1.

[109] ATLAS Collaboration, Measurement of the W -boson
mass in pp collisions at

√
s = 7 TeV with the ATLAS

detector, ArXiv e-prints (Jan., 2017) , [1701.07240].
[110] Smith, J. and van Neerven, W. L. and Vermaseren, J.

A. M., Transverse Mass and Width of the W Boson,
Phys. Rev. Lett. 50 (May, 1983) 1738–1740.

[111] L. Bianchini and G. Rolandi, A critical point in the
distribution of lepton energies from the decay of a
spin-1 resonance, 1902.03028v1.
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ŝmin : A

Global inclusive variable for determining the mass
scale of new physics in events with missing energy at
hadron colliders, JHEP 03 (2009) 085, [0812.1042].

[128] A. Banfi, G. P. Salam and G. Zanderighi,
Phenomenology of event shapes at hadron colliders,
JHEP 06 (2010) 038, [1001.4082].

[129] J. Bjorken and S. J. Brodsky, Statistical Model for
electron-Positron Annihilation Into Hadrons, Phys.
Rev. D 1 (1970) 1416–1420.

[130] S. Brandt, C. Peyrou, R. Sosnowski and
A. Wroblewski, The Principal axis of jets. An Attempt
to analyze high-energy collisions as two-body processes,
Phys. Lett. 12 (1964) 57–61.

[131] E. Farhi, A QCD Test for Jets, Phys. Rev. Lett. 39
(1977) 1587–1588.

[132] G. C. Fox and S. Wolfram, Event Shapes in e+ e-
Annihilation, Nucl. Phys. B 149 (1979) 413.

[133] I. W. Stewart, F. J. Tackmann and W. J. Waalewijn,
N-Jettiness: An Inclusive Event Shape to Veto Jets,
Phys. Rev. Lett. 105 (2010) 092002, [1004.2489].

[134] J. Thaler and K. Van Tilburg, Identifying Boosted
Objects with N-subjettiness, JHEP 03 (2011) 015,
[1011.2268].

[135] C. L. Basham, L. S. Brown, S. D. Ellis and S. T. Love,
Energy Correlations in electron - Positron
Annihilation: Testing QCD, Phys. Rev. Lett. 41 (1978)
1585.

[136] C. L. Basham, L. S. Brown, S. D. Ellis and S. T. Love,
Energy Correlations in electron-Positron Annihilation
in Quantum Chromodynamics: Asymptotically Free
Perturbation Theory, Phys. Rev. D 19 (1979) 2018.

[137] F. Maltoni, Basics of QCD For the LHC, .
[138] M. Mulders, ed., 2013 CERN - Latin-American School

of High-Energy Physics: Arequipa, Peru 6 - 19 Mar
2013. Proceedings, 7th CERN–Latin-American School
of High-Energy Physics (CLASHEP2013). Arequipa,
Peru, March 6-19, 2013. 7th CERN - Latin-American
School of High-Energy Physics, (Geneva), CERN,
CERN, May, 2016. 10.5170/CERN-2015-001.

[139] M. T. Ford, Studies of event shape observables with the
OPAL detector at LEP. PhD thesis, Cambridge U.,
2004. hep-ex/0405054.

[140] DELPHI collaboration, J. Abdallah et al., A Study of
the energy evolution of event shape distributions and
their means with the DELPHI detector at LEP, Eur.
Phys. J. C 29 (2003) 285–312, [hep-ex/0307048].

[141] M. Weber, Measurement of hadronic event shapes with
the CMS detector in 7 TeV pp collisions at the LHC.
PhD thesis, Zurich, ETH, 2011.
10.3929/ethz-a-006717052.

[142] CMS collaboration, M. A. Weber, Hadronic Event
Shapes at CMS, in 17th International Workshop on
Deep-Inelastic Scattering and Related Subjects, (Berlin,
Germany), p. 82, Science Wise Publ., 2009.

[143] ATLAS collaboration, G. Aad et al., Measurement of
hadronic event shapes in high-pT multijet final states
at
√
s = 13 TeV with the ATLAS detector, JHEP 01

(2021) 188, [2007.12600].
[144] A. Banfi, Event-shape variables at hadron colliders, in

Physics at the LHC 2010, pp. 186–189, 12, 2010. DOI.
[145] A. Lenz, M. Spannowsky and

G. Tetlalmatzi-Xolocotzi, Double-charming Higgs
boson identification using machine-learning assisted jet
shapes, Phys. Rev. D 97 (2018) 016001, [1708.03517].

