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Abstract: We review recent progress and future prospects for harnessing powerful

tools from theoretical high-energy physics, such as scattering amplitudes and effective

field theory, to develop a precise and systematically improvable framework for calcu-

lating gravitational-wave signals from binary systems composed of black holes and/or

neutron stars. This effort aims to provide state-of-the-art predictions that will enable

high-precision measurements at future gravitational-wave detectors. In turn, applying

the tools of quantum field theory in this new arena will uncover theoretical structures

that can transform our understanding of basic phenomena and lead to new tools that

will further the cycle of innovation. While still in a nascent stage, this research di-

rection has already derived new analytic results in general relativity, and promises to

advance the development of highly accurate waveform models for ever more sensitive

detectors.
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1 Executive Summary

The ambitious future of gravitational-wave (GW) science calls for invigorating the the-

oretical framework for precision calculations of GW signals, thus galvanizing a new

approach that harnesses the cutting-edge tools of theoretical high-energy physics such

as on-shell methods, double copy, advanced multiloop integration, and effective field

theory (EFT). These are the engines that drive modern calculations of scattering am-

plitudes in particle theory, and integrating them together for application to GWs has

recently led to new results in the perturbative, analytic solution of the two-body prob-

lem in general relativity. Theorists developing waveform models for the LIGO-Virgo-

KAGRA (LVK) collaboration [1–3] have performed initial studies [4, 5] of these early

results, see Figure 1, and have strongly encouraged further developments. Indeed, if

these calculations are pushed to higher orders, and are extended to include all physical

effects (i.e., spins and tides), they can be used, in combination with other analytic

methods [6–11]1 and with numerical-relativity (NR) simulations [16–19], to provide

highly accurate waveform models of binary systems composed of black holes and/or

neutron stars. Another aspect of this program that has drawn significant interest from

1See also [12–15] for recent reviews.
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Figure 1. (left) The binding energy (in units of the reduced mass) versus the orbital fre-

quency of an equal-mass non-spinning binary black hole following an adiabatic quasi-circular

orbit towards merger. The horizontal axis is also given as the number of orbits before merger.

(right) The scattering angle versus impact parameter of two equal-mass non-spinning black

holes following hyperbolic trajectories with initial relative velocity v = 0.4. These plots are

adapted from [5], where the authors compared predictions for post-Minkowskian (PM) con-

servative dynamics obtained using QFT tools (solid lines of increasing accuracy in Newton’s

constant G, i.e., in the PM approximation) with NR [28, 29] and effective-one-body (EOB)

results, here at third post-Newtonian (PN) order, which are the benchmarks for building

waveform models in the LVK collaboration.

both the high-energy physics and general relativity communities is the exploration of

theoretical structures that emerge in the classical limit of scattering amplitudes.

This new research direction in theoretical high-energy physics is an opportunity to

deploy the classic and modern tools of quantum field theory (QFT) in a new arena,

thereby impacting an important experimental frontier and uncovering rich theoretical

structure that can lead to new tools. The program is in a nascent stage, and significant

progress will come in the next several years, building towards the vision that QFT

tools will advance the computation of gravitational waveforms. In particular, they will

address the need for high precision in upcoming LVK runs, in space-based detectors such

as LISA [20], and in future ground-based detectors such as LIGO-India [21], Cosmic

Explorer [22] and Einstein Telescope [23]. High-precision waveform models will be

crucial for maximizing the discovery potential and extracting the best science with

GW observations of ever more sensitive future detectors [20, 24–27].
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2 Introduction

The emergence of GW science [30–32] has already transformed multiple domains of

astronomy, cosmology, and particle physics, yet this represents only a small fraction

of its future potential [20, 26]. Space- and ground-based observatories of the coming

decade will map out and characterize millions of merger events per year with sensitivity

well beyond that of current LIGO/Virgo facilities (see, e.g., [33–37]). One of the key

challenges will be advancing the theoretical modeling of compact binary coalescences

to produce accurate gravitational waveforms.

Theoretical modeling of GW sources is challenging due to multiple physical scales

that are nonlinearly coupled through general relativity. Notably, these complications

— multiple scales and nonlinearity — are exactly what drove breakthroughs in QFT in

the last few decades, leading to the modern scattering amplitudes program. Scattering

amplitudes have revealed mathematical structures in gauge theory and gravity, leading

to new physical insights, efficient methods for computation, and the seeds for even

bolder ideas.

The Parke-Taylor formula [38] reduced pages of Feynman calculus to a half-line

expression describing gluon scattering, famously heralding the enormous value of un-

derstanding theoretical structures lying at the heart of scattering amplitudes. In recent

decades, major advances have been driven by two parallel developments. First are new

methods that formulate QFT without explicit quantum fields, thus focusing on physi-

cal quantities. These “on-shell methods”, reinvigorated by twistor string ideas [39–42],

have become efficient mainstream tools for tree-level [43] and loop-level [44–47] calcu-

lations in gauge and gravity theories; see [48–52] for reviews. Second, is a radically new

perspective on gravity: gravitational scattering amplitudes Mgravity can be realized as

a “double copy” of gauge theory amplitudes Mgauge [53, 54],

Mgauge ×Mgauge ∼Mgravity . (2.1)

This structure builds on the relation between tree-level open and closed string scat-

tering [55], its field theory limit [56], and structures gleaned in explicit higher-loop

calculations [57, 58]. It extends vanilla examples of related gauge and gravity theories

to a veritable web of theories that share common building blocks, and has been applied

to the exploration of a number of new directions, such as the ultraviolet properties

of supergravity theories up to five loops [59–63], and the nonperturbative structure

of classical solutions of Einstein’s equations with sources such as Schwarzschild [64];

see [65] for a recent review and also the dedicated Snowmass White Paper [66].

In the past few years there has been a flurry of activity in applying both on-shell

methods and the double copy, in combination with advanced multiloop integration

– 3 –



G(1 + v2 + v4 + v6 + v8 + v10 + v12 + · · · )
G2(1 + v2 + v4 + v6 + v8 + v10 + v12 + · · · )
G3(1 + v2 + v4 + v6 + v8 + v10 + v12 + · · · )
G4(1 + v2 + v4 + v6 + v8 + v10 + v12 + · · · )
G5(1 + v2 + v4 + v6 + v8 + v10 + v12 + · · · )
G6(1 + v2 + v4 + v6 + v8 + v10 + v12 + · · · )
G7(1 + v2 + v4 + v6 + v8 + v10 + v12 + · · · )

<latexit sha1_base64="HorKyINCliHgS+Iadxg5hxQ8U1o="></latexit>

Figure 2. Map of perturbative corrections to Newton’s potential, where G is Newton’s

constant and v is the relative velocity of the binary constituents. New results through O(G4)

were recently obtained using QFT tools (red box). They are valid to all orders in velocity, and

overlap with the state-of-the-art from the PN expansion (dark triangle) and the contributions

required by future detectors (light triangle) (see, e.g., [33–37]).

techniques and EFT, to develop new tools for state-of-the-art predictions of GW signals.

This development was encouraged by the general relativity community [67], and has

led to a number of new results in general relativity; for example see Figures 1 and 2.

The new approach based on tools from theoretical high-energy physics aims to com-

plement, and has greatly benefited from, decades of successful work using traditional ap-

proaches to solve the relativistic two-body problem, including the post-Newtonian (PN)

approximation [68–76], the gravitational self-force formalism [77, 78], the effective–one-

body (EOB) formalism [10, 11], the nonrelativistic general-relativity (NRGR) formal-

ism [79], the post-Minkowskian (PM) approximation [67, 80–88], and NR [16–18] (see,

e.g., [12–15, 89] for recent reviews). In particular, the seminal work [79] introduced

nonrelativistic EFT ideas from particle physics to the worldline approach to binary

dynamics, and has led to a number of landmark results; for recent developments see

the dedicated Snowmass White Paper [90] on this subject.

The tools of theoretical particle physics have been honed in a wide variety of intri-

cate quantum calculations such as the Higgs gluon-fusion cross section at N3LO [91],

NNLO corrections to e+e− event shapes [92], cusp anomalous dimension at four loops [93],

electron g − 2 at four loops [94], N = 8 supergravity four-point amplitude at five

loops [95], and N = 4 super-Yang-Mills four-point amplitude at six loops [96]. Lever-

aging these tools for GW physics yields several advantages. First, the structure of

perturbation theory is vastly simplified by special relativity, on-shell methods, and the
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FIG. 1. Unitarity cuts needed for the classical scattering am-
plitude. The shaded ovals represent tree amplitudes while the
exposed lines depict on-shell states. The wiggly and straight
lines denote gravitons and massive scalars, respectively.

explicitly the completeness of our second method, where
we work in strictly D = 4 so as to benefit from very
simple expressions for gauge-theory amplitudes in terms
of spinor helicity [19] variables. We then build the two
corresponding gravitational amplitudes via the KLT re-
lations [16]. At two loops, both approaches are efficient,
but at higher loops, helicity amplitudes offer a much more
compact starting point.

For concreteness, consider the first generalized unitar-
ity cut in Fig. 1, which we refer to as CH-cut and is com-
prised of products of four three-point and one four-point
amplitudes. Since four-point tree amplitudes are already
very simple there is little computational advantage to
imposing the on-shell conditions on matter lines. Thus,
we replace the pairs of three-point amplitudes at the top
and bottom of the cut with four-point amplitudes and
then impose the matter cut conditions at the end. The
resulting iterated two-particle cut is then

C2,2 =
∑

states

M4(2
s, −8, 7, 3s)M4(−5, 6, −7, 8)

× M4(1
s, 5, −6, 4s), (1)

where M4 denotes the tree-level four-point amplitude for
gravity minimally coupled to two massive scalars denoted
here by legs 1s, 2s, 3s, 4s. In this cut, legs 1s, 4s have
mass m1 while legs 2s, 3s have mass m2. All momenta in
each tree amplitude are taken to be outgoing. The sum
runs over graviton states for legs 5, 6, 7, 8, where the
minus signs on the labels indicate reversed momenta.

