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Abstract: An unprecedented positron average current is required to fit the luminosity demands of
future e+e- high energy physics colliders. In addition, in order to access precision-frontier physics,
these machines require positron polarization to enable exploring the polarization dependence in
many HEP processes cross sections, reducing backgrounds and extending the reach of chiral physics
studies beyond the standard model. The ILC has a mature plan for the polarized positron source
based on conversion in a thin target of circularly polarized gammas generated by passing the main
high energy e-beam in a long superconducting helical undulator. Compact colliders (CLIC, C3
and advanced accelerator-based concepts) adopt a simplified approach and currently do not plan to
use polarized positrons in their baseline design, but could greatly benefit from the development of
compact alternative solutions to polarized positron production. Increasing the positron current, the
polarization purity and simplifying the engineering design are all opportunities where advances in
accelerator technology have the potential to make a significant impact. This white-paper describes
the current status of the field and provides R&D short-term and long-term pathways for polarized
positron sources.
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1 Executive Summary

Positron sources are a critical element for current and future e+e- colliders as luminosity require-
ments push the performances of these sources well beyond the current state of the art. For example,
the International Linear Collider (ILC) plans to use average positron currents of 30 `A, nearly two
orders of magnitude larger than any other positron source ever realized [1]. In addition, there is a
clear demand for high polarization control of the positron beam in order to improve the effective
luminosity, reduce the background, and extend the reach of searches for beyond-the-standard-model
chiral physics[2]. As discussed in the Snowmass Energy Frontier report on future linear colliders
[3], polarization of both beams is really needed to reap the benefits of the spin-dependence in the
collision cross-sections.

Within the Snowmass process, the importance of this topic has been recognized, as well as the
lack of a coherent effort in the US accelerator physics community to tackle the challenges associated
with very high current production of polarized positrons. It is worth to note here that the positron
source is one of the future collider components where a relatively small investment (compared to
the development of the main linear accelerator) has the potential to yield significant gains in the
performances of the machine. In addition, the stand-alone nature of the positron source allows for
tests and parallel developments that can be carried out in an independent fashion with respect to the
main collider complex.
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The generation of polarized positrons has been included in the baseline design of the ILC
[4, 5]. The scheme is based on passing the 125 GeV collision beam through a very long short-
period superconducting helical undulator to generate circularly polarized gamma rays that can be
converted using a thin target into polarized electron-positron pairs. The ILC design is quite mature,
at a level well beyond technical design report, and nearly shovel-ready. Still, the reduction of the
ILC center-of-mass energy to 250 GeV implies a lower-than-ideal gamma photon energy of 7-8
MeV from the undulator, at the falling edge of the pair production cross-section. To compensate for
this, an extended undulator length (up to 231 m) will be employed to preserve a safety margin (>
1.5) in the ratio of output positrons to incoming electrons. This effort shares many commonalities
with existing activities in superconducting helical undulator development and characterization for
X-ray FELs which are carried out with DOE Basic Energy Science funding at several US National
Labs (FNAL, ANL, and LBNL) [6, 7].

The interdependency of the polarized positron source on the availability of the 125 GeV
electron beam has also spurred a parallel effort in the development of a conventional positron
sources based on a 6 GeV electron beam [8, 9]. This conventional high current source will simplify
the commissioning phase of the accelerator providing a reliable source of positrons. It will also
allow to develop and test technical solutions for the challenges associated with the energy deposition
in the target and the positron capture section immediately downstream of it. In particular, the target
suffers from extremely large heat deposition rates, exacerbated in the polarized positron production
case by the small transverse spot of the gamma-ray beam from the undulator and by the burst
temporal format of the drive beam. The design for the ILC baseline source includes a rapidly
spinning wheel with state-of-the-art ferrofluidic seals to allow for the fast rotation.

The capture section after the target must be able to match the very large phase space of the
emitted positrons into the small acceptance of the booster linac and finally into the damping ring.
Quarter-wave transformers, flux concentrators and pulsed solenoids are typical solutions right after
the conversion target. Simulations show that the very large magnetic fields achievable with a pulsed
solenoid (currently the favored choice for the ILC) can increase the positron capture rate by 30 %
with respect to the previously adopted quarter-wave-transformer scheme [10]. On the longer term,
the use of advanced solutions based on strong focusing lenses such as active plasma lenses has been
considered and deserves further investigation[11].

In parallel to these efforts, other linear collider designs such as CLIC [12] and CCC [13]
do not foresee in their baseline the use of polarized positrons and linear collider schemes based
on advanced accelerator concepts are just now beginning to consider the issues related to the
accelerator of positrons. Improving the polarization purity and providing overhead in the positron
average current, are all important goals in the development of future polarized positron sources. Two
particular schemes are being considered based on Inverse Compton Scattering (ICS) and polarized
bremmsstrahlung.

