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Precision measurements at the LHC and future colliders require theory pre-
dictions with uncertainties at the percent level for many observables. Theory
uncertainties due to the perturbative truncation are particularly relevant and
must be reduced to fully exploit the physics potential of collider experiments. In
recent years the theoretical high energy physics community has made tremendous
analytical and numerical advances to address this challenge. In this white paper,
we survey state-of-the-art calculations in perturbative quantum field theory for
collider phenomenology with a particular focus on the computational requirements
at high perturbative orders. We show that these calculations can have specific
high-performance-computing (HPC) profiles that should to be taken into account
in future HPC resource planning.
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1 Introduction

Already today, a number of measurements at the LHC reach uncertainties at the percent
level. Standard candle processes like Z-boson production allow for even better experimental
accuracy, down to the per-mille level for normalized kinematic distributions. At future
colliders a comparable level of precision is expected for a wider range of observables. For
example, for the high-luminosity run at the LHC (HL-LHC) even rare processes like Higgs
boson production require theoretical control of cross sections at the level of 1%. For many
processes current theoretical uncertainties do not match the anticipated experimental errors.
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To fully exploit the physics potential of current and future collider experiments, in particular
to unambiguously identify signals of new physics, it is crucial to improve the precision of
theoretical predictions.

Theory predictions for hadron collider phenomenology are based on collinear factorization.
In this framework predictions are made in terms of parton distribution functions (PDFs) and
partonic hard cross sections, and they are expected to be valid up to corrections which are
suppressed in the high energy limit. The partonic cross sections are computed in perturbation
theory, and within the Standard Model of particle physics (SM) this means an expansion in
the strong and the electroweak couplings. A dominant source of uncertainty originates from
higher-order terms in these expansions which is the focus of this white paper. Nevertheless, we
also note that depending on the observable studied and the kinematic region considered, other
sources of uncertainty might dominate, for example due to parametric dependence (on PDFs,
couplings, masses), non-perturbative effects (like hadronization, multi-parton interactions,
etc.), or the appearance of large logarithms which would need to be resummed.

In this white paper, we focus on current calculational methods and computational challenges
necessary to reduce perturbative truncation uncertainties of parton-level predictions. We
performed a survey and asked authors of various state-of-the-art multi-loop calculations
about their computational resources needs. For our survey we received responses that
cover 53 scientific publications. This data provides a picture of where current analytic and
computational requirements lie, and gives an impression of where the field is moving with
respect to resource requirements.

In the following, we first give a brief overview of a related study made during the 2013
Snowmass community planning. In section 2 we highlight state-of-the-art methods for
the calculation of Feynman integrals, while in section 3 we discuss multi-loop scattering
amplitudes. In section 4 we highlight recent precision cross section calculations. We end with
conclusions and an outlook in section 5, where we point out specific computing needs of our
community which should be taken into account in future high performance computing (HPC)
resource planning.

State-of-the-art at Snowmass 2013. In 2013 a white paper on “Computing for perturbative
QCD” [1]1 presented a survey of computational requirements of then state-of-the-art hadron
collider phenomenology. This included benchmarks for high-multiplicity next-to-leading-order
(NLO) QCD calculations with up to 6 final-state particles and also benchmarks of early
next-to-next-to-leading-order (NNLO) QCD calculations for 2 → 1 and 2 → 2 processes.

Concretely, examples presented included an NLO QCD calculation of W + 5-jet production [3]
which required about 600,000 CPU hours with year 2013 hardware. Differential NNLO QCD

calculations for W/Z/H production were available [4–6] and benchmarked. Their evaluation
took 50,000 core hours (2013), while total inclusive tt̄ production [7, 8] took about 1M core
hours (2013). Further processes with NNLO QCD corrections included single jet production [9]
(85,000 core hours in 2013) and H+jet production [10] (500,000 core hours in 2013) in the
gluon-gluon channel. Translating these core hour numbers into node days (100,000 core
hours equal about 500 node days assuming 8-core systems from 2013) makes clear that these
calculations were only possible due to the use of HPC systems. Nevertheless, apart from these

1see also the Snowmass QCD working group report [2]
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examples, the majority of developments at that time did not rely on larger-scale computing
resources.