The four-point gravity tree amplitudes needed in the
cuts are obtained from gauge-theory ones via the field-
theory limit of KLT relations [16],

M4(1, 2, 3, 4) = −is12A4(1, 2, 3, 4)A4(1, 2, 4, 3), (2)

where the A4 are tree-level color-ordered gauge-theory
four-point amplitudes and sij = (pi + pj)

2, working
in mostly minus metric signature throughout. Strictly
speaking, the KLT relations apply only to massless
states. However, they can be applied here by interpreting
the scalar masses, in the sense of dimensional reduction,
as extra-dimensional momentum components. While we
have not included coupling constants, these are easily
restored at the end of the calculation by including an
overall factor of (8πG)3, where G is Newton’s constant.

In terms of the spinor-helicity conventions of Ref. [20],
the independent tree-level gauge-theory amplitudes

needed in Eq. (1) are

A4(1
s, 2+, 3+, 4s) = i

m2
1 [2 3]

〈2 3〉 t12
,

A4(1
s, 2+, 3−, 4s) = i

〈3| 1 |2]
2

t23 t12
,

A4(1
−, 2−, 3+, 4+) = i

〈1 2〉4
〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉 ,

A4(1
−, 2+, 3−, 4+) = i

〈1 3〉4
〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉 , (3)

where tij = 2pi · pj and the ± denote gluon helicities.
The dilaton and antisymmetric tensor states are re-

moved from unitarity cuts by correlating the gluon helic-
ities on both sides of the double copy. The unwanted
states correspond to one gluon in the double copy of
positive helicity and the other of negative helicity. An
internal graviton state is obtained by taking the corre-
sponding gluons in the KLT formula in Eq. (2) to be of
the same helicity.

Using spinor evaluation techniques, it is straightfor-
ward to obtain a compact expression for the iterated two-
particle cut in Eq. (1) (e.g. see Ref. [25]). Imposing cuts
on the matter lines, as indicated in the first unitarity cut
of Fig. 1, further simplifies it and gives CH-cut. We find

CH-cut = 2i

[
1

(p5 − p8)2
+

1

(p5 + p7)2

]

×
[
s2
23m

4
1m

4
2 +

1

s6
23

∑

i=1,2

(
E4

i + O4
i + 6O2

i E2
i

)]
, (4)

where we have defined

E2
1 =

1

4
s2
23(t18t25 − t12t58)

2, O2
1 = E2

1 − m2
1m

2
2s

2
23t

2
58,

E2
2 =

1

4
s2
23(t17t25 − t12t57 − s23(t17 + t57))

2,

O2
2 = E2

2 − m2
1m

2
2s

2
23t

2
57. (5)

The simplicity of this expression is a reflection of the
double-copy structure: the same building blocks appear
in the simpler corresponding gauge-theory cut.

The spurious double-pole in s23 can be explicitly can-
celled by adding terms proportional to the Gram determi-
nant formed from the five independent momenta at two
loops which vanishes in D = 4. In fact, the expression de-
rived from the D-dimensional approach is automatically
free of such spurious singularities. While these Gram
determinants contribute quantum mechanically, we have
checked explicitly that they vanish in the classical limit.
This is not accidental—such terms are of the wrong form
to generate the required log(s23) needed to contribute to
the classical 3PM amplitude (see Ref. [24] for details).

The remaining two independent generalized unitarity
cuts in Fig. 2 are more complicated because they re-
quire five-point tree amplitudes with two massive scalar
legs. The four-dimensional input gauge-theory ampli-
tudes are simple to compute using modern methods

M
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Figure 3. (top) Classical binary dynamics is encoded in scattering amplitudes of massive

particles (thick lines) interacting through gravitons (wavy lines): (A) four-point scattering

encodes higher-order corrections to conservative binary dynamics, (B) five-point scattering

encodes radiative effects due to graviton emission, and (C) higher-dimension operators (solid

circle) encode tidal deformation of neutron stars. Spinning black holes can be described by

higher-spin representations in QFT. (bottom) A sample calculational pipeline using the

tools of theoretical high-energy physics: Starting from tree-level gauge theory amplitudes (a),

corresponding gravitational amplitudes (b) are obtained using the double-copy. These are

then fused into loop amplitudes (c) using generalized unitarity. The integrated amplitude (d)

is obtained using advanced multiloop integration methods developed in high-energy physics,

in combination with EFT. The amplitude can then be mapped, using a variety of methods,

to the EOB Hamiltonian used for producing waveforms (e). The classical limit is applied at

every stage, leading to vast simplifications.

double copy, leading to compact expressions that make theoretical structures man-

ifest. Second, the technology and deep knowledge base for integration of loops in

QFT, which have seen decades of development for collider physics applications, are di-

rectly transferred, including integration-by-parts systems [97–99] and differential equa-

tions [100–106]. Finally, EFT efficiently and systematically targets contributions to

various processes in the classical limit. Figure 3 illustrates these tools in action.

Aside from providing state-of-the-art predictions, the new approach using particle

physics tools aims to explore theoretical structures that emerge in the classical limit of

scattering amplitudes. These structures may be familiar from particle physics, but are

not manifest in traditional approaches to the two-body problem in general relativity, or

they may be rooted in the classical regime and are yet to be explored through the lens

of QFT. Examples include universality in the high-energy limit, the interplay between

conservative and dissipative effects, nonperturbative connections to classical solutions,

and perturbation theory in curved backgrounds.

The upshot is that scattering amplitudes are highly effective tools for understanding

and precise modeling of GW sources, in ways similar to their application for interactions

of fundamental particles. The recent progress and future goals of this program revolve
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around three objectives, broadly defined:

• Provide state-of-the-art predictions for the dynamics and gravitational radiation

of compact binaries composed of black holes and neutron stars, which can be used,

in combination with other analytic methods and NR simulations, to produce

highly accurate waveforms. This includes modeling spin, tidal, and radiative

effects.

• Develop the mathematical and physical tools of theoretical high-energy physics for

application to GWs. This involves tailoring existing tools to improve scalability,

and formulating new tools and approaches to the binary problem.

• Explore the theoretical landscape of scattering amplitudes in the classical regime.

Examples include the universality of high-energy scattering, nonperturbative re-

lations between scattering amplitudes and classical dynamics, and connections to

exact spacetime geometries.

In the rest of this white paper, we will discuss the classical limit, and then describe

each of the three topics above, summarizing recent progress. Then we will describe

future directions.

3 Classical Limit

The correspondence principle states that classical physics emerges from the quantum

theory in the limit of macroscopic conserved charges such as masses, electric charges,

spins, orbital angular momenta, etc. Perturbations around such a configuration, which

are subleading in the large charges, can be systematically included and have the natural

interpretation of quantum corrections.2

For the application to GWs, the classical limit of scattering amplitudes is defined

by two properties that distinguish compact binaries from their quantum counterparts:

• Bound compact objects have large angular momentum J � ~, as opposed to

J ∼ ~ ≡ 1 for quantum bound states.

• Compact objects, such as black holes or neutron stars, have large gravitational

charges M�/MPlanck ∼ 1038, as opposed to e/QPlanck ∼ 10−1 for electric charges of

elementary particles. Here M� and e denote the solar mass and electron charge,

while MPlanck and QPlanck are the Planck mass and charge, respectively.

2This perspective was used to great effect in string theory tests of the asymptotic Bethe ansatz

for the anomalous dimensions of single-trace operators in N = 4 super-Yang-Mills theory, see e.g.

[107–109] and [110] for a review.
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In other words, for a system of two gravitationally interacting spinless bodies with

masses m1 and m2, the classical regime emerges in the limit J � ~ and m1,m2 �
MPlanck. This limit also coincides with the limit in which the de Broglie wave length λ

of the particles is much smaller than the particles’ separation |b|, which is conjugate to

the momentum transfer q. Thus, the kinematic regime of classical physics is when the

momentum transfer is much smaller than the incoming momenta, |p| � |q|, similar

to the Regge limit. Other charges that may characterize classical particles also have a

similar scaling in the classical limit; for example, the spin S and finite size R scale as

|q|R ∼ O(1), |q||S| ∼ m1,2. These scalings are consistent with the classical nature of

Newton’s potential, |b| � Gm, and fixes the general form of four-point amplitudes as

well as of generating functions of observables.

Another perspective on the classical limit was taken in [111], which together with

the associated framework is usually referred to as the KMOC formalism. Quantum

mechanical computation of observables yields the classical result in the correspondence

limit which is arranged in two steps: (1) a suitable restoration of Planck’s constant

~, which effectively plays a role similar to the momentum transfer q, and expansion

at small ~, and (2) incorporation from the outset that from a quantum-mechanical

perspective, particles are described by wavepackets having finite width in both position-

and momentum-space rather than plane waves. This width must be negligible in the

classical limit, leading to inequalities which constrain the parameters of the scattering,

analogous to those coming from the large-J limit.

One implication of the classical limit is that loop amplitudes involving massive

particles may contain classical contributions. The classical limit can be taken at the

earliest stages of calculations, yielding vast simplifications prior to integration. This

enables the calculation of loop amplitudes that would otherwise be beyond the reach

of current technology if evaluated including quantum effects. Properties of amplitudes

in an expansion around the classical limit were previously unexplored systematically.

The application to GW physics provides the motivation to fill this gap, and have led

to interesting results [112, 113].

4 State-of-the-Art Predictions

Waveform models for the inspiral stage of a binary system are built from the con-

servative and dissipative two-body dynamics. Therefore a direct path for amplitudes

methods to have an impact is to compute state-of-the-art conservative two-body po-

tentials, including the effects of spin, and tidal deformation for modeling neutron

stars [12, 20, 22, 23]. For instance, the general relativity community had urged ampli-
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tudes experts to compute the O(G3) contributions to conservative binary dynamics for

spinless compact objects [67].

Potentials are naturally encoded in four-point scattering amplitudes, and can be

extracted from the latter via a variety of methods such as an amplitude matching

calculation [114], direct mapping to an EOB parameterization [115, 116], using the

eikonal phase as a generating functional [117–120], and analytic continuation [121–124].