Polarized positron sources based on the Inverse Compton Scattering laser photons off energetic
electrons have been proposed for a long time [14] and are recently making a comeback fueled by
the progress in laser technology. For example, scattering a circularly polarized 515 nm laser off
1 GeV electrons yields very energetic (30-40 MeV) polarized gamma rays. In this case, the yield
of polarized positrons per incident photon can be up 3-5 times larger than when using <10 MeV
photons. The scheme is plagued by the poor cross section of the Compton scattering process, but
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as GeV electrons are easily available, it is possible to increase the electron current to recover the
required photon flux. One of the main outstanding problem of this scheme is the availability of high
average power laser beams, but continuous progress in laser technology (for example laser stacking
cavities [15]) and new ideas in high efficiency free-electron lasers [16] open the opportunity for
a compact, independent, polarized positron source with high flux and high polarization purity for
future collider design.

Polarized bremmsstrahlung is the process through which spin-polarized relativistic electrons
(typically produced from strained GaAs lattice with very high (>80 % polarization purity) can
generate polarized positrons. Polarization transfer up to 80 % have been demonstrated in a recent
successful experiment at JLAB [17], but the efficiency (number of positrons produced per incoming
electrons) of this process is very small. Still, a collaboration has been formed around the idea of
using this approach to generate polarized positrons for nuclear physics experiments. The positron
currents from this source (50-100 nA) are still orders of magnitude lower than what required for
linear colliders. Even lower positron production rates can be obtained using high intensity laser
plasma interactions or isotope decays [18, 19]. These sources could possibly be used to provide a
positron beam to test some of the charge-asymmetries in the high gradient accelerator schemes.

2 Positron sources for High Energy Physics colliders: requirements and current
status

In all positron sources used for high energy physics, positrons are produced by the process of pair
production as as secondary beams after a drive beam (typically electrons, but it could be gamma
photons) hits a conversion target. The resulting positron distribution has very large angular and
energy spread and is captured transversely and longitudinally to match into an acceleration section
and ultimately a damping ring to generate positrons beam of sufficiently high quality for the intended
application. A cartoon schematics of the various elements of a positron source is shown in Fig. 1.
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Figure 1: Different sub-systems of the positron source basic scheme.

State-of-the-art positron sources parameters are summarized in Table 1which shows that typical
positron flux obtained is around 1010 e+/s, several orders of magnitude lower than what required for
the linar collider. The main limit in conventional sources is the heat load on the target which limits
the power of the primary beam. The SuperKEKB positron source is the highest intensity positron
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source in operation, thanks to improvements on the drive beam parameters, the flux concentrator
used to capture the beam and improvements in the positron line diagnostics [20, 21].

Table 1: Performances of ever existed positron sources (readapted from [22]. Some parameters
were not found in literature and, therefore, marked as "–". List of the abbreviations used: Adiabatic
Matching Device (AMD), Flux Concentrator (FC), Solenoid(Sol.), Quarter Wave Transformer
(QWT), Linac End (LE), Damping Ring (DR). The positron flux is calculated from the values listed
in the table.

Facility SLC SuperKEKB DAFNE BEPCII LIL
Research center SLAC KEK LNF IHEP CERN
Repetition frequency, Hz 120 50 50 50 100
Primary beam energy, GeV 30-33 3.5 0.19 0.21 0.2
Number of 𝑒− per bunch 5 × 1010 6.25 × 1010 ∼ 1 × 1010 5.4 × 109 2 × 1011
Number of 𝑒− bunches /pulse 1 2 1 1 1
Incident 𝑒− beam size, mm 0.6 ∼0.5 1 1.5 ∼0.5
Target material W-26Re W W-26Re W W
Target motion Moving Fixed Fixed Fixed Fixed
Target thickness/size, mm 20, r=32 14, r=2 - 8, r=5 7, r= 8
Matching device AMD (FC) AMD (FC) AMD (FC) AMD (FC) QWT
Matching device field, T 5.5 3.5 5 4.5 0.83
Field in solenoid, T 0.5 0.4 0.5 0.5 0.36
Capture section RF band S-band S-band S-band S-band S-band
𝑒+ yield, 𝑁𝑒+/𝑁𝑒− 0.8-1.2 (@DR) 0.4 (@DR) 0.012(@LE) 0.015(@LE) 0.006 (@DR)
𝑒+ yield, 𝑁𝑒+/(𝑁𝑒−𝐸) 1/GeV 0.036 0.114 0.063 0.073 0.030
Positron flux, 𝑒+/s ∼ 6 × 1012 2.5 × 1012 ∼ 1 × 1010 4.1 × 109 1.2 × 1011
Damping Ring energy, GeV 1.19 1.1 0.510 No 0.5
DR energy acceptance Δ𝐸