Compared to state-of-the-art hardware from 2013, current state-of-the-art hardware (2022)
has single-threading performance that is better by a factor of four to five. Moreover, due to
improvements in multi-core architecture, current single CPU (but multi core) node performance
is better by a factor of up to 25-30. For example, this alone means that 2 → 1 NNLO QCD

calculations that required a large cluster with hundreds of nodes 10 years ago would now
run on a small-size cluster with just a few nodes. Furthermore, algorithmic and theory
developments have considerably brought down computational requirements, for example
allowing (multi-)boson 2 → 1 and 2 → 2 production at NNLO QCD to be computed within
hours on current desktop machines [11].

In 2013 a community goal was envisioned to take advantage of new large-scale computing
and to benefit from using new hardware like GPUs and Intel Phi many-core systems. Further,
questions regarding the increased role of parallel computing, what could be gained by
consolidation of resources, and limitations in the software environment were posed. Also
questions about public availability of codes, grade of automation, expandability, versatility
(cuts, etc.) and user-friendliness were raised. All of these are important aspects to ensure
that the efforts to complete these challenging calculations have the highest impact in the
theoretical and experimental communities. These topics continue to be relevant and we will
comment on them from today’s perspective in this white paper.

Enormous progress has been achieved since the last Snowmass exercise in the field of precision
high energy phenomenology. The very challenging calculations from then have become
standard and relatively fast, and calculations that then would have appeared as unfeasible
have actually been completed, like for example fiducial-level next-to-next-to-next-to-leading-
order (N3LO) QCD calculations for 2 → 1 processes and NNLO QCD calculation for 2 → 3
processes. In the rest of this article we highlight analytical and numerical techniques that
have been developed to allow this to happen and discuss challenges for the coming decade in
precision QCD phenomenology.

2 Feynman integrals

Feynman or loop integrals are basic building blocks of perturbative quantum field theory
(for a recent pedagogical introduction see ref. [12]). They contain key information about the
structure of scattering amplitudes and their singularities. This motivates detailed studies
of the mathematical representations of Feynman integrals to gain a deep understanding
of their analytical properties and (singular) behaviour in particular kinematic limits. For
phenomenological purposes, one ultimately wants to numerically evaluate the expressions,
such that the error is reliable, the result has sufficient precision and the computation requires
acceptable resources. In that context, suitable analytical preparations of the integrals (and
amplitudes) can be regarded as effort during the development phase, while the actual numerical
evaluation of the expressions during the Monte Carlo integration over phase space represent
the production phase for collider observables. Different methods have been developed which
put more or less emphasis on the analytical preparations. Typically, dedicated analytical
manipulations are somewhat process specific and more difficult to automate, while numerical
techniques allow more flexibility perhaps at the expense of lower efficiency. Below we highlight
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recent progress in the development of techniques for the analytic and numerical evaluation of
Feynman integrals for collider phenomenology.

The current state-of-the-art in evaluating multi-loop Feynman integrals include two-loop
integrals for 2 → 2 processes with internal masses (see e.g. [13–18]), 2 → 3 processes with up
to one massive leg (see e.g. [19–28]), three-loop integrals for 2 → 2 processes (see e.g. [29, 30]),
and four-loop integrals for 2 → 1 processes (see e.g. [31–38]).

Analytical solutions. In the method of differential equations [39–41], one derives a coupled,
first-order, linear system of differential equations for a set of basis or master integrals, where
the derivatives are taken with respect to the external kinematic invariants. To achieve this,
one needs to determine linear relations between Feynman integrals, usually computed through
integration-by-parts reductions. In simpler cases with few physical scales, one can solve the
differential equations analytically, where a suitable choice of basis integrals is essential for the
successful integration. In particular, the choice of a canonical basis [42] can greatly simplify
the construction of a solution and has been used in many calculations in the recent past.
The direct integration of parametric representations can also be used to obtain solutions.
In the case of linearly reducible integrals [43], the program HyperInt [44] allows for an
automated approach to obtain results in terms of multiple polylogarithms, see e.g. [45, 46]
for applications.