However, at O(G4), the conservative two-body Hamiltonian is no longer universal to

both bound and unbound trajectories. The effect of back-scattered radiation on the

conservative dynamics — in particular the so-called tail effects [125–127] — leads to

nonlocal-in-time contributions to the Hamiltonian that depend on the specific trajec-

tory. Understanding the mapping between bound and unbound orbits in the presence of

radiation is an important open problem that needs to be solved to maximally leverage

scattering amplitudes for deriving classical bound state dynamics.

Higher-Order Corrections to Conservative Binary Dynamics. Conservative

binary dynamics at O(G) and O(G2) and to all orders in velocity3 were derived from

scattering amplitudes in Ref. [114]. While these results were known in general relativ-

ity using classical methods, the method employed in Ref. [114] laid a basic path for

extending to higher orders using scattering amplitudes.

Conservative binary dynamics at O(G3) was computed in Refs. [128, 129] using

amplitudes techniques, and has since been verified using a variety of methods (see,

e.g., [130–132]). The result of Refs. [128, 129] for conservative binary dynamics has

been extended to include dissipative effects in a number of studies [133–142].

Conservative binary dynamics at O(G4) was computed in Refs. [143, 144] using am-

plitudes techniques. Radiative contributions to the conservative dynamics first appear

at O(G4), and complicates the analysis due to difficulties in precisely defining conserva-

tive processes in the presence of radiation. This represents one of the main obstacles for

advancing the theoretical modeling of GW sources to higher orders. Interestingly, some

of the issues are sidestepped in the QFT-based approach where everything follows from

well-established properties of scattering amplitudes. In particular, four-point scattering

amplitudes should fully capture two-body conservative dynamics for hyperbolic orbits

and is equivalent to using time-symmetric graviton propagators [88, 145, 146].

The result of Refs. [143, 144] reproduces the sixth-order PN result in Ref. [147].

Moreover, due to Lorentz invariance and dimensional analysis, the result exhibits a sim-

ple mass dependence, confirming arguments made in [115]. This mass dependence puts

3The O(Gn) result to all orders in velocity is also referred to as the n-th order post-Minkowskian

result or nPM result. In this White Paper we will often simply refer to this as the O(Gn) result,

following the conventional nomenclature of perturbative orders in particle physics.
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Figure 4. The binding energy (in units of the reduced mass) versus the orbital frequency

of an equal-mass non-spinning binary black hole following an adiabatic quasi-circular orbit

towards merger. The horizontal axis is also given as the number of orbits before merger.

The plot is adapted from [5], where the authors compared predictions for post-Minkowskian

(PM) conservative dynamics obtained using QFT tools (solid lines of increasing accuracy

in Newton’s constant G, i.e., in the PM approximation) to NR results [29]. In contrast to

Figure 1, the predictions shown here are obtained by incorporating the QFT results into the

EOB formalism, resulting in better agreement with NR towards merger.

strong constraints on radiative contributions to conservative binary dynamics [147].

For instance, the result of Refs. [143, 144] also agrees with the fifth-order PN result

of Ref. [148] up to a single term that does not have the expected mass dependence.

The origin of such contributions requires further study. The result of Refs. [143, 144]

to all orders in velocity has also been partially verified [149, 150]. Initial studies of

these results were performed by theorists developing waveform models for the LVK col-

laboration with encouraging conclusions; see Figure 1. Quite interestingly, the results

derived from amplitudes and EFT can be included in the EOB framework in a way that

improves the comparison with NR towards merger; see Figure 4. While these results at

4PM order are in an early stage with assumptions 4 that require further investigation,

4The results at 4PM order, i.e. at O(G4), have been obtained from the Hamiltonian computed for

scattering orbits in [143, 144, 149, 150].
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the key message is that results from scattering amplitudes are promising and further

developments are strongly encouraged.

Spin Effects. From a theoretical perspective, inclusion of the spin of the binary

components in amplitudes methods faces the difficulty that fields of arbitrary spins

are needed while no-go theorems [151–156] show that under certain assumptions such

field theories have unphysical features. Five proposals [157–161] have been put forth to

construct classical spin-dependent two-body Hamiltonians. Their results are consistent

with each other, and also with results obtained through standard general-relativity

methods, when the latter are available.

The stress tensor of a Kerr black hole [162] was obtained from higher-spin inter-

actions in [163] and [158], the latter also obtaining the stress tensor of more general

spinning compact objects [164]. The all-orders-in-spin O(G) and quartic-in-spin O(G2)

scattering angle for an aligned-spin configuration (i.e., spins that are aligned or anti-

aligned with the orbital angular momentum) was found in [165]. The O(G2) Hamil-

tonians expected to describe Kerr black hole binaries for general spin configurations

through fourth power of the spin were derived in [158, 166–169], and a general direct

relation between amplitudes and observables was conjectured in [158]. The change in

momentum and in the spin at O(G3) to quadratic order in spin have been computed

in [170], together with the radiation-reaction effects due to the radiated momentum at

2PM order [171].

Proceeding past fourth order in spin at O(G2) had been an important open problem

for standard general-relativity methods. The neutron star Hamiltonian quintic in spin

was predicted in [172] for arbitrary spin orientation, and the Kerr scattering amplitude

to eighth order in spin in [173]. Refs. [172, 173] proposed that the Kerr black hole

corresponds to a particular subclass of spin structures that can appear in a general

scattering amplitude, which was explained in [172] through a shift symmetry of the spin

vector reminiscent of reparametrization invariance in heavy-particle EFT [174, 175].

Relatedly, the dynamics of spin is technically very similar to the dynamics of color in

classical (infrared-free) Yang-Mills theories; using similar techniques, the 2PM Hamil-

tonian for color-charged matter was found in [176, 177].

Tidal Effects. Recent detections of GWs from the merger of neutron stars already

constrain the equation of state of matter at nuclear densities [31, 178], and more accu-

rate measurements at future detectors strongly motivate calculations at higher preci-

sion [33–37]. Similar to traditional approaches using classical methods [79, 132, 179],

the approach based on scattering amplitudes uses higher-dimension operators to model

the rigidity of the body and the susceptibility of its shape to change in response to a
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tidal potential [180]. The O(G3) contributions from the leading tidal operators were

computed using scattering amplitudes in [180], and was verified using a worldline ap-

proach in [181]. Other amplitudes-based calculations of tidal effects have been pursued

in Refs. [182–185], including results for infinite classes of tidal operators as well as all

orders in G results in the probe limit.

Aside from calculating predictions for tidal effects for neutron stars, tidal effects for

black holes have also been the subject of many recent studies within the particle physics

community [186–188]. Black holes have vanishing static, conservative tidal responses,

and a symmetry explanation for this has recently been put forth [189, 190].

Beyond General Relativity. Two-body Hamiltonians capturing specific models of

physics beyond general relativity have also been computed using scattering amplitudes

methods [180, 184, 191–196].

Radiative and Absorptive Effects. As mentioned above, waveform models rely on

both the conservative and dissipative dynamics. Calculations of radiative effects have so

far focused on hyperbolic scattering trajectories, in particular the scattering angle [133,

135–142], as well as the loss of linear [139, 140, 197] and angular momentum [134, 147,

171, 198–201], and the energy flux from higher-order tail effects [202, 203]. A proposal

for deriving radiation-reaction forces from scattering amplitudes was recently given

in [201].

So far, absorptive effects have not been incorporated in a QFT framework, see [204]

for a worldline EFT approach.

5 Theoretical Structures

In this section we give an overview of mathematical and physical structures that are

relevant in the classical regime of scattering amplitudes. Some of these structures, such

as nonperturbative properties of amplitudes and their direct connections to classical

solutions, were exposed through explicit calculations of different observables at higher

orders. Others, such as the eikonal phase and universality of high-energy scattering,

have been studied in the context of theoretical high energy physics but only recently

applied for GWs. We highlight examples where theoretical structures bring insight to

the phenomenology of GWs, and can be leveraged to develop calculational tools.

High Energy Limit. Even for classical scattering, the high energy (ultra-relativistic)

limit exposes interesting structures such as the interplay between exclusive and inclusive

observables [205–207], connections to soft graviton theorems [141], and universality

among gravitational theories with and without supersymmetry [106, 118, 133].
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For example, the four-point classical potential scattering amplitude at O(G3) de-

velops a singularity in the high-energy limit, s→∞:

M→−8πG3s2 log(−t) log
(m1m2

s

)
, (5.1)

where s and t are Mandelstam variables, and mi are the masses of the scattering black

holes. On general grounds, such singularities cannot exist in complete amplitudes [208].

The finite inclusive observable, including contributions from radiation modes, can be

derived using soft graviton theorems to describe graviton emission [141] or by a linear

response analysis [134]. Moreover, the double logarithmic structure can be understood

from the Regge limit, and is given by the cusp anomalous dimension [209], or by the

heavy-heavy current anomalous dimension in Heavy Quark Effective Theory [210].

These connections illustrate that amplitudes in simplifying limits, even in super-

symmetric versions of gravity, can carry useful information about classical binary dy-

namics. More generally, there is a wealth of knowledge on four- and five-point ampli-

tudes in theoretical high energy physics, and many of the tools and physical insights can

be transplanted to classical binary dynamics. For example, quantum electrodynamics

(QED) as well as supersymmetric cousins of gravity, such as N = 8 supergravity, offer

controlled laboratory settings for sharpening tools and dissecting basic phenomena.

Eikonal Phase. It has long been known that in the classical limit the eikonal phase

provides a good description of elastic four-point amplitudes in gauge and gravity the-

ories, which effectively exponentiate as a consequence of unitarity [211–217]

iM = eiδ − 1 . (5.2)

It is moreover expected that the dominant contributions at high energies to the eikonal

δ come from the exchange of the highest-spin state in the theory [118, 119, 214], and

therefore that it is universal in gravitational theories [218].

Modern evidence for these properties was obtained in recent work on massive theo-

ries [106, 133, 136], as well as massless theories with various amounts of supersymmetry,

including general relativity [219]. This led to the idea that inclusion of all contributions

from exchanged gravitons with momenta of the order of the transferred momentum is

a necessary (and possibly sufficient) condition for universality of the eikonal in the

ultrarelativistic limit and for a smooth interpolation to the nonrelativistic limit [133].