𝐸
, % ±1 ±1.5 ±1.5 No ±1

References [23, 24] [25] [26, 27] [28] [29–31]

The requirement for positron polarization adds additional degrees of complexity in the design
of the source, but directly stems from the physics demands for future colliders [2]. Having
simultaneously polarized 𝑒− and 𝑒+ beams in fact, is a very effective tool for direct as well as
indirect searches for new physics. Polarized beams offer new powerful analyses, provide added-
value and optimize —together with the clean and precise environment— the physics potential of
an 𝑒+𝑒− linear collider. The use of both beams polarized compared with the configuration with
only polarized electrons can lead to an important gain in statistics and luminosity, reducing the
required running time and increasing the search reach of the linear collider. In addition, it will
allow to decrease —due to pure error propagation— the polarization uncertainty originating from
the polarimeter. The gain in the polarization accuracy is directly transferred to, for instance, the
accuracy for the left-right asymmetry measurement and is therefore decisive for getting systematic
uncertainties under control. Furthermore, the use of both beams polarized are important to identify
independently and unambiguously the chiral structures of interactions in various processes, several
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of these tests are not possible with polarized electrons alone, see [32? –34] and references
therein. Simultaneously polarized 𝑒± beams offer new and more observable, e.g. double-polarized
asymmetries, and allow to exploit even transversely-polarized beams that are powerful for detecting
new kind of interactions ( e.g. tensor-like) or new sources of CP-violation. Already at the first
energy stage of

√
𝑠 = 250 GeV, the availability of polarized positrons would be essential to keep

systematics under control, save running time and to match the precision promises [35].

2.1 Current plans for ILC positron source

The positron production scheme for the high-energy linear 𝑒−𝑒+-collider has been at the center of
much debate with the result that two parallel approaches are currently being pursued: i) a baseline
scheme which is based on passing the high energy electron beam through a helical undulator to
generate an intense photon beam for the positron production in a thin target, and ii) a scheme based
on the use of a separate and independent electron beamline to create (unpolarized) 𝑒+𝑒−-pairs in a
thick target.

The efficiency of positron production in a conversion target together with the capture acceler-
ation of the positrons is low, so in both cases it is a challenge to generate the 1.3 × 1014 positrons
per second that are required at the ILC collision point (nominal luminosity). However, using a
helical undulator allows to produce a circularly polarized photon beam enabling the generation of
a longitudinally polarized positron beam which is the reason it has been selected as the baseline
option for the ILC [36–38].

The high number of required positrons at a linear collider pushes the drive beam intensity up
and causes a high thermal load on the target load. The target wheel has to be cooled as well as rotated
at an appropriate speed in order to distribute the load sufficiently. The material must stand the cyclic
load at elevated temperatures. Experimental tests were performed with the electron beam of the
microtron in Mainz (MAMI) to simulate the cyclic load as expected during ILC operation [39, 40].
The results of the irradiation tests at MAMI and detailed simulation studies with ANSYS showed
that the expected load at the ILC positron target is below the material limits [41]. The radiated
targets have been analyzed both via laser scanning methods as well as synchrotron X-ray diffraction
methods, demonstrating that the ILC target will stand the load. The design include detailed plans
for radiation cooling as well as rotating the target, see below. Detailed engineering solutions on
theses issues are still outstanding, however no technical showstopper is anticipated here.

3 Undulators for polarized positron production

Table 2: Parameters of ILC Polarized Positron Source Undulator.

Parameter units 250 GeV 350 GeV 500 GeV
Electron beam energy (𝑒+ prod.) GeV 126.5 178 253
Undulator length m 231 147 147
Undulator period length cm 1.15 1.15 1.15
Undulator K 0.92 0.75 0.45
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The helical undulator is one of the main components of an undulator-based polarized positron
source. Parameters of the ILC polarized positron source helical undulator are given below in Table
2. We refer to [42] and references therein for updates since the Technical Design Report.

The required period length is as short as 11.5 mm which sets the challenge of fabricating the
long helical undulator with such period length. This has been addressed and successfully solved
by the UK HeLICal Collaboration. After an intensive R&D phase [43] , the collaboration has
eventually fabricated and tested a 𝑁𝑏𝑇𝑖 superconducting helical undulator prototype which has
achieved the required parameters [44], Table 3.

Table 3: Parameters of ILC Undulator Prototype.