Obtaining analytical solutions typically requires one to study non-standard special mathemati-
cal functions in some detail, possibly developing new algorithmic methods for them. Examples
for such functions are harmonic polylogarithms [47], multiple polylogarithms [47, 48] and
elliptic polylogarithms [49–54]. If a functional basis is chosen with numerical performance in
mind, the resulting expressions may allow for precise and fast numerical evaluation using
universal libraries, at the order of a second per phase space point for state-of-the-art two-loop
amplitudes. Several such universal libraries have been developed for multiple polylogarithms,
for example the implementation of ref. [55] in GiNaC and the HandyG library [56]. More
recently, algorithms and tools for iterated integrals related to elliptic Feynman integrals have
been developed [57, 58]. A more comprehensive discussion of special functions relevant for
collider physics can be found in a recent Snowmass white paper [59]. The above methods
usually aim at numerical evaluation through series expansions of the special functions. Alter-
natively, mapping Chen-iterated integrals to one-fold integral representations were shown to
provide good performance through numerical quadrature, see for example the C++ libraries
for 2 → 3 processes in [23, 25].

Numerical methods. In particular for cases with many masses and complicated branch cut
structure, an analytical solution suitable for numerical applications may be difficult to obtain,
in particular if intricate analytical continuations are required. Numerical methods allow to
treat these cases and offer great potential for automation.

A numerical method which has been studied for a long time are integrations of Feynman
parametric representations. Due to the presence of divergences when taking the limit ε→ 0
for the dimensional regularization parameter, one cannot simply expand the integrand in
ε for arbitrary integrals. One way to make the poles in ε manifest and to arrive at finite
integrals for the ε expansion which can be evaluated on the computer is the technique known
as sector decomposition [60]. In the past decade, this method has been fully automated for
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physical kinematics [61] and the public codes pySecDec [62] and Fiesta [63] can efficiently
exploit quasi-Monte Carlo methods as well as the usage of GPUs, see e.g. [15, 64–67] for
applications.

It has also been observed that one can always reduce Feynman integrals in terms of a basis
of finite Feynman integrals [15, 45, 68]. In principle, one can straight-forwardly expand
these integrals in ε and perform the integration numerically. In practice, evaluating such
finite integrals with established sector decomposition codes provides better performance than
each of these methods alone [69]. Still, obtaining sufficient precision for phenomenological
applications can require substantial computation time and the usage of cluster resources.
Other numerical approaches include building on established libraries for one-loop integrals to
exploit dispersion relations to calculate two-loop integrals with internal masses [70], and using
Mellin-Barnes representations to calculate two-loop integrals with several internal masses [71],
among other.

A semi-analytic alternative can also be constructed by solving differential equations for master
integrals with respect to external invariants numerically using generalized power series. The
latter method gained significant popularity in the last few years, since it allows not only for a
very generic approach but also for particularly precise and fast evaluations [13, 14, 21, 26, 72–
76]. Typical evaluation times are of the order of a minute per phase-space point for two-loop
applications. The DiffExp program [77] provides a public implementation based on the
method of Frobenius. One can combine this method with the direct integration techniques
discussed above to fix boundary values in Euclidean phase space points [78].

Another alternative to obtain boundary conditions goes under the name of the auxiliary
mass flow method [79–82]. It exploits differential equations with respect to a technical mass
parameter introduced in the propagators, and a public implementation of the approach,
AMFlow [83], has been presented recently. Applications of this method can be found for
example in refs. [16–18]. While in the auxiliary mass flow method the required integration-
by-parts reductions are more challenging (given the modified propagator structure), it has
the advantage that it allows to easily fix boundary values in a generic way.

3 Scattering amplitudes

Scattering amplitudes are at the core of all collider phenomenology predictions. They contain
the dynamical information associated with the models used to describe data. At the energies
of current high energy colliders, amplitudes are computed perturbatively in the strong and
electroweak couplings. Quantitatively reliable predictions at the LHC with uncertainties of
O(15–20%) require the inclusion of at least first-order corrections in the strong coupling (NLO

QCD), while for precision studies with uncertainties below O(7%) it is generally necessary
to include second-order or higher corrections in the strong coupling (NNLO QCD) as well as
first-order corrections in the electroweak coupling (NLO electroweak).

To obtain these types of predictions for the wide variety of processes of interest at the
LHC, a myriad of one-loop, two-loop and three-loop amplitudes are required (also tree-level
amplitudes, which can now be computed for essentially arbitrary particle multiplicities with
standard tools). Although general calculational methods are available, the complexity of
amplitude calculations grows quickly with the number of loops as well as with the number
of physical scales such as particle masses and kinematic invariants. As a consequence, large
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efforts are required by the high energy theory community to make sure that amplitudes are
available for phenomenological applications.