A self-contained treatment of the real and imaginary parts of the eikonal in the entire

soft region at O(G3) in massive N = 8 and in general relativity was presented in [135]

and confirmed in [220], giving another demonstration of the universality properties.

The eikonal form of the S matrix is quite similar to that of the amplitude-radial

action relation (5.3), but they differ in the definition of the iteration terms [143]. Similar
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to the radial action, the eikonal is a generating function of scattering observables [221],

such as the scattering angle or the time delay. See Sec. 6 for further discussion.

Eikonal with Spin. The unitarity argument for the exponentiation of elastic am-

plitudes holds also for spinning external states. This was demonstrated explicitly for

spin-1/2 particles in [222] and for arbitrary spin in the classical limit from the perspec-

tive of minimization of the spin variance in [112].

The eikonal continues to be a generating function for observables when scattering

spinning particles. This was verified explicitly through O(S1S2) in [158] where the

change in momentum (also referred to as the “impulse”) and the change in spin (also

referred to as the “spin kick”) obtained from the eikonal were compared with the results

of Hamilton’s equations. A conjecture was also put forth [158], connecting eikonal and

scattering observables to all orders in spin. This relation was successfully tested through

fourth order in spin [166, 169] at O(G2). It is quite interesting and surprising that a

single function can capture the complicated three-dimensional dynamics of scattering

of spinning particles.

Nonperturbative Structures. EFT methods can be used to connect scattering am-

plitudes and classical binary dynamics through a matching calculation between gravity

and a low energy EFT that describes particles interacting through an effective po-

tential. An outcome of this matching calculation is a beautiful relation between the

classical limit of the scattering amplitudeM in impact parameter space and the radial

action Ir of Hamilton-Jacobi theory:

iM = eiIr − 1. (5.3)

This means that the scattering amplitude directly determines the radial action Ir, which

in turn determines orbital trajectories. This equation was first derived in [143], and

is dubbed the “amplitude-action relation”. The exponential form of the amplitude-

action relation is reminiscent of the eikonal phase (5.2), and has an important practical

implication for calculations: a large class of integrals come from exponentiation of

lower-order contributions and can be systematically dropped prior to integration. The

amplitude-action relation was studied to all orders in perturbation theory for a probe

in the Schwarzschild or pure-NUT gravitational backgrounds as well as for a probe

interacting with point-charges and monopoles in [223].

The amplitude-action relation in Eq. (5.3) is an example of remarkable nonpertur-

bative structures that appear in the classical limit. Another example is the following

relation between the classical scattering amplitude in position spaceM(r) and the local
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I II

…

Figure 5. The resummation of these diagrams to all orders in G yields the amplitude for a

probe particle in a Schwarzschild background.

center-of-mass momentum in a hyperbolic orbit,

M(r) =
p(r)2 − p(∞)2

2E
. (5.4)

Here p(r)2 is the squared center-of-mass momentum at position r, and E is the total

center-of-mass energy. This was first noticed and used in [128, 129], and further devel-

oped and formalized in [122] (where it was dubbed “impetus formula”) and also [224].

This relation can be used to derive amplitudes to all orders in G. For instance, the

diagrams in Figure 5 describe a probe particle in a Schwarzschild background, and

can be resummed by determining p(r) from geodesic motion. One can also derive

nonperturbative amplitudes involving higher-dimensional operators that describe tidal

effects [185].

Another nonperturbative relation builds on the Newman-Janis [225] relation be-

tween the Schwarzschild and Kerr solutions of Einstein’s equations. This relation,

employing a certain complex shift, has been used in [226] to obtain the impulse for

spinning particles from that of spinless particles at leading post-Minkowskian order. It

remains an intriguing open question whether the relation holds at higher orders and

how to exploit it [227].

Gravitational Self-Force. Extreme-mass-ratio inspirals are binary systems consist-

ing of compact bodies with masses m1 and m2 with m2 � m1. The limiting case is

described by a probe particle orbiting in a background spacetime such as Schwarzschild

or Kerr. Beyond this, the particle interacts with its own gravitational field, giving rise

to an effective “self-force”, which is computed as an expansion in m1/m2 but to all

orders in G. The gravitational self-force for generic bound geodesics in Schwarzschild

and Kerr spacetimes were found in [228] and [229], respectively. The precision of LISA

will require the second-order self force in the conservative and dissipative dynamics, i.e.,

corrections of O(m2
1/m

2
2) and all orders in G, which is not completely solved. However,

see Ref. [230] for significant recent progress.

Interestingly, scattering amplitudes have revealed a connection between perturba-

tive corrections to binary dynamics and self-force corrections. The mass dependence

of the n-loop scattering amplitude in the classical limit follows simply from dimen-

sional analysis, and implies that it can probe the O(Gn+1) contribution to the bn
2
c-th
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order self-force correction. In other words, the n-loop scattering amplitude contains

contributions of the form ∼ Gn+1(m1/m2)
bn
2
c. This structure is leveraged in a powerful

new method, dubbed “Tutti-Frutti”, for extracting perturbative corrections to binary

dynamics from self-force calculations [115, 231–236]. This mass dependence, which

ultimately traces back to Lorentz invariance, also has strong implications for the ra-

diative contribution to conservative dynamics [115]. In particular, it implies nontrivial

cancellations among contributions from source multipole moments and imposes strong

consistency checks on perturbative calculations. Notably, there are now numerical and

theoretical efforts to extend gravitational self-force calculations to hyperbolic trajecto-

ries in order to make contact with results from scattering amplitudes; see, e.g., [198].

Coherent States and Waveforms. The gravitational waveform during a scattering

event can itself be directly computed from amplitudes [237]. At lowest perturbative or-

der it is given by an integral of a five-point tree scattering amplitude. The relation to the

intuitive picture, in which a GW consists of a large number of gravitons, is interesting:

GWs are described by coherent states (with very large occupation numbers) of the grav-

itational field. Gravitons building up this state are emitted independently [112, 113],

and each emission is described by the same five-point amplitude.

Coherent states also play a role in understanding the emergence of classical spin

and color from QFT [158, 176, 238], and in understanding the emergence of classical

physics from quantum mechanics quite generally [239].

Eikonal methods have been generalized to include such coherent outgoing radia-

tion [112], building on earlier work of [240] and [237]. In particular, Ref. [112] argued

that the eikonal is effectively extended by a coherent state operator, which creates ar-

bitrarily many outgoing massless particles and that the nonperturbative radiation field

is described by the waveshape parameter defining the coherent state, which in turn is

determined by the five-point amplitude.

Soft Gravitons. Recently it has become clear that there is a beautiful relation be-

tween the soft limit in quantum theories and memory effects in classical dynamics [241].

This can be understood in the KMOC formalism (see Sec. 6) by studying the radiated

momentum. In the long-wavelength limit, the scattering amplitude involved in the

radiation simplifies as a soft factor times a lower point amplitude, recovering the im-

pulse [242]. Classically, this impulse is the “memory” of the step-change in the field

described by its very low frequency Fourier components. More generally, the KMOC

formalism reveals a rich interplay between classical physics, soft or low-frequency radi-

ation, and scattering amplitudes [243–247].
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Analytic Continuation and Time Nonlocality. The integrability of the two-

body equations of motion with Newton’s potential guarantees that their solutions are

uniquely specified by integrals of motion – the total energy and the orbital angular

momentum. Hyperbolic and elliptic motions are mapped into each other by analytic

continuation of the boundary conditions. While integrability is not known to exist for

two-body conservative Hamiltonians even at 2PM order [248], Refs. [121–124] argued

that bound state observables can be obtained through a suitable analytic continuation

in energy and in angular momentum from scattering observables. This procedure was

dubbed “Boundary-to-Bound” or “B2B” and formalizes the fact that such Hamiltoni-

ans can be constructed by matching, e.g. the scattering angle, and then subsequently

used for bound motion by changing the boundary conditions. Physically, this can be

understood as a consequence of the time locality of the potential generated by potential-

region gravitons.

However, this approach fails for conservative radiation-reaction effects, beginning

at O(G4) with the tail effects [124]. Given a scattering angle, it is always possible to

construct a local Hamiltonian that reproduces it. Fundamentally however, because it

captures effects of radiation modes propagating over long periods before being reab-

sorbed by the binary, the “off-shell” Hamiltonian has both an instantaneous component

and a non-local in time one [75]. While the analytic continuation of the local and uni-

versal (logarithmic) part of the nonlocal Hamiltonian is straightforward, obtaining the

non-universal part of the bound Hamiltonian from the unbound one is an important

open problem.

Exploring Structure in Simpler Theories. Even in the classical limit gravita-

tional interactions are complicated. Before proceeding to full-fledged gravitational cal-

culations, it is useful to test ideas and tools and search for theoretical structures in

much simpler settings such as gauge theory. Since color in the classical limit becomes

essentially abelian, it suffices to study QED. Calculations designed to explore some

of the subtleties that appear at O(G3) in gravitational calculations were carried out

in gauge theories, both using scattering amplitudes [176, 249], and classical gravity

methods [250, 251].

Gravitational theories with additional symmetries, like supersymmetry are another

possibility. As discussed above, results obtained in supergravity theories confirmed

universality properties of the eikonal function and led to an understanding of the role

of radiative corrections in classical scattering.

Relations Between Amplitude Fragments. The essential difference between clas-

sical and quantum measurements is the variance: it is nonzero for quantum measure-
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ments and must become negligible in the classical limit. Defining measurements in

terms of expectation values of operators, Ref. [112] showed that the condition of zero

variance (effectively requiring factorization of expectation values of products of opera-

tors) implies an infinite set of relations between different amplitude “fragments” (that

is different orders in an amplitude’s expansion in momentum transfer) with different

numbers of loops and legs. For four-point amplitudes they are the relations required for

eikonal exponentiation. At five points, higher-loop fragments are related to lower-loop

five-point and four-point amplitude fragments. Among the implications of the zero-

variance condition are detailed predictions for the momentum transfer dependence of

amplitudes and a novel understanding of the eikonal in the presence of outgoing radi-

ation mentioned above.