Parameter units value
Cryostat length m 4
Magnet length m 2 x 1.74
Period length mm 11.5
Undulator field on axis T 0.86
Magnetic bore diameter mm 6.35
Vacuum bore diameter mm 5.85

Advantage of employing a superconducting magnet technology for building a short-period
helical undulator has been demonstrated, and a helical superconducting undulator (HSCU) has
become a baseline for the ILC positron source undulator. Here a helical magnetic field is generated
by a pair of helical electromagnetic coils with the currents in the opposite directions which are
wound on the same magnet former. Compared to an alternative approach of using permanent
magnets for generating helical field, the HSCU offers a natural simplicity of winding helical coils
combined with a high magnetic field. The HSCU field can be increased further when high-field
superconductors like 𝑁𝑏3𝑆𝑛 are employed instead of 𝑁𝑏𝑇𝑖. A team at the Advanced Photon Source
of Argonne National Laboratory, US has recently experimentally demonstrated that in a planar
SCU the field is increased by at least 20 % over the 𝑁𝑏𝑇𝑖 [45]. Also, development of HTS-type
superconductors is currently a very dynamic field with a high potential of reaching undulator field
exceeding the one of a 𝑁𝑏3𝑆𝑛 undulator. This has been shown in a small test planar undulators
wound with HTS tape starting in 2010 [46] and has now reached the current densities in the winding
higher than in the 𝑁𝑏3𝑆𝑛 [47]. Application of 𝑁𝑏3𝑆𝑛 and HTS superconductors in short-period
helical undulators is therefore a topic for future R&D with potential for significant impact.

4 Positron target technology

The average energy deposition in the ILC positron target is about 2-7 kW depending on the drive
beam energy in the undulator, the target thickness and the luminosity (nominal or high). As an
example, for ILC250, the average energy deposition in the target is 2 kW. Energy deposition of up
to few kW can be extracted by radiation cooling if the radiating surface is large enough and the
heat diffuses fast enough from the area where the beam is incident to a large radiating surface. In
this design, the wheel spinning in vacuum radiates the heat to a stationary cooler opposite to the
wheel surface. It is easy to keep the stationary cooler at room temperature by water cooling. But

– 6 –



it is crucial for this scheme that the heat diffuses from the volume heated by the photon beam to
a larger surface area. With the wheel rotation frequency of 2000rpm each part of the target rim
is illuminated every 6-8 seconds, but this interval of time is not sufficient to distribute the heat
load almost uniformly over a large area. The heat is then accumulated in the rim with the highest
temperatures located in a relatively small region around the beam path. The average temperature
distribution was calculated using the ANSYS software package [48] and is shown in figure 2 for
one sector representative for the track of one bunch train.

Figure 2: Average temperature distribution in the target shown for a sector corresponding to 1 pulse
length (0.73ms) at ILC250; the beam impinges on the target at r=50 cm. The emissivities of target
and cooler surface are 0.5 corresponding to an effective emissivity of Y = 0.33.

For the studies of the positron yield optimization, the temperature distribution and cooling
principle a target wheel designed as full 1 m-diameter disc of 7 mm thickness made of Ti6Al4V
was assumed. As expected, the radial steady state temperature in the wheel depends strongly on
the radius. Due to the the heat conductivity in the target material and the 𝑇4 dependence in the
Stefan-Boltzmann law, most of the heat is removed close to the rim of the wheel. One should note,
that by increasing the outer radius of the wheel up to 60 cm, while maintaining the beam impact at
r=50 cm, substantially lower average temperatures can be expected.

Thus it is possible to conceive a target wheel consisting of two distinct parts with separate
functionalities: i) a ’carrier wheel’, designed and optimized in terms of weight, material, moment
of inertia, centrifugal forces, stresses and vibrations, etc., and ii) a second unit, the actual Ti-target
rim. The target units are fitted mechanically to the rim of the carrier wheel in such a way that
the cyclic loads, temperature rises and stresses in the target units are not or little transmitted to
the carrier wheel. This would allow to design and optimize the engineering of the carrier wheel
independently from that of the target proper. A possible layout in Figure 3 shows the main items of
the target wheel, the spoked rotating carrier wheel with its magnetic bearings and the water cooled
stationary coolers [42]. Another interesting development in terms of target technology is the so
called two-stage process for positron production. The first stage is optimized for the generation of
photons/gamma rays (for example using channeling radiation in crystals). The charged particles in
the EM shower get separated away using a magnetic field so that only the photons hit the second
stage target improving the heat load and yield for a given drive beam intensity [49, 50].
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Figure 3: Principal Layout of the rotating wheel showing its main components: its cooling system,
its rotating magnetic bearing and the matching device (AMD).