One-loop amplitude calculations in the SM (as well as in theories beyond the SM) can now be
completed employing highly automated frameworks. Even for whopping 2 → 8 processes with
multiple internal/external massive particles they can be obtained with standard computational
resources. This has been the case thanks to the development of highly automated libraries
like Helac-NLO [84], MG5 aMC@NLO [85, 86], NLOX [87], OpenLoops [88], Recola [89], as well as
many other public and private tools.

Two- and higher-loop calculations remain challenging, in particular those that are related
to many scales. But in the last five years many new calculations have been completed
due to several major advances in our understanding of the analytic structure of scattering
amplitudes in perturbative quantum field theory. These calculations include for example two-
loop amplitudes for 2 → 2 processes with 4 or more scales [15, 17, 46, 65, 67, 90–93], two-loop
amplitudes for massless 2 → 3 processes [94–103], two-loop amplitudes for 2 → 3 processes
with one external massive particle [24, 104–106], three-loop form factors for 2 → 1 processes
with massive particles [107–112], three-loop amplitudes for massless 2 → 2 processes [113–
116], and four-loop form factors for 2 → 1 processes [31, 38, 117]. Major progress has been
achieved also for the calculation of related quantities, for example the complete five-loop beta
function [118, 119] and first results for the four-loop splitting functions [120, 121].

Multiloop amplitude construction. Multi-loop scattering amplitudes are typically decom-
posed in terms of so-called master integrals and their algebraic coefficients. This decomposition
can be achieved by generating Feynman diagrams, applying projectors to them, and using
integration-by-parts identities [122] to reduce the resulting integrals to master integrals.
It is well known that when considering helicity amplitudes their analytic expressions are
considerably simpler than what their Feynman diagrammatic representation would suggest.
This simplicity is made even more evident when employing a specially chosen basis of special
functions, which reflects the holomorphic structure of the amplitude.

In order to construct an analytic integrand, projector methods have been proposed re-
cently [123–125] that avoid evanescent structures in the calculation of helicity amplitudes in
dimensional regularization, which is of particular relevance for higher multiplicities. Tech-
niques based on numerical integrand reduction have also been developed at the multi-loop
level [126–129], which build on the success of the one-loop OPP method [130–132]. They
allow to efficiently extract integrand coefficients by matching to numerical evaluations. One
novel integrand parametrization is that of the master-surface decomposition [133] which
allows to incorporate the reduction to master integrals directly in the integrand matching
procedure. This parametrization was key for pushing the numerical unitarity method [134–
136] to the multi-loop level [137–140] where full amplitudes can be computed numerically
based on tree-level amplitudes, removing the need of building analytic integrands. Efforts
are also underway to extend successful one-loop numerical techniques based on 4-dimensional
integrand reduction and recursive techniques for rational term calculations to the two-loop
level [141–144].

A core computational bottleneck in the computation of amplitudes is the handling of linear
relations between Feynman integrals (integration-by-parts identities). In principle, Laporta’s
algorithm [145] provides a general solution to the problem. Currently, several public reduction
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codes are available, for example Fire [146], Reduze [147], LiteRed [148], and Kira [149]. In
practice, one still faces significant practical challenges for state-of-the-art problems due to the
large size of the required systems of equations and the complexity of the emerging algebraic
coefficients. In recent years, a deeper systematic understanding of the linear relations has
been gained through methods from polynomial ideal theory [15, 150–155]. In particular, the
computation of syzygies allows to systematically reduce integrals to a set of master integrals
without the introduction of many auxiliary integrals.

Choosing suitable master integrals helps to avoid the introduction of spurious denominator
factors (singularities) [156, 157], which helps to reduce the algebraic complexity. Pioneering
work based on intersection theory [158, 159] raises the question whether such completely new
techniques to efficiently perform integral reductions for complicated problems may become
available in the future.

Sampling methods and distributed computations. Perhaps one of the most drastic changes
in the field regards the wide use of various numerical sampling techniques to construct analytic
expressions for multi-loop amplitudes. Since all multi-scale multi-loop amplitudes mentioned
above are functions of not too many variables (say up to six variables), one might expect
that symbolic results allow for faster evaluation compared to numerical approaches. However,
due to the sheer size of the intermediate algebraic expressions, arriving at these results by
symbolic manipulations can become very challenging. Instead, numerical or semi-numerical
approaches avoid computational complexity at intermediate stages and are better suited for
distributed computations.