6 Developing Tools

In this section we describe the tools that enable state-of-the-art calculations, such as

those summarized in Sec. 4, as well as, recently developed tools that were inspired

by new theoretical structures or by the challenges of pushing the cutting edge. These

tools are forged by streamlining existing calculations, testing on toy theories such as

QED or supersymmetric cousins of gravity, and direct forays into new calculations in

Einstein’s gravity. We highlight synergies between scattering amplitudes and other

particle physics tools such as EFT and advanced multiloop integration techniques,

as well as, with methods in general relativity such as gravitational self-force and the

worldline formalism.

Effective Field Theory. Compact binaries share many of the essential characteristics

of bound states of elementary particles such as positronium, hydrogen, or quarkonia.

Therefore, the nonrelativistic EFT techniques developed for QED and QCD [210, 252–

257] are well-suited for application to compact binaries. This is underscored by the

many landmark calculations that were enabled by the NRGR framework [79], see the

dedicated Snowmass White Paper [90] for recent developments on this subject. These

physical systems are characterized by scales that define the following modes or regions:

hard (m,m)

soft
(
mv
J
, mv
J

)

potential
(
mv2

J
, mv
J

)

radiation
(
mv2

J
, mv

2

J

)
(6.1)

Here (E, p) denotes the scalings of the energy and three-momentum of the modes, m

is the mass of the binary constituents, v is the relative velocity, and J is the angular

– 17 –



momentum. As discussed in Sec. 3, the classical limit corresponds to the limit of large

angular momentum.

The new approach based on scattering amplitudes adapts these EFT tools, and

closely related methods such as the method of regions [255], to efficiently extract clas-

sical contributions from the various modes described above. In particular, power-

counting and factorization allows contributions from potential and radiation modes

to be systematically and separately considered in scattering amplitudes, and then re-

summed to all orders in the velocity v using differential equations.

Similar to applications in QED and QCD [256], another basic role of EFT is

to connect scattering amplitudes and classical binary dynamics through a match-

ing calculation between gravity and a low energy EFT that describes particles in-

teracting through an effective potential [114, 258, 259]. For the case of conserva-

tive dynamics, the basic framework has now been applied and extended for appli-

cation at higher orders [114, 128, 129, 143, 144], for including spin and tidal ef-

fects [158, 166, 180, 182–185], and for gravitational theories with supersymmetry and

in arbitrary dimensions [106, 248, 260]. In Ref. [143], this EFT matching procedure

was used to derive the amplitude-action relation (5.3).

Advanced Multiloop Integration. The quest for high-precision calculations in par-

ticle physics, e.g. for colliders and for theoretical explorations of various field theories,

has led to the development of advanced technology for integration of loop contribu-

tions. This can be transplanted for application to GWs, where the evaluation of inte-

grals is a challenge common to all field-theory–based approaches, including traditional

approaches in general relativity.

Integration by parts reduction as implemented in automated programs, such as

AIR [261], FIRE [99, 262], Kira [263], Reduze [264], and LiteRED [265, 266], can be

used to obtain a set of master integrals, which are then evaluated using the method

of differential equations [100–103], perhaps in canonical form [104, 105]. The results

are given in terms of multiple polylogarithms, their elliptic generalizations and perhaps

more complicated functions. A judicious choice of variables is crucial [106, 267]. In-

tegrals that appear in general-relativity–based approaches to PN calculations are also

amenable to these methods, as was demonstrated in [268, 269]. These methods mesh

well with the expansion around the classical limit, and extraction of potential and

radiation contributions as implemented through the method of regions [255].

Generating Functions. The radial action Ir, defined as the integral of the radial

momentum along the trajectory, contains the entire classical central-field dynamics.

Observables such as the scattering angle, redshift, and time delay, can be derived
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from the radial action via thermodynamic-type relations, e.g. dIr = θ
2π
dL + τdE +∑

a〈za〉dma, where θ is the scattering angle, L is the orbital angular momentum, τ is

the time delay, and 〈z〉 is the redshift. Ref. [143] demonstrated a direct relation (5.3)

between elastic four-point scattering amplitudes and the radial action for the scattering

trajectory of the two particles. The radial action can thus be directly obtained from

particular contributions to the four-point scattering amplitude [143, 270]. Ref. [137]

argued that the radial action constructed this way is related to the WKB approximation

to the scattering process, which establishes a connection with the eikonal exponentiation

of amplitudes (5.2). The amplitude-action relation has also been used to explore non-

perturbative results in the probe limit [223].

From a field theory point of view, the eikonal function provides another generating

function for observables. Indeed, the kinematics that selects the classical part of a four-

point amplitude, s � t = −q2, is the same as the Regge kinematics, so properties of

amplitudes in this regime, such as its exponentiation in terms of the eikonal function,

can be used to gain insight into classical physics. The original framework has been

extended to capture the exponentiation of amplitudes of spinning particles and of five-

point amplitudes, under suitable assumptions regarding the coherence of the emitted

gravitons [112]. While structurally similar, the radial action and the eikonal functions

differ in the details of the definition of the exponential or, equivalently, in the definition

of the iteration terms.

KMOC – A Formalism for Observables from Amplitudes. Another approach

to extracting classical physics from amplitudes focuses on determining physical ob-

servables which are well defined in both the classical and quantum theories. This

observables-based approach was first discussed in [111], and is sometimes referred to as

the KMOC formalism. It is a quantum-first treatment of observables, which incorpo-

rates key aspects of classical physics from the beginning. By arranging a system to be

under the purview of the correspondence principle, then quantum effects are negligible

and it must be the case that the quantum mechanical computation of the observables

will yield the classical result.

In the KMOC formalism observables are evaluated as expectation values of oper-

ators in the quantum field theory, 〈ψ|O|ψ〉. Scattering amplitudes enter through time

evolution which, given an initial state |ψ〉 in the far past, produces a final state S |ψ〉 in

the far future, and scattering amplitudes are the matrix elements of S. This strategy

is somewhat reminiscent to QCD event shapes [271–277], such as the energy or charge

flow [278] and energy-energy correlators [271, 272].

A whole range of observables can be computed using the KMOC formalism. A

particularly simple example is the impulse. The impulse is the change in the expecta-
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tion value of the momentum operator Pµ of the quantum field describing the massive

particle and is closely related to the classical potential. There is a direct connection

between the impulse and the scattering angle: once the final momentum is known, it

is straightforward to determine the direction of motion relative to the initial momen-

tum. On the other hand if the scattering angle is known the final momentum can be

reconstructed, assuming no energy is radiated away.

The amount of momentum radiated is itself another simple observable, arising as

the expectation value of the momentum operator Kµ of whatever field is transporting

the momentum. For example, in gravitational scattering, it is the momentum oper-

ator of the gravitational field. Because conservation of momentum is built into the

underlying quantum field theory, the KMOC formalism naturally incorporates the ef-

fects of radiation reaction. It also has natural generalizations that include the spin of

particles [163, 226, 279] and capture the dynamics of color in the context of classical

(infrared-free) Yang-Mills theories [176, 177].

The gravitational waveform emitted during a scattering event follows directly from

amplitudes [237]; the observable of interest is the Riemann curvature operator Rµνρσ(x)

in linearized gravity. The linearized approximation is appropriate as the GWs travel

over extremely large spatial distances and retains only the leading term in inverse

distance. The waveform itself is an integral of an appropriate component of the expec-

tation 〈ψ|S†Rµνρσ(x)S |ψ〉. At lowest perturbative order, it is an integral of a five-point

tree scattering amplitude. The relation with the intuitive picture in which a wave is

composed of a large number of gravitons is established by describing the wave as a co-

herent state of the gravitational field. Interestingly, vanishing variance in the classical

limit [112] implies that correlators of products of operators, out〈ψ|O1O2|ψ〉out factorize

as out〈ψ|O1|ψ〉outout〈ψ|O2|ψ〉out; they nevertheless contain new classical information as

demonstrated in [201].

Amplitude Building-Blocks in the Classical Limit. Through generalized uni-

tarity, tree-level amplitudes are the building blocks for all higher-order calculations.

The application of scattering amplitudes to GWs has motivated reorienting the struc-

ture of these building blocks to take advantage of simplifications in the classical limit.

A number of approaches are based on heavy-particle effective theory [280], and the

double-copy in such theories [138, 281, 282], which build on ongoing efforts to under-

stand the kinematic algebra behind color/kinematics duality, see e.g. [283, 284]. Other

approaches focus on reorganizing the soft expansion to reduce the number of master

integrals by combining terms related by permutations of graviton legs [220].

Another approach uses generalized unitarity to first construct gauge-theory am-

plitudes and then applies the double-copy to obtain the corresponding gravitational
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amplitudes [285]. Various methods are available to project out the dilaton and ax-

ion [286, 287] that naturally appear in this approach. It will be interesting to explore

how to take the classical limit before the double-copy, and use gauge theory tree-level

amplitudes adapted for this purpose.

Many developments focused on amplitudes for higher-spin particles. The ampli-

tudes obtained in the classical limit avoid the strong constraints imposed by no-go

theorems [151–156]. Ref. [157] constructed three-point amplitudes for arbitrary-spin

massive particles through standard amplitudes methods and, by demanding good high-

energy properties, identified the so-called “minimal amplitudes” which correspond to

the linear response of Kerr black holes to an external gravitational field [162]. Using

Lagrangian methods, Ref. [158, 172] constructed an EFT that described the classi-

cal interactions of higher-spin fields at large impact parameter, |b| � |p|−1, which

includes arbitrary spin-induced multipoles and whose three-point amplitudes exhibit

a double-copy relation to higher-spin fields coupled with gluons. The heavy-particle

approach in Ref. [280] was extended for higher-spin fields with double-copy properties

in [160, 173, 288]. For suitable values of the parameters, the three-point amplitudes

following from these Lagrangians reproduce the Kerr stress tensor [162]. A gravita-

tional Compton amplitude for spin-5/2 massive particles that is free of spurious poles

was found in [159], demonstrating that the methods employed can produce consis-

tent higher-point amplitudes for higher-spin particles. Another construction [289, 290]

makes use of the scattering equation formalism to provide diagrammatic and recursive

tools for finding covariant expressions for D-dimensional tree-level n-point amplitudes

with pairs of spinning massive particles.