5 Positron capture schemes for the ILC

5.1 Flux concentrator

Most of these studies for positron capture after the target assumed a pulsed flux concentrator
(FC) as optical matching device (OMD). A promising prototype study for the FC was performed
by LLNL [51]. However, detailed studies identified some weak points in this design. The B-
field distribution along 𝑧 cannot be kept stable over the long bunch train duration and therefore
the luminosity would vary during the pulse which is not desired. Further, the particle shower
downstream the target causes a high load at the inner part of the flux concentrator front side, which
is at least for ILC250 beyond the recommended material load level [52]. This is mainly caused
by the larger opening angle of the photon beam and the wider distribution of the shower particles
downstream the target at ILC250. As alternatives are discussed the use of a quarter-wave-transformer
or a pulsed solenoid or –as an example for new technology– a plasma lens.

5.2 Pulsed solenoids

Apart from the matching devices which are currently in use at positron sources in different facilities,
like flux concentrators and quarter wave transformers, pulsed solenoid magnets have also been
employed, e.g., at the LEP [53]. Due to the limited yield that a quarter wave transformer can
provide [4], interest in using a pulsed solenoid as an optical matching was renewed recently [42].
To evaluate whether a pulsed solenoid would provide a sufficient yield, a stable magnetic field
over 1 ms, and would not cause an excessive amount of heating in the rotating target wheel due
to induced eddy currents, simulations have been performed in a collaboration involving CERN,
University Hamburg, DESY, and the Helmholtz-Zentrum hereon. The principle layout is depicted
in Fig. 4. A coil of 7 windings, with a tapered inner diameter of 20 mm at the target end and
80 mm at the downstream end, is formed by a square-shaped copper conductor with a circular
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inner cooling channel. The length of the quadrupole is 70 mm. According to simulations made in
Comsol Multiphysics, a peak magnetic field of 5 T is produced by applying a pulsed current with a
peak amplitude of 50 kA. This field can be slightly increased by introducing a magnetic shielding
made of ferrite around the solenoid. The field deviation over 1ms is found to be well below 1%
when applying a pulse with 2ms sinusoidal rise time, a flat-top current of 1ms duration and another
sinusoidal fall time of 2ms.
Using a ferrite shielding also reduces the magnetic field at the target position and therefore reduces
heating in the target wheel due to eddy currents. This heating was also simulated and the expected
values of the peak and average heat load, as well as the peak force on the target wheel are expected
to be well manageable. Similarly, no critical values have been found for the thermal load and
mechanical stress in the coil itself.
The positron yield of an undulator-based positron sourcewith a pulsed solenoid as amatching device
was also simulated. Without ferrite shielding, a yield of 1.9 positrons per electron was simulated
at the ILC positron damping ring. When using a ferrite shielding, the yield was slightly reduced
to 1.7. For comparison, the positron yield using a quarter wave transformer, which is currently the
baseline design option for the ILC, is only 1.1. Further increase of the yield with the pulsed solenoid
might be possible by further optimisation of the exact coil geometry. In summary, pulsed solenoids
are a viable option as a matching device for positron sources compared with current state-of-the-art
solutions like quarter wave transformers and flux concentrators and especially for long bunch trains
(as in the case of the ILC undulator-based positron source), simulations indicate that such a device
would bring some advantages compare with the other options.

5.3 Plasma lens

An alternative device to capture positrons after the target is an active plasma lens (APL) [54].
These focusing elements exhibit several advantages compared to conventional focusing elements
like solenoids or quadrupoles:

• due to the azimuthal magnetic field the focusing is radially symmetric unlike, e.g., in a
quadrupole field

Figure 4: Sketch of the pulsed solenoid optical matching device for the ILC undulator-driven
positron source [42].
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• focusing fields are potentially very high due to the close proximity of focusing currents and
focused particles

• focusing fields are transverse to main direction of motion unlike, e.g., in a solenoid

• mitigation of space charge forces between beam particles due to the quasi-neutrality of the
plasma medium

• low scattering of beam particles due to the low density of the conductive medium compared
to, e.g., a Lithium lens or a magnetic horn.

In the particular application as a positron capture device, theAPLhas additional advantages over
focusing schemeswith solenoidal fields as flux compressors, solenoids or quarter wave transformers:
fields are localised, i.e., do not influence the positron target wheel and the focusing is selective with
respect to the particle charge that is when the active plasma lens is focusing positrons it is defocusing
co-propagating electrons at the same time. These unwanted, low energy pair-electrons from the
positron source will therefore not be accelerated in the capture linac, which reduces beam losses and
radiation at high energies in the downstream accelerator significantly and also renders a dedicated
charge separation chicane and a high energy electron beam dump unnecessary.

The usage of an active plasma lens as a matching device at a positron source was proposed for
LEP [55] and again recently for the ILC [56]. Especially due to the advances in development of high-
gradient, beam quality preserving active plasma lenses in recent years [57–60], their application
as focusing elements rather than as research objects on their own is now in reach and partially
already the case [61]. Nevertheless, the positron source of the ILC poses several challenges for an
active plasma lens to be used as an optical matching device (OMD) including the close proximity
to accelerating cavities, which require ultra-high vacuum conditions, the large beam size (up to
1.5 mm) and very strong divergence of positrons and the challenging time format with short bunch
separation of 554 ns in a train of >1000 bunches. On the other hand, beam-quality preservation is
not a critical issue for an active plasma lens as an OMD for the low beam quality positron bunches
at the source.