The use of modular arithmetic (finite fields) in the calculation of integration-by-parts reduc-
tions was proposed in ref. [160]. The general idea is to perform computations with different
integer samples for the variables in the problem and to reconstruct the symbolic information of
interest from many such evaluations. A major advantage of this approach is that intermediate
expression swell can be systematically avoided. Soon after it was shown [161] how helicity
amplitude coefficients can be reconstructed from finite field samples, treating multivariate
rational functions through a carefully crafted nested approach.

Finite field sampling and functional reconstruction techniques like these have become standard
for cutting-edge problems in the past few years, and several public [146, 149, 162–164] and
private implementations have been developed. These algorithms are rather flexible and can
be employed at several stages of the calculations, allowing simplifications to be readily applied
before the analytic structures are reconstructed. This includes for example removing lower-
loop information by targeting the corresponding “finite remainder”, accessing the amplitude
at the special function level by expanding it as a Laurent series in ε, precomputing the
denominator structure of the rational functions involved, among others. Another numerical
approach for extracting analytic expressions but using high-precision floating-point arithmetic
together with carefully crafted ansatze was presented in ref. [165] (see applications in ref. [166–
168]) and recently extended to an approach closely related to finite fields, based on p-adic
numbers [169].

To use an amplitude calculation in a phenomenological application, the corresponding
numerical evaluation has to be efficient (in time and memory) and numerically stable over
phase space even close to singular regions. The identification of linear relations between
rational functions and a suitable representation of the rational functions themselves can help
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to reduce the size and numerical stability of the amplitudes. In particular, using multivariate
partial fraction decomposition [170, 171] instead of a common-denominator form can help
significantly in that regard, see for example ref. [96]. Public implementations of recent
algorithms in the Singular CAS [172] and in the MultivariateApart [173] package can
be used for distributed computation of the necessary manipulations in a cluster-friendly
way.

These novel techniques have opened the door to perform computer algebraic computations for
quantum field theory on HPC systems. These novel methods typically use integer arithmetic
rather than floating point arithmetic and, depending on the problem, they may require a
significant amount of memory per core. The development of (public) codes for challenging
amplitude calculations in a HPC friendly way is an ongoing effort. Currently, in some
situations, one may need to resort to implementations that have large memory demands and
require run-times that are hard to predict and possibly well beyond available batch limits on
a given cluster.

4 Applications in collider phenomenology

Ultimately multi-loop amplitudes and other associated ingredients enter the calculation of
cross sections and other observables. To obtain cross sections, degenerate final states at each
order in perturbation theory must be summed over. This in turn requires the introduction
of a mechanism to regularize and cancel related infrared (IR) divergences, the so-called IR

subtraction methods.

IR subtraction methods. Subtraction methods are available that cancel IR singularities
locally in phase space, or that are based on a single IR cutoff (slicing) that must be extrapolated
to a vanishing cutoff size. In general, the complexity of subtraction methods increases with
the number of colored particles until all different singular limits of a given perturbative
order are probed and extensions to more particles turn into a combinatoric problem. For
example in NNLO three-jet production all double-singular limits are probed among colored
particles.

While local subtraction schemes require significant development time, they generally lead to
Monte Carlo phase space integrations that are numerically easier to perform. Slicing methods
on the other hand are simpler to construct and have the benefit that they can easily re-use
lower order components. An example slicing method is the one based on factorization in
the qT variable, which is currently the only technique used to obtain fully differential N3LO

results for a color singlet process [174]. If a fully inclusive N3LO calculation is available,
also projection to Born (P2B) is a method to perform an efficient and fully differential
calculation [175].

Slicing methods are typically based on factorization in a kinematic observable. At NNLO

methods are available based on the qT observable [176–178] for color singlet systems or
based on N -jettiness [179–181] for generic processes. With N -jettiness the ingredients are
available for NNLO calculations with up to one colored final-state particle. N3LO (three loop)
soft [182, 183] and beam functions [184, 185] in qT factorization allow for fully differential
N3LO calculations of colorless final states, see also the Snowmass white paper on “The
Path forward to N3LO” [186]. The calculation of power corrections allows for accelerated
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calculations using larger slicing cutoffs, see e.g. [187–189]. A different slicing approach at
NNLO has been undertaken in ref. [190].