Synergy with Traditional Approaches. The new approach based on the tools of

theoretical high-energy physics has benefited immensely from traditional methods, in

terms of both conceptual guidance from existing frameworks and practical guidance

from explicit results. In turn, the emergence of new results derived from scattering

amplitudes has spurred new developments within traditional methods, as well as, hybrid

approaches that meld traditional methods and particle-physics tools. Such an extensive

exchange between various approaches in general relativity and particle physics has led

to the rapid advance of recent years, and will continue to drive breakthroughs in the

future.

For instance, one of the main tools for describing binary dynamics within the PN

approach to general relativity is the worldline approach [79, 89, 291–297]. Recently,

inspired by amplitudes methods, this has been extended to a PM framework [132]

to derive results to all orders in velocity. Calculations in this approach share many

similarities with amplitudes-based methods, such as the use of integration technology
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imported from particle physics. Other worldline-based approaches having aspects of

scattering amplitudes have also been recently developed for calculations of tail effects in

a nonrelativistic EFT for a binary [203] and of PM observables [170, 171, 298], including

spin [161, 170, 299] and radiative [170, 199] effects.

As discussed in Sec. 5, new results from scattering amplitudes have exposed a

number of theoretical structures. One feature that was hidden in traditional non-

relativistic calculations was the simple mass dependence of scattering amplitudes, or

equivalently the radial action and scattering angle. Indeed, it was noticed [300], and

then rigorously proved [115], that the scattering angle exhibits a particular dependence

in the symmetric mass ratio m1m2/(m1 + m2)
2, leading to the so-called “good mass

polynomiality” rule. The latter is the basis of the “Tutti-Frutti” method [115, 231–233],

which establishes the overlap between the self-force expansion and the PM expansion.

This powerful method has derived a number of new results, which have in turn provided

important guidance for new amplitudes-based calculations. The “Tutti-Frutti” method

has also been extended for systems with spins [234–236].

The B2B map is another instance in which patterns revealed from explicit ampli-

tudes calculations [128, 129] were combined with the application of analytic continua-

tion [121] to develop efficient new tools [122–124].

7 Future directions and challenges

In this section we summarize several broad directions that are as essential for long-term

progress and fruitful synergy between particle and GW physics.

New Perspectives on Observables. Scattering amplitudes are naturally defined

by data at asymptotic infinity and can offer insights on this class of observables in

general relativity, which can be subtle due to general coordinate invariance. Of par-

ticular significance are questions regarding radiative contributions, which are not only

of theoretical interest, but also of practical importance for obtaining high-precision

waveforms.

One open question is: how are observables in bound and unbound orbits generally

related? In the absence of radiative effects, both types of dynamics can be straightfor-

wardly derived from the same Hamiltonian and are related by analytic continuation.

However, this is no longer true in the presence of radiative effects, which introduce

correlations over arbitrary time intervals, e.g., due to tail effects [125–127]. This leads

to a nonlocal-in-time Hamiltonian that depends on the particular trajectory [75] (see

also [301] for a more recent perspective). This non-universality prevents a simple ana-

lytic continuation [124].
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It is imperative to address this question in order to fully leverage scattering ampli-

tudes, which are naturally associated with unbound motion, for describing the dynamics

of bound compact objects. A complete framework for connecting bound and unbound

trajectories will not only apply to conservative dynamics but also to the radiated en-

ergy, momentum, and angular momentum, and perhaps to the waveforms themselves.

Interestingly, there is evidence for double copy in GW emission in both bound and

unbound systems [302–304].

Relatedly, it would be useful to carefully formulate important concepts such as

conservative vs. dissipative dynamics, as well as inclusive vs. exclusive or IR safe

vs. unsafe observables. For instance, recent differences in the conservative dynamics at

O(G4) are due to difficulties in precisely defining conservative dynamics in the presence

of radiative effects. To this end, it may be fruitful to compute new observables, beyond

those traditionally considered in binary dynamics, that can serve as toy models for

understanding these issues. Such new observables may also be of phenomenological

interest. For example, it would be interesting to detect waveforms from hyperbolic

encounters. Although such events are expected to be rare and have a short-duration

signal, their theoretical predictions are well-understood and can be obtained directly

with scattering amplitude methods without need of analytic continuation.

Observables and unexpected structures may be further revealed by formulations of

gravitational interactions without direct reference to geometry, in analogy with struc-

ture exposed by formulations of quantum field theory without quantum fields. The

classical double copy [64] provides an example, as do recent attempts to define the

Kerr black hole from a QFT perspective [172, 173]. While currently perturbative, such

theoretical tools may help fully exploit GW observations in the quest to understand

gravitating compact objects and black-hole horizons.

Still-Higher Perturbative Orders. The precision demands of future experiments [20–

23, 305] are quite challenging since, depending on the source, GWs from binary systems

will be observed with a signal-to-noise ratio that is one or two orders of magnitude

higher than with current detectors [1–3]. To keep the modeling systematics below the

expected statistical errors [33–37], the accuracy of current state-of-the-art waveform

models [306–319], which are built from combining analytic and numerical relativity,

needs to be improved by, say, two orders of magnitude. This would require up to

O(G7) and/or O(v12), as shown in Figure 2 for the potential. Moreover, higher-order

calculations are needed for the dissipative sector, the multipolar waveforms, and other

physical effects such as spins, tides, and eccentricity.

While amplitude-based methods are powerful, achieving this will still require a

significant build-up of technology over several years of cycling between performing state-
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of-the-art calculations and developing new tools to solve bottlenecks. For example,

current pipelines can be significantly improved by streamlining the construction of

classical scattering amplitudes and efficiently removing iteration terms that are already

determined by lower-order calculations. In the same spirit, it will be important to

exploit the nontrivial interplay between different graph topologies that lead to vast

simplifications in the integrand, as demonstrated in [217] and further explored in the

context of GW physics in [138, 281]. Similarly, it will be interesting to understand and

utilize the consequences of the infinite number of relationships between multi-point,

multi-loop amplitudes in the classical limit [112], which suggest that various terms in

higher-point and/or higher loop amplitudes can be predicted from lower loop, lower

point amplitudes. It also would be interesting to examine whether this phenomenon

could be useful in contexts outside of GW physics, for example in collider experiments.

Apart from applications to precision GW physics, higher-order calculations also

bring new perspectives on known phenomena. For example, the calculation of conser-

vative binary dynamics at O(G5) including radiative effects can give a better under-

standing of the role of GW memory in binary dynamics.

Higher-order calculations contain a wealth of information about the analytic struc-

ture of the two-body Hamiltonian and of observables. Up to rational functions, they

are given by the nontrivial loop Feynman integrals that can appear at a given order

in perturbation theory. A classification of the functionally independent integrals can

directly constrain observables from a general knowledge of their analytic properties or

their behavior in various limits. Moreover, these functions can be matched to NR sim-

ulations, which, for the time being, provide the most accurate description of the final

moments of a binary inspiral. This fitting procedure may offer further analytic insight

into this period of the binary’s evolution and, conversely, on analytic approaches to

nonperturbative properties of gravitational interactions.

Integration Challenges. Evaluation of higher-loop Feynman-type integrals is a chal-

lenge shared by QFT applications to both particle physics and to gravitational and

GW physics.

The integration-by-parts (IBP) reduction [97–99, 263–266, 320] used to reduce

the expanded Feynman integrals to basis of integrals, referred to as master integrals,

becomes computationally demanding as the number of loops increase. Cutting edge

developments that increase the efficiency of IBP reduction [321–329], perhaps with

further improvements related to the specific structure of the integrals that appear in the

classical limit, will be vital for field theory-based approaches to reach high perturbative

orders in the post-Minkowskian and the post-Newtonian expansion demanded by future

observations. Further improvements may come from the development of an algorithmic
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choice of master integral basis tailored for the two-body general-relativity problem.

The master integrals relevant for the two-body problem depend only on the relative

velocity of the two bodies and can be evaluated through a system of linear first-order

ODEs [100–103] in this velocity. Expansion in the static limit, v → 0, yields the in-

tegrals that appear in the post-Newtonian expansion and the leading terms serve as

boundary conditions for the ODE system. The differential equations themselves sim-

plify when a “canonical basis” of master integrals is chosen [104, 105]. New algorithms

for finding such canonical bases, improving upon those in [330–339], and the study of

the special functions that solve the resulting differential equations [340–345] will be im-

portant for further progress, see also the dedicated Snowmass White Paper [346]. For

specific practical applications it will also be profitable to explore other methods for eval-

uating master integrals, such as Mellin-Barnes representations [347], direct Feynman

parameter integration [343, 348], and difference equations from dimensional recurrence

[349–351]. These methods apply equally well to conservative calculations and to the

calculation of observables involving outgoing gravitational radiation, such as the total

energy radiated during a scattering event. The collider method of reverse unitarity

[352–355] allows systematic evaluation of the phase space integrals appearing in the

KMOC formalism with techniques similar to those used for loop integrals, as demon-

strated in [139, 140].

Higher-Order Structure, Resummation, and Beyond Perturbation Theory.

Exact results in interacting theories, even in the classical regime, are rare. Patterns and

structure exposed by explicit higher perturbative orders may hold the key to under-

standing the structure of perturbation theory and eventually lead to its resummation,

as illustrated e.g. by the BDS/ABDK conjectures [356, 357] for the resummation of

the planar MHV amplitudes in N = 4 super-Yang-Mills theory. This is an important

theoretical justification, which complements the practical one emphasized earlier, for

further in-depth higher-order exploration. The complete velocity dependence gives us

access to the analytic structure of the Hamiltonian – and of the observables derived

from it – and thus can inform on the structure at even higher orders, possibly providing

sufficient information to resum the entire perturbation theory.