To investigate the possibilities for APLs to meet these challenges, a project has been initiated
at the University Hamburg, Germany (UHH) and the Deutsches Elektronen-Synchrotron DESY in
Hamburg. First results indicate that an APL indeed allows to increase the positron yield significantly
w.r.t. the quarter wave transformer baseline design [56]. It should be noted though, that the simulated
APL which allowed such an increased yield had a complex taper. Tapered lenses have been studied
before [62] but the available data is still very limited compared to more simple, linear discharge
channels. Studies at the UHH and DESY are concentrating on investigating the field distribution
within the APL in such a complex geometry and at high repetition rates both experimentally and
in numerical simulations as well as on the question whether the yield improvement and required
vacuum levels in nearby accelerating structures can be achieved at the same time.
Other groups are also looking into plasma lenses as capture optics for highly divergent beams at
the source [63] and while the requirements of the ILC positron source e.g. in terms of repetition
rate are certainly very demanding for state-of-the-art APL technology, plasma lenses can still be
considered an option for other positron sources with different requirements in the future.

– 10 –



6 Novel approaches to polarized positrons

6.1 Compton-based polarized positron sources

Another attractive and compact solution foresees the use of an high-power laser beam and the
Inverse Compton Scattering (ICS) interaction to create such photons [64, 65]. The electron beam
requirements in this case are greatly reduced while still reaching higher photon energies. Consider-
ing the scattering with a typical laser (_ = 515 nm), the electron energy required to generate 30MeV
photons is around 1.0 GeV and very small spot sizes have to be maintained only over relatively short
interaction lengths (less than few cms). In 2005, a proof of principle experiment for the Compton
scattering-based scheme for polarized positron generation was performed at the KEK Accelerator
Test Facility (ATF) [66].

Several options for the future linear collider positron source based on Compton scattering
have been proposed [67]. Today, they can be classified according to the electron source used for
the Compton scattering: the linac scheme, the storage ring scheme or so-called Compton Ring
and the energy recovery linac scheme. For all of them, the polarized positron current produced
is not sufficient to fulfill the future linear collider requirements. Therefore, the application of
the multiple-point collision line and multiple stacking of the positron bunches in the DR were
investigated [68, 69].

On the other hand, owing to the small size of the Compton (Thompson) cross section, the
demands of such solution on the high-power laser system are extremely challenging1. The time
format of ILC beams, for example, is constituted by an elevate number of bunches (>1000) per
RF macropulse, with macropulse repetition rates of 5-10 Hz. At visible wavelengths, Joules of
energy are required in order to provide sufficient photon density for the generation of one photon per
incoming electron in the laser-beam interactions. The laser system should, therefore, provide multi-
MW-class average power within a burst mode matching the electron bunch time-format. Using the
additional degree of freedom offered by fast kickers, one can imagine to reformat the positron source
to 30 KHz repetition rate and recreate the collider bunch format only after the DR, easing somewhat
the peak and average requirements on the laser. Notwithstanding the exceptional progress of the RF
and of the laser technology in the last decades, even this latter kind of laser system does not exist
yet. Various new concepts, such as stacking cavities and optical energy re-circulation have been
proposed to address the lack of a suitable laser source for this application [72–76].

In Murokh et al. [77] the authors present an alternative approach for an independent high-
current polarized positron source based on the combination of laser-based acceleration with the
observation, that the electron and laser beams are only minimally degraded in a ICS interaction. The
laser pulse can then be used not only to drive the Compton scattering process, but also to accelerate
the electrons to the required GeV-level for energetic polarized photon production. At the same
time, after the ICS interaction point, the kinetic energy stored in the electrons can be recuperated
with an high efficiency Free-Electron Laser (FEL) amplifier operating in the Tapering Enhanced
Stimulated Superradiant Amplification (TESSA) regime to replenish the laser pulse before it is
redirected to scatter against the next electron bunch. Due to the limited electron beam and laser

1In case of Gamma Factory proposed at CERN [70], which uses partially stripped ion beams and their resonant
interactions with laser light, the resonant photon absorption cross section can be up to a factor 109 higher than for the
ICS of photon on point-like electrons. The proof of principle experiment was already proposed [71].
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power requirements of this scheme, the electron current used in the accelerator can be very large
and, even with the yield of 0.1 𝑁𝑒+/𝑁𝑒− after conversion of the gamma-rays in the target, positron
fluxes of up to 1015 𝑒+/s could be achieved.