[146] G. C. Fox and S. Wolfram, Observables for the
Analysis of Event Shapes in e+ e- Annihilation and
Other Processes, Phys. Rev. Lett. 41 (1978) 1581.

[147] C. Bernaciak, M. S. A. Buschmann, A. Butter and
T. Plehn, Fox-Wolfram Moments in Higgs Physics,
Phys. Rev. D 87 (2013) 073014, [1212.4436].

[148] C. Chen, New approach to identifying boosted
hadronically-decaying particle using jet substructure in
its center-of-mass frame, Phys. Rev. D 85 (2012)
034007, [1112.2567].

[149] C. Englert, M. Spannowsky and M. Takeuchi,
Measuring Higgs CP and couplings with hadronic event
shapes, JHEP 06 (2012) 108, [1203.5788].

[150] L. J. Dixon, M.-X. Luo, V. Shtabovenko, T.-Z. Yang
and H. X. Zhu, Analytical Computation of
Energy-Energy Correlation at Next-to-Leading Order
in QCD, Phys. Rev. Lett. 120 (2018) 102001,
[1801.03219].

[151] OPAL collaboration, M. Z. Akrawy et al., A Study of
Jet Production Rates and a Test of QCD on the Z0

http://arxiv.org/abs/1302.3415
http://arxiv.org/abs/1907.02029v1
http://dx.doi.org/oai:cds.cern.ch:2264497
http://arxiv.org/abs/ATL-PHYS-PROC-2017-051
http://arxiv.org/abs/1307.7627v2
http://dx.doi.org/oai:cds.cern.ch:2645431
http://arxiv.org/abs/ATL-PHYS-PUB-2018-026
http://arxiv.org/abs/2107.04444v1
http://arxiv.org/abs/1407.3792
http://arxiv.org/abs/1501.05587v2
http://arxiv.org/abs/1104.2056v1
http://arxiv.org/abs/1910.04726v2
http://arxiv.org/abs/1508.06954v2
http://arxiv.org/abs/2103.02671v1
http://dx.doi.org/10.1103/PhysRevLett.104.081601
http://dx.doi.org/10.1103/PhysRevLett.104.081601
http://arxiv.org/abs/0910.1149
http://dx.doi.org/10.1007/JHEP05(2019)044
http://arxiv.org/abs/1902.03028
http://dx.doi.org/10.1088/1126-6708/2009/03/085
http://arxiv.org/abs/0812.1042
http://dx.doi.org/10.1007/JHEP06(2010)038
http://arxiv.org/abs/1001.4082
http://dx.doi.org/10.1103/PhysRevD.1.1416
http://dx.doi.org/10.1103/PhysRevD.1.1416
http://dx.doi.org/10.1016/0031-9163(64)91176-X
http://dx.doi.org/10.1103/PhysRevLett.39.1587
http://dx.doi.org/10.1103/PhysRevLett.39.1587
http://dx.doi.org/10.1016/0550-3213(79)90120-2
http://dx.doi.org/10.1103/PhysRevLett.105.092002
http://arxiv.org/abs/1004.2489
http://dx.doi.org/10.1007/JHEP03(2011)015
http://arxiv.org/abs/1011.2268
http://dx.doi.org/10.1103/PhysRevLett.41.1585
http://dx.doi.org/10.1103/PhysRevLett.41.1585
http://dx.doi.org/10.1103/PhysRevD.19.2018
http://arxiv.org/abs/hep-ex/0405054
http://dx.doi.org/10.1140/epjc/s2003-01198-0
http://dx.doi.org/10.1140/epjc/s2003-01198-0
http://arxiv.org/abs/hep-ex/0307048
http://dx.doi.org/10.1007/JHEP01(2021)188
http://dx.doi.org/10.1007/JHEP01(2021)188
http://arxiv.org/abs/2007.12600
http://dx.doi.org/10.3204/DESY-PROC-2010-01/248
http://dx.doi.org/10.1103/PhysRevD.97.016001
http://arxiv.org/abs/1708.03517
http://dx.doi.org/10.1103/PhysRevLett.41.1581
http://dx.doi.org/10.1103/PhysRevD.87.073014
http://arxiv.org/abs/1212.4436
http://dx.doi.org/10.1103/PhysRevD.85.034007
http://dx.doi.org/10.1103/PhysRevD.85.034007
http://arxiv.org/abs/1112.2567
http://dx.doi.org/10.1007/JHEP06(2012)108
http://arxiv.org/abs/1203.5788
http://dx.doi.org/10.1103/PhysRevLett.120.102001
http://arxiv.org/abs/1801.03219


47

Resonance, Phys. Lett. B 235 (1990) 389–398.
[152] S. Catani, Y. L. Dokshitzer, M. Olsson, G. Turnock

and B. R. Webber, New clustering algorithm for multi
- jet cross-sections in e+ e- annihilation, Phys. Lett. B
269 (1991) 432–438.