A proof of principle is the conjectured expression relating scattering observables of

spinning bodies to the eikonal of the corresponding scattering amplitude [158]. While

expected from the motion of spinless bodies, the existence a single function – the

eikonal, or the radial action – that potentially captures all conservative classical ob-

servables of such processes is surprising. Tests of such conjectures and the identification

of novel, bolder ones may exploit special configurations of particles, new perturbative

expansions which access different regions of parameter space, etc.
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When present, symmetries are powerful means to extrapolate fixed-order properties

of observables. The double copy hints at a relationship between the asymptotic sym-

metry group of Yang-Mills theory and of general relativity. Since the expectation value

of the field itself can be computed (e.g., using scattering amplitudes and the KMOC

formalism), it may be possible to test this idea directly. Quantum mechanical defor-

mations of the symmetry group, relating for example to infrared divergences, should

be accessible by studying appropriate observables and may reveal all-order structures.

Another path to exact results proceeds through enhancements of perturbative cal-

culations. For instance, the EOB approach [10, 11] provides a framework that can

incorporate not only perturbative results from PN, PM and gravitational self-force but

also exact results available in the probe limit. In general, it is critical that information

from distinct regions of parameter space and from different physical phenomena be

included in the same formalism. The amount of physics contained in all-order results is

remarkable and includes, among others, possible analytic access to horizon formation

in the binary coalescence.

Yet another systematic strategy is the gravitational self-force approach [15, 77, 78],

in which one expands in the mass ratio of the binary. It makes contact with QFT in

curved space, which we will return to shortly. It is a challenge for the future to develop

the tools necessary to carry out such calculations with QFT methods.

Apart from having been instrumental for driving our understanding of gravity,

iconic classical solutions of general relativity such as the Schwarzschild and Kerr solu-

tions also are at the foundation of the EOB theory and of the self-force approach. Scat-

tering amplitudes and the KMOC formalism applied to three-point amplitudes [358]

can access these via analytic continuation either to complex momenta or to space-

times with an exotic signature. This led, for example, to a new understanding of the

Newman-Janis shift [226] which relates the Kerr solution in a very simple way to the

Schwarzschild solution. Extending this observation beyond leading order should estab-

lish a connection between scattering amplitudes and higher-order terms in the self-force

expansion to all orders in Newton’s constant, beyond the “good mass polynomiality”

already manifest in perturbative scattering amplitudes and associated observables. It

could also be interesting to examine this connection in higher dimensions where the

space of known classical solutions if far richer than in four dimensions.

Many-Body Dynamics from Amplitudes. While there is a large effort directed

towards understanding compact binaries, systems of three or more massive bodies also

occur in our Universe and may source GWs detectable in the future. These systems

may probe scenarios of sequential and hierarchical mergers [359–362], and have qual-

itatively different dynamics [363], including chaotic dynamics with interesting effects
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at relatively high velocities [364]. The current state-of-the-art Hamiltonian is the 2PN

order [365–367] obtained through general-relativity methods. A formal 2PM expres-

sion was obtained in [368] using the worldline formalism and can be used to generate

higher-order PN terms of the form G2v2n.

Scattering amplitude methods used for two-body dynamics can also be applied for

N -body dynamics, and exploring this may uncover novel features of gravitational inter-

actions. This will require extending tools for constructing 2N -point matter amplitudes,

identifying the classical limit, evaluation of integrals, etc. Further assumptions about

the hierarchy of scales in N -body dynamics establish connections with multi-Regge

kinematics in particle physics.

Ringdown from Amplitudes. The focus of the recent effort to understand and ex-

plore binary coalescence with particle physics methods has been the inspiral phase of

the process, which can be treated perturbatively around flat space. The GW signal con-

tains information about the masses and spins of the constituents, the shape of the orbit

(eccentricity and mean anomaly), and in late stages also about their tidal deformability.

For binary black holes, the final phase of a merger, known as the ringdown, appears as

a superposition of quasi-normal modes of the merged remnant [8, 369]. The frequency

and decay time of each mode are determined in general relativity by the remnant’s

mass and spin, while their relative amplitude contains information about the prop-

erties of the binary’s components and geometry, including the spin orientations (see,

e.g., [370–372]).

This poses an interesting challenge and an equally interesting opportunity: to de-

velop field theory methods to describe the emission of gravitons from the remnant of

a binary merger. A naive expectation is that the relevant framework is QFT in a

time-dependent curved space which is perhaps a classical double copy and that the

relevant observables are final-state correlation functions akin to cosmological correla-

tors. While still in its infancy, see e.g. [373–383] and the Snowmass White Paper [384],

the generalization of the amplitudes program to curved space together with the gauge

theory realization of classical solutions of general relativity [64, 385–390] may offer a

new perspective on the ringdown phase, as well as, new means to explore analytically

the correlation between initial parameters and intrinsic properties of the remnant, in-

cluding its tidal deformability, etc. Clearly, a systematic development of these methods

will have wider applications, establishing connections to other areas of physics, such

as gauge/string duality. Curved space methods will also make contact with the self-

force approach to the two-body problem [15, 77, 78], which can be interpreted as the

back-reacted propagation of a light massive particle in the curved space generated by

a heavy massive particle, thus providing another path to analytic resummation of the
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two-body Hamiltonian or two-body observables. See [391] for a related application of

the KMOC formalism.

Probes of General Relativity, Quantum Gravity and New Physics. Quantum

gravity remains one of the biggest mysteries of fundamental physics of this century.

While indirect evidence for it abound, its precise formulation is elusive, and there is

currently no observed deviations from predictions of classical general relativity in GW

observations [392]. Future more precise observations with also a much larger number

of events will provide a means for more efficient probes of physics beyond general rela-

tivity [393], or even of quantum gravity and horizon-scale physics (e.g., [394–397]); see

also the Snowmass White Paper [27] on fundamental physics and beyond the standard

model. More accurate waveforms, covering long-time evolution, as well as various pos-

sibilities for new physics, is a step towards this goal, as are the identification of new

observables tailored for such physics. A complementary approach is the development of

model-independent studies, covering both classical extensions of general relativity and

its quantization. From an EFT perspective there is of course a certain overlap between

them, so identifying methods to lift this degeneracy will be important.

Further developments in amplitude methods, e.g. extending the work in [398–401]

to systematically include and classify all possible higher-dimension/higher-derivative

operators that can appear as counterterms in gravitational theories, including those

discussed using standard GR methods in e.g. [402–404], will aid both model-specific

and model-independent studies of GW signals, both with regard to the inspiral and

the ringdown phase, see also Snowmass White Paper [405] on UV constraints and IR

physics.

8 Coda

In its short history, the program to apply particle physics methods to gravitational

physics in general and gravitational-wave physics in particular has achieved remarkable

success by uncovering rich theoretical structures, developing powerful new tools, and

producing predictions for future precision gravitational-wave detectors. Close synergy

with the EFT and gravitational-wave communities has been essential, and provided cru-

cial guidance regarding the theoretical needs for waveform modeling and the necessary

tools to achieve them.

This white paper provides a snapshot of the current status of this vibrant field

and of its progress to date. There are many open questions and avenues to explore,

ranging from the very formal to the very practical. Some can be addressed with existing

methods whose full potential is not yet realized, while others require novel ideas that
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may even open up completely unexpected directions that will further our knowledge

of gravitational interactions, binary dynamics, black-hole physics and perhaps even

quantum field theory.
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gravitational field and equations of motion of two pointlike objects: The postlinear

approximation of general relativity, Gen. Rel. Grav. 13 (1981) 963.

– 34 –

https://doi.org/10.1103/PhysRevD.62.044024
https://doi.org/10.1103/PhysRevD.62.044024
https://arxiv.org/abs/gr-qc/9912092
https://doi.org/10.1016/S0375-9601(00)00360-1
https://arxiv.org/abs/gr-qc/0004009
https://doi.org/10.1016/S0370-2693(01)00642-6
https://arxiv.org/abs/gr-qc/0105038
https://doi.org/10.1103/PhysRevD.89.064058
https://doi.org/10.1103/PhysRevD.89.064058
https://arxiv.org/abs/1401.4548
https://doi.org/10.1103/PhysRevD.92.124043
https://arxiv.org/abs/1508.01016
https://doi.org/10.1103/PhysRevD.55.3457
https://arxiv.org/abs/gr-qc/9606018
https://doi.org/10.1103/PhysRevD.56.3381
https://doi.org/10.1103/PhysRevD.56.3381
https://arxiv.org/abs/gr-qc/9610053
https://doi.org/10.1103/PhysRevD.73.104029
https://arxiv.org/abs/hep-th/0409156
https://doi.org/10.1007/bf02746175
https://doi.org/10.1007/bf02732767
https://doi.org/10.1007/bf02732767
https://doi.org/10.1016/0003-4916(60)90132-9
https://doi.org/10.1088/0305-4470/12/7/025
https://doi.org/10.1007/BF02817047
https://doi.org/10.1007/BF02817047
https://doi.org/10.1088/0305-4470/13/12/017
https://doi.org/10.1007/BF00756073


[87] K. Westpfahl, High-Speed Scattering of Charged and Uncharged Particles in General

Relativity, Fortsch. Phys. 33 (1985) 417.

[88] T. Damour, Gravitational scattering, post-Minkowskian approximation and Effective

One-Body theory, Phys. Rev. D 94 (2016) 104015 [1609.00354].

[89] M. Levi, Effective Field Theories of Post-Newtonian Gravity: A comprehensive

review, Rept. Prog. Phys. 83 (2020) 075901 [1807.01699].

[90] e. Walter Goldberger, Snowmass 2021 Whitepaper: EFT of Gravity and NRGR,

2203.ikjlm.

[91] C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Higgs Boson

Gluon-Fusion Production in QCD at Three Loops, Phys. Rev. Lett. 114 (2015) 212001

[1503.06056].

[92] A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover and G. Heinrich, NNLO

corrections to event shapes in e+ e- annihilation, JHEP 12 (2007) 094 [0711.4711].

[93] J. M. Henn, G. P. Korchemsky and B. Mistlberger, The full four-loop cusp anomalous

dimension in N = 4 super Yang-Mills and QCD, JHEP 04 (2020) 018 [1911.10174].

[94] S. Laporta, High-precision calculation of the 4-loop contribution to the electron g-2 in

QED, Phys. Lett. B 772 (2017) 232 [1704.06996].

[95] Z. Bern, J. J. Carrasco, W.-M. Chen, A. Edison, H. Johansson, J. Parra-Martinez

et al., Ultraviolet Properties of N = 8 Supergravity at Five Loops, Phys. Rev. D 98

(2018) 086021 [1804.09311].