It should be emphasized that due to a common technological constraint of all the above
mentioned schemes being the average laser power of the optical systems, the Compton scattering-
based polarized positron sources are considered only as the alternative solutions for the future
collider projects. Presently, it is proposed as a preferred option for an upgrade of the CLIC positron
source [78].

6.2 Polarized bremmsstrahlung

Important topics in nuclear, hadronic, and electroweak physics including nuclear femtography,
meson and baryon spectroscopy, quarks and gluons in nuclei, precision tests of the standard model,
and dark sector searchesmay be explored at CEBAF, especiallywhen considering potential upgrades
in luminosity, polarized and unpolarized positron beams and doubling of the beam energy to 24
GeV [79, 80].

For a positron program, Polarized Electrons for Polarized Positrons (PEPPo) represents a
pathway to generate the highly spin-polarized positron beams required. The technique is based
upon the electro-magnetic shower of electron beams in matter and the two-step process of polarized
bremsstrahlung followed by polarized pair creation [81, 82]. Both steps can occur in a single high-Z
conversion target, or be accomplished using a separate radiator and converter, if desired. Notably,
this technique can be applied at any electron accelerator where spin polarized electron beams are
produced, whether at a university or national lab.

The transfer efficiency of spin polarization from the electron beam to the positron beam, defined
as 𝜖 = 𝑃(𝑒+)/𝑃(𝑒−), can be very efficient, approaching unity as the momenta of the collected
positrons approaches the initial electron beam momentum. The technique was first demonstrated
at CEBAF [17] where an 8.2 MeV/c electron beam with polarization 85.2% produced positrons
with polarization >82% (see Fig. 5). Collecting the positrons at half the electron beam momentum
serves to maximize figure of merit defined as IP2, with positrons receiving >60% of the electron
beam polarization.

In contrast to positron polarization, the positron yield N(e+)/N(e-) falls precipitously with
increasing positron momenta, due to the characteristic bremsstrahlung power spectrum. While this
is not a deciding factor for unpolarized positron sources which select a low-momentum fraction
of positrons from the conversion target, a PEPPo-driven polarized positron source must select the
high-momentum fraction to provide polarization. Limitations in electron spin polarization and
beam intensity likely explain why a PEPPo-based positron source has not been constructed to date.
However, this landscape has changed significantly in the last 10 years. Electron beam polarization
is now routinely ≈ 90% and with average beam currents at milliAmpere level [83, 84].

Today, strained-layer superlattice (SSL) photocathodes composed of quantum well multi-layer
heterostructures provide very high spin polarization >85% and with yields ≈ 6 mA/W of laser light.
And SSL photocathodes fabricated with an integrated diffracted Bragg reflector - to more efficiently
absorb optical power - have demonstrated yields >30mA/W [85]. Onemay now reasonably imagine
providing 100 kW of highly spin polarized electron beam at energies in the range of 10-100 MeV. In
this context, a recent Jefferson Lab LDRD project [86] explored the possibility of generating >100
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Figure 5: Positron polarization and transfer efficiency as reported in [17] The blue line represents
the electron beam polarization.

nA positron beams with polarization >60% for experiments at Jefferson Lab’s Hall B [87], using a
1 mA spin polarized electron beam at 100 MeV. The results were encouraging and are now under
further consideration as a potential future upgrade for CEBAF.

In summary, PEPPo demonstrated a compact and efficient technique to produce highly spin
polarized positrons, suitable for small to large-scale accelerator facilities. Advances in GaAs
photocathodes capable of producing a high degree of spin polarization and milliAmpere intensities
makes this technique viable. It is recommended to the P5 panel to support R&D in the areas of high
current polarized electron sources, 100 kW high power targets and magnets for efficient collection
of positrons over energies 10-100 MeV.

6.3 High intensity laser-based positron polarization

The positron production using high intensity lasers was extensively studied over the last two
decades employing a number of different mechanisms and interaction setups mostly analytically
and in computer simulations, though a number of experimental studies was also reported [88–90].

Themost straightforward one is the interaction of amoderate intensity laser with a solid-density
target, which is several millimeters thick [91–93]. Here, the electrons accelerated by the laser at the
front surface go through the target emitting photons along the way due to the bremsstrahlung. These
photons create electron-positron pairs in the course of their interaction with nuclei. In principle, a
high-energy electron beam can be used instead of the laser pulse in a positron production scheme,
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Figure 6: Number of positrons produced in high-intensity laser-plasma interactions. For laser-
electron beam interactions (open circles), the energy of the electron beam is noted in brackets.
Points marked with asterisks indicate experimental results from LWFA electron-beam interactions
with high-Z foils [95, 96]; in these cases the laser power is not indicated. Reproduced from [89].

which is typical for conventional positron sources. In such scheme a high intensity laser is used to
accelerate electrons via laser-wakefield acceleration [94–99].