As for local subtraction schemes, Antenna subtractions [191, 192] and sector-improved
residue subtraction (STRIPPER) [193–195] have been applied up to two [196–198] and three
[199, 200] colored final states in pp collisions. Nested soft collinear subtractions [201] have been
applied to deep inelastic scattering (DIS), Higgs production and mixed QCD-EW corrections
in Drell-Yan production [202–204], ColorFulNNLO [205] to e+e− three-jet production [206]
and H → bb̄ [207], and local analytic subtraction [208] to Drell-Yan production. A recent
comprehensive overview of all past processes implemented using the various subtraction
schemes is available in ref. [209], table 5. The local subtraction methods differ in the
partitioning of phase-space and analyticity of counterterms. Extensions beyond NNLO will
be a major undertaking both in phase-space partitioning and integration of triple singular
counterterms and one can expect progress on them during the next decade. Overall the
current development focus is still at the level of refining, automating and generalizing current
methods at NNLO.

The current frontier in multi-loop phenomenology revolves around NNLO QCD corrections
for 2 → 3 processes with massless particles, two-loop mixed QCD-EW corrections for 2 → 1
and 2 → 2 processes, corrections to 2 → 2 processes involving two-loop amplitudes with
additional internal masses (massive QCD) and fiducial N3LO QCD 2 → 1 processes. For
one-loop phenomenology, high-multiplicity processes play a special role as they also consume
a considerable amount of resources. In the following we list a few examples of state-of-the-art
applications that rely on the advancements presented in this white paper.

2 → 1 fiducial N3LO. Currently, the upper end of computational resource requirements
is consumed by fiducial N3LO calculations. In the qT subtraction approach, NNLO real
emissions need to be determined with high precision in regions close to singularities, resulting
in significant computational costs of up to about 10M CPU core hours.

Fiducial Drell-Yan production at N3LO has been computed in ref. [174] using qT subtractions
and using antenna subtractions for the NNLO real emission process. Fiducial Higgs results
have been presented at N3LO [210] using P2B and using antenna subtractions for the real
emission, reducing resource requirements by an order of magnitude or two compared to slicing.
Improved Higgs results that include qT resummation of fiducial power corrections at the level
of N3LO have been presented in ref. [211].

2 → 3 at NNLO. Phenomenology for 2 → 3 processes at NNLO broadly uses a few hundred
thousand up to a million CPU core hours per project, depending on the final state. In this,
the real emission is a major factor. While the analytic calculation of the two-loop amplitudes
may need substantial computational resources by itself, the numerical evaluation of carefully
optimized representations typically does not represent a major challenge. Alternatively, the
virtual corrections have been integrated using a pre-computed interpolation grid.

Triphoton production (γγγ) has been computed within the STRIPPER framework [212]. It
has also been studied with qT subtractions [213], evaluating the two-loop integrals with the
PentagonFunctions++ library [23] using the two-loop matrix elements of ref. [98]. Using
STRIPPER, a calculation of 3-jet production at NNLO has been presented [199] using the
double-virtual contributions of ref. [101] (see also recent related work in ref. [200]). Using the
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same framework also γγ+jet production at NNLO has been computed [214] employing the
double-virtual contributions of refs. [102, 103]. For the latter process also the gluon-initiated
(loop-induced) contributions have been computed including NLO corrections [215] employing
the two-loop matrix elements of ref. [216].

2 → 1 and 2 → 2 with many scales. The computational requirements for 2 → 2 color
singlet processes at NNLO without internal masses are much lower, at the order of just a few
hundred CPU core hours. However, the demands increase drastically in the presence of jets
due to the more complicated singularity structure, in some cases reaching a few hundred
thousand CPU core hours, see e.g. refs. [196, 197, 203, 217–219]. Computational demands
can also increase due to cuts for otherwise simple processes [220].

The calculational and computational complexity also increases with a larger number of scales,
as for example in EW corrections or in QCD with massive quarks. Often such problems are
at the frontier of loop-integral complexity. In some cases, such as for the mixed QCD-EW

corrections to Drell-Yan processes, analytical representations of two-loop amplitudes with
internal masses were still an option [91, 204, 221], rendering the computational demands for
phenomenological applications unproblematic. In other cases, numerical approaches are the
only available option. The computational demands of the latter are up to a few hundred
thousand CPU core hours, while memory requirements are again dominated by the reduction
to master integrals and can be especially demanding here, up to 2TB per node for some
surveyed calculations.