[153] I. Moult, L. Necib and J. Thaler, New Angles on
Energy Correlation Functions, JHEP 12 (2016) 153,
[1609.07483].

[154] C. Cesarotti and J. Thaler, A Robust Measure of Event
Isotropy at Colliders, JHEP 08 (2020) 084,
[2004.06125].

[155] C. Cesarotti, M. Reece and M. J. Strassler, The
Efficacy of Event Isotropy as an Event Shape
Observable, 2011.06599.

[156] CMS collaboration, A. M. Sirunyan et al., Search for
dark matter produced with an energetic jet or a
hadronically decaying W or Z boson at

√
s = 13 TeV,

JHEP 07 (2017) 014, [1703.01651].
[157] ATLAS collaboration, M. Aaboud et al., Search for

dark matter and other new phenomena in events with
an energetic jet and large missing transverse
momentum using the ATLAS detector, JHEP 01
(2018) 126, [1711.03301].

[158] ATLAS collaboration, M. Aaboud et al., Search for
dark matter at

√
s = 13 TeV in final states containing

an energetic photon and large missing transverse
momentum with the ATLAS detector, Eur. Phys. J. C
77 (2017) 393, [1704.03848].

[159] CMS collaboration, A. M. Sirunyan et al., Search for
new physics in the monophoton final state in
proton-proton collisions at

√
s = 13 TeV, JHEP 10

(2017) 073, [1706.03794].
[160] CMS collaboration, A. M. Sirunyan et al., Search for

dark matter and unparticles in events with a Z boson
and missing transverse momentum in proton-proton
collisions at

√
s = 13 TeV, JHEP 03 (2017) 061,

[1701.02042].
[161] ATLAS collaboration, M. Aaboud et al., Search for an

invisibly decaying Higgs boson or dark matter
candidates produced in association with a Z boson in
pp collisions at

√
s = 13 TeV with the ATLAS detector,

Phys. Lett. B 776 (2018) 318–337, [1708.09624].
[162] ATLAS collaboration, M. Aaboud et al., Search for

dark matter in events with a hadronically decaying
vector boson and missing transverse momentum in pp
collisions at

√
s = 13 TeV with the ATLAS detector,

JHEP 10 (2018) 180, [1807.11471].
[163] CMS collaboration, A. M. Sirunyan et al., Search for

dark matter produced in association with a leptonically
decaying Z boson in proton-proton collisions at

√
s =

13 TeV, Eur. Phys. J. C 81 (2021) 13, [2008.04735].
[164] ATLAS collaboration, M. Aaboud et al., Search for

dark matter in association with a Higgs boson decaying
to two photons at

√
s = 13 TeV with the ATLAS

detector, Phys. Rev. D 96 (2017) 112004,
[1706.03948].

[165] ATLAS collaboration, M. Aaboud et al., Search for
Dark Matter Produced in Association with a Higgs
Boson Decaying to bb̄ using 36 fb−1 of pp collisions at√
s = 13 TeV with the ATLAS Detector, Phys. Rev.

Lett. 119 (2017) 181804, [1707.01302].
[166] CMS collaboration, A. M. Sirunyan et al., Search for

dark matter particles produced in association with a
Higgs boson in proton-proton collisions at

√
s = 13

TeV, JHEP 03 (2020) 025, [1908.01713].
[167] CMS collaboration, S. Chatrchyan et al., Missing

transverse energy performance of the CMS detector,
JINST 6 (2011) P09001, [1106.5048].

[168] ATLAS collaboration, M. Aaboud et al., Performance
of missing transverse momentum reconstruction with
the ATLAS detector using proton-proton collisions at√
s = 13 TeV, Eur. Phys. J. C 78 (2018) 903,

[1802.08168].
[169] D. Tovey, Measuring the SUSY mass scale at the LHC,

Phys. Lett. B 498 (2001) 1–10, [hep-ph/0006276].
[170] A. Papaefstathiou and B. Webber, Effects of QCD

radiation on inclusive variables for determining the
scale of new physics at hadron colliders, JHEP 06
(2009) 069, [0903.2013].

[171] P. Konar, K. Kong, K. T. Matchev and M. Park,
RECO level

√
smin and subsystem

√
smin: Improved

global inclusive variables for measuring the new physics
mass scale in ET events at hadron colliders, JHEP 06
(2011) 041, [1006.0653].

[172] T. Robens,
√
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