The positron production using high energy lasers as converters of high energy photons into
electron-positron pairs is based on the effects of strong field quantum electrodynamics (SFQED)
[88–90]. Here an electron beam interacts with a single high intensity laser pulse or a combination
of several pulses, or instead of an electron beam a fixed plasma target is used [100–108]: high
energy gammas are emitted by electrons going through a region of strong EM field via multi-
photon Compton process, and these gammas decay into electron-positron pairs via the multi-photon
Breit-Wheeler process (see Fig. 6). We note that the production of electron-positron pairs is very
sensitive to the EM field strength: for three orders of laser intensity the number of positrons varies
ten orders of magnitude. There is an advantages of using a high energy electron beam interaction
with a high intensity laser pulse, the positrons are produced as a collimated beam and the required
laser intensity is much lower [109–112].

The use of polarized electron beams in the above mentioned schemes will, first, lead to the
production of polarized 𝛾-ray beams [19] and, subsequently, to the production of polarized positron
beams. It is due to the fact that multi-photon Compton and Breit-Wheeler processes depend on
the spin of participating particles. However, most of the reported studies use initially unpolarized
electron beam and rely on its polarization during the interaction with a high intensity laser, which
needs to be shaped in a way that breaks the symmetry of field oscillation to achieve net polarization.
This can be achieved with a two-color laser pulse [113, 114] or with a laser pulse with a small degree
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of ellipticity [115]. For example, an initially unpolarized 2-GeV electron beam interacting with a
two-color laser pulse, with 𝑎0 = 83 and 25% of its energy in the second harmonic [116] acquires an
average polarization degree of only 8%, whereas the positrons produced have a polarization degree
of 60% due to the Breit-Wheeler process depending more strongly on spin than the Compton one.
A laser pulse with a small degree of ellipticity can, in principle, generate positron beams with a
polarization degree exceeding 80% [115].

In summary, it was theoretically shown that the polarized positron production using high
intensity lasers can be achieved, however, the characterization of the phase space of these positron
beams need to be carried out in future studies, as well as the study of their capture by beam
transport systems and subsequent injection into an accelerator. The proof-of-principle experiments
are required to access the possibility of using such positron source for compact colliders (CLIC, C3
and advanced accelerator-based concepts [117, 118]).

6.4 Electrostatic traps as a test-bed for polarized positron physics

The generation of positron beams is an expensive process requiring significant infrastructure.
Experimental tests on positron beams are limited to facilities that are already equipped with a
high-energy, high-intensity electron beam accelerator, a high-power target, and damping ring for
cooling. As a result, very few institutions provide access to positron beams for experimental use.
An alternative, compact system for producing polarized positron beams could provide experimental
opportunities for testing systems associated with positron beam production and transport.

We propose a beamline design utilizing an electrostatic positron trap as a beam source for
positron beams that is comparatively inexpensive and small [18]. The concept is shown in Figure 7.
In this proposal, the positrons can be generated either by emission from a 𝛽-decay emitter, such as
22Na, which produces roughly 109 positrons per second, or by impacting a 5 MeV electron beam
on a high-Z target. The positrons pass through a solid-neon moderator which reduces their energy
so that they can be trapped [119]. The electrostatic trap holds the positrons while they accumulate
and cool via interaction with a buffer gas. The longitudinal trap potential is shaped by high-voltage
rings, and a solenoidal magnetic field provides radial confinement [120–122].

Figure 7: a) Positron bunch length along the beamline. b) Depiction the beamline design used in
the simulation.

After positrons are accumulated in the trap, the trapping potential is changed to accelerate
and eject the beam. The beam is both long and non-relativistic when ejected from the trap. The
remainder of the beamline is dedicated to compressing and bringing the beam up to relativistic
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energies. To accomplish this, an electrostatic accelerator of 100 kV is employed, which compresses
and accelerates the beam to the point that it can be injected into an s-band cavity. The beam is
compressed to a bunch length of 0.2 mm and accelerated to an energy of 17.8 MeV.

The entire beamline is inside of a 1 T solenoid. The beam is cooled inside a magnetic field and
has intrinsic angular momemtum L. The effective emittance is given by [123]:

𝜖𝑛 =

√︃
𝜖2
𝑡ℎ

+ L2. (6.1)

With a small thermal emittance, the beam is dominated by angular momentum.
Future linear colliders assume that the emittance in the vertical plane is much smaller than

in the horizontal plane because the beams are generated in a damping ring [124]. Our example
beamline is capable of producing flat beams for ILC-type applications [125]. While this compact
source is not a suitable candidate for future Linear Colliders, it may be useful for testing positron
capture technology or for demonstrating transport of flat beams.
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