[96] J. J. M. Carrasco, A. Edison and H. Johansson, Maximal Super-Yang-Mills at Six

Loops via Novel Integrand Bootstrap, 2112.05178.

[97] K. G. Chetyrkin and F. V. Tkachov, Integration by Parts: The Algorithm to Calculate

beta Functions in 4 Loops, Nucl. Phys. B 192 (1981) 159.

[98] S. Laporta, High precision calculation of multiloop Feynman integrals by difference

equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033].

[99] A. V. Smirnov, Algorithm FIRE – Feynman Integral REduction, JHEP 10 (2008) 107

[0807.3243].

[100] A. V. Kotikov, Differential equations method: New technique for massive Feynman

diagrams calculation, Phys. Lett. B254 (1991) 158.

[101] Z. Bern, L. J. Dixon and D. A. Kosower, Dimensionally regulated pentagon integrals,

Nucl. Phys. B412 (1994) 751 [hep-ph/9306240].

[102] E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim. A110

(1997) 1435 [hep-th/9711188].

– 35 –

https://doi.org/10.1002/prop.2190330802
https://doi.org/10.1103/PhysRevD.94.104015
https://arxiv.org/abs/1609.00354
https://doi.org/10.1088/1361-6633/ab12bc
https://arxiv.org/abs/1807.01699
https://arxiv.org/abs/2203.ikjlm
https://doi.org/10.1103/PhysRevLett.114.212001
https://arxiv.org/abs/1503.06056
https://doi.org/10.1088/1126-6708/2007/12/094
https://arxiv.org/abs/0711.4711
https://doi.org/10.1007/JHEP04(2020)018
https://arxiv.org/abs/1911.10174
https://doi.org/10.1016/j.physletb.2017.06.056
https://arxiv.org/abs/1704.06996
https://doi.org/10.1103/PhysRevD.98.086021
https://doi.org/10.1103/PhysRevD.98.086021
https://arxiv.org/abs/1804.09311
https://arxiv.org/abs/2112.05178
https://doi.org/10.1016/0550-3213(81)90199-1
https://doi.org/10.1142/S0217751X00002159
https://arxiv.org/abs/hep-ph/0102033
https://doi.org/10.1088/1126-6708/2008/10/107
https://arxiv.org/abs/0807.3243
https://doi.org/10.1016/0370-2693(91)90413-K
https://doi.org/10.1016/0550-3213(94)90398-0
https://arxiv.org/abs/hep-ph/9306240
https://arxiv.org/abs/hep-th/9711188


[103] T. Gehrmann and E. Remiddi, Differential equations for two loop four point

functions, Nucl. Phys. B580 (2000) 485 [hep-ph/9912329].

[104] J. M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev.

Lett. 110 (2013) 251601 [1304.1806].

[105] J. M. Henn, A. V. Smirnov and V. A. Smirnov, Evaluating single-scale and/or

non-planar diagrams by differential equations, JHEP 03 (2014) 088 [1312.2588].

[106] J. Parra-Martinez, M. S. Ruf and M. Zeng, Extremal black hole scattering at O(G3):

graviton dominance, eikonal exponentiation, and differential equations, JHEP 11

(2020) 023 [2005.04236].

[107] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, A Semiclassical limit of the gauge /

string correspondence, Nucl. Phys. B 636 (2002) 99 [hep-th/0204051].

[108] M. Kruczenski, A. V. Ryzhov and A. A. Tseytlin, Large spin limit of AdS(5) x S**5

string theory and low-energy expansion of ferromagnetic spin chains, Nucl. Phys. B

692 (2004) 3 [hep-th/0403120].

[109] S. Giombi, R. Ricci, R. Roiban, A. A. Tseytlin and C. Vergu, Quantum AdS(5) x S5

superstring in the AdS light-cone gauge, JHEP 03 (2010) 003 [0912.5105].

[110] N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys.

99 (2012) 3 [1012.3982].

[111] D. A. Kosower, B. Maybee and D. O’Connell, Amplitudes, observables, and classical

scattering, JHEP 02 (2019) 137 [1811.10950].

[112] A. Cristofoli, R. Gonzo, N. Moynihan, D. O’Connell, A. Ross, M. Sergola et al., The

Uncertainty Principle and Classical Amplitudes, 2112.07556.

[113] R. Britto, R. Gonzo and G. R. Jehu, Graviton particle statistics and coherent states

from classical scattering amplitudes, 2112.07036.

[114] C. Cheung, I. Z. Rothstein and M. P. Solon, From scattering amplitudes to classical

potentials in the post-Minkowskian expansion, Phys. Rev. Lett. 121 (2018) 251101

[1808.02489].

[115] T. Damour, Classical and quantum scattering in post-Minkowskian gravity, Phys. Rev.

D 102 (2020) 024060 [1912.02139].

[116] P. H. Damgaard and P. Vanhove, Remodeling the effective one-body formalism in

post-Minkowskian gravity, Phys. Rev. D 104 (2021) 104029 [2108.11248].

[117] D. Amati, M. Ciafaloni and G. Veneziano, Superstring Collisions at Planckian

Energies, Phys. Lett. B 197 (1987) 81.

[118] G. ’t Hooft, Graviton Dominance in Ultrahigh-Energy Scattering, Phys. Lett. B 198

(1987) 61.

– 36 –

https://doi.org/10.1016/S0550-3213(00)00223-6
https://arxiv.org/abs/hep-ph/9912329
https://doi.org/10.1103/PhysRevLett.110.251601
https://doi.org/10.1103/PhysRevLett.110.251601
https://arxiv.org/abs/1304.1806
https://doi.org/10.1007/JHEP03(2014)088
https://arxiv.org/abs/1312.2588
https://doi.org/10.1007/JHEP11(2020)023
https://doi.org/10.1007/JHEP11(2020)023
https://arxiv.org/abs/2005.04236
https://doi.org/10.1016/S0550-3213(02)00373-5
https://arxiv.org/abs/hep-th/0204051
https://doi.org/10.1016/j.nuclphysb.2004.05.028
https://doi.org/10.1016/j.nuclphysb.2004.05.028
https://arxiv.org/abs/hep-th/0403120
https://doi.org/10.1007/JHEP03(2010)003
https://arxiv.org/abs/0912.5105
https://doi.org/10.1007/s11005-011-0529-2
https://doi.org/10.1007/s11005-011-0529-2
https://arxiv.org/abs/1012.3982
https://doi.org/10.1007/JHEP02(2019)137
https://arxiv.org/abs/1811.10950
https://arxiv.org/abs/2112.07556
https://arxiv.org/abs/2112.07036
https://doi.org/10.1103/PhysRevLett.121.251101
https://arxiv.org/abs/1808.02489
https://doi.org/10.1103/PhysRevD.102.024060
https://doi.org/10.1103/PhysRevD.102.024060
https://arxiv.org/abs/1912.02139
https://doi.org/10.1103/PhysRevD.104.104029
https://arxiv.org/abs/2108.11248
https://doi.org/10.1016/0370-2693(87)90346-7
https://doi.org/10.1016/0370-2693(87)90159-6
https://doi.org/10.1016/0370-2693(87)90159-6


[119] I. J. Muzinich and M. Soldate, High-Energy Unitarity of Gravitation and Strings,

Phys. Rev. D 37 (1988) 359.

[120] D. Amati, M. Ciafaloni and G. Veneziano, Classical and Quantum Gravity Effects

from Planckian Energy Superstring Collisions, Int. J. Mod. Phys. A 3 (1988) 1615.

[121] G. Cho, A. Gopakumar, M. Haney and H. M. Lee, Gravitational waves from compact

binaries in post-Newtonian accurate hyperbolic orbits, Phys. Rev. D 98 (2018) 024039

[1807.02380].
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for classical gravitational scattering at third Post-Minkowskian order, JHEP 08

(2021) 172 [2105.05218].

[137] P. H. Damgaard, L. Plante and P. Vanhove, On an exponential representation of the

gravitational S-matrix, JHEP 11 (2021) 213 [2107.12891].

[138] A. Brandhuber, G. Chen, G. Travaglini and C. Wen, Classical gravitational scattering

from a gauge-invariant double copy, JHEP 10 (2021) 118 [2108.04216].

[139] E. Herrmann, J. Parra-Martinez, M. S. Ruf and M. Zeng, Gravitational

Bremsstrahlung from Reverse Unitarity, Phys. Rev. Lett. 126 (2021) 201602

[2101.07255].

[140] E. Herrmann, J. Parra-Martinez, M. S. Ruf and M. Zeng, Radiative classical

gravitational observables at O(G3) from scattering amplitudes, JHEP 10 (2021) 148

[2104.03957].

[141] P. Di Vecchia, C. Heissenberg, R. Russo and G. Veneziano, Radiation Reaction from

Soft Theorems, Phys. Lett. B 818 (2021) 136379 [2101.05772].

[142] C. Heissenberg, Infrared divergences and the eikonal exponentiation, Phys. Rev. D

104 (2021) 046016 [2105.04594].

[143] Z. Bern, J. Parra-Martinez, R. Roiban, M. S. Ruf, C.-H. Shen, M. P. Solon et al.,

Scattering Amplitudes and Conservative Binary Dynamics at O(G4), Phys. Rev. Lett.

126 (2021) 171601 [2101.07254].

[144] Z. Bern, J. Parra-Martinez, R. Roiban, M. S. Ruf, C.-H. Shen, M. P. Solon et al.,

Scattering Amplitudes, the Tail Effect, and Conservative Binary Dynamics at O(G4),

2112.10750.

[145] J. A. Wheeler and R. P. Feynman, Classical electrodynamics in terms of direct

interparticle action, Rev. Mod. Phys. 21 (1949) 425.

[146] T. Damour and G. Esposito-Farese, Testing gravity to second postNewtonian order: A

Field theory approach, Phys. Rev. D 53 (1996) 5541 [gr-qc/9506063].

[147] D. Bini, T. Damour and A. Geralico, Radiative contributions to gravitational

scattering, Phys. Rev. D 104 (2021) 084031 [2107.08896].
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