For example, for H+jet and di-Higgs production the full top-quark mass dependence has
been obtained only numerically with sector decomposition [64, 65, 90]. These calculations
used around 10,000 hours on GPUs (generation 2012) each for the numerical integration,
with a median of two hours (and up to two days) necessary for evaluating one phase space
point. These calculations are the only ones in our survey that systematically use GPU

resources. Given the development of this type of technology in most planned HPC systems,
such applications may increase in the future.

The numerical evaluation of loop integrals through series solutions of differential equations is
becoming increasingly popular and has been used in several phenomenological applications
already. In ref. [111] the exact top-mass dependence in fully inclusive Higgs production has
been calculated this way at NNLO in QCD. The mixed QCD-EW corrections to Drell-Yan
production presented in ref. [92] relied on numerical evaluations of the most complicated
integrals through series expansions. A further application of the method was the calculation of
two-loop non-factorizable NNLO QCD contributions in single-top-quark production [18].

High-multiplicity NLO and NNLO matched to parton showers. State-of-the-art NLO pre-
dictions for processes with high multiplicities (see e.g. tt̄bb̄ production studies [222–224]) can
have computational costs similar to current state-of-the-art NNLO calculations, at the order
of 100k–1M CPU core hours.

Resource demands for event generators that include parton shower, hadronization and possibly
detector simulation are overall orders of magnitude larger than parton-level predictions. They
fall outside the scope of this white paper, see e.g. the Snowmass white paper on event
generators [225]. Nevertheless, we would like to mention that meanwhile NNLO calculations
are matched to parton showers, and the resource requirements of matched processes reach
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Figure 1: Run-time requirements of recent perturbative calculations for collider phenomenol-
ogy. Memory requirements ranged up to about 2 TB of RAM per node.

those of more complicated NNLO calculations, at the level of a few hundred thousand CPU

core hours, see e.g. refs. [226–229].

5 Conclusions and outlook

During the last ten years tremendous progress on higher-order calculations for collider physics
has been achieved. The use of HPC systems for these applications is now both a standard as
well as a requirement. With Snowmass 2013, the computational requirements of perturbative
calculations were assessed and several questions were posed for discussion in order to efficiently
push the boundaries of precision studies [1, 2]. For this Snowmass 2021 white paper we
provide an update regarding the current status of the field and give an outlook for the decade
ahead.

Use of CPU parallel computing. When comparing previous with current state-of-the-art
computations, we notice that node hour requirements are not vastly different despite a very
significant increase in the complexity of the treated problems. In many cases, theoretical
developments lead to much more efficient approaches. In addition, single core performance
has increased by a factor of four to five since 2013 and single CPU/node performance has
increased by a factor of 25-30 for state-of-the-art hardware. This discrepancy between single
core performance and CPU/node performance is a trend that is expected to continue in the
future, given that transistors already reach a few nm in size. A consequence of this is that
using parallel high performance computing becomes ever more important to benefit from
improvements in computing technology.

Parallel computing is used by the community, although mostly in terms of independent
jobs and not with inter-process communication using for example MPI. For some cases
this is sufficient or advantageous, but in other cases, e.g. large phase-space integrations,
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calculations can benefit from efforts in using distributed computations based on MPI or a
similar framework.

Use of GPUs. Modern computing paradigms focus more and more on the use of specialized
GPUs instead of general purpose CPUs. All new leading DOE clusters like NERSC Perlmutter,
Argonne Aurora and Oak Ridge Frontier follow this paradigm and focus on nodes with
GPUs. GPUs offer distinct advantages for single instruction multiple thread and multiple
data problems that do not require irregular access to large amounts of memory. The use
of GPUs is still unclear in our field, since many problems in our field rely on the numerical
evaluation or handling of algebraic expressions which are large and/or require irregular
memory access patterns. So far, GPUs have found application to cutting-edge problems
with the numerical integration of sector decomposed loop integrals. A first step for future
applications could include the efficient evaluation of one-loop amplitudes. This would help the
huge computational requirements for NLO high-multiplicity evaluations, but also for the real
emission integrations for NNLO calculations. Since the efficient use of GPUs is still unclear,
future computing for our community will still need to focus on providing CPU resources
without attached GPU resources.

Memory and run-times requirements. A number of multi-loop amplitude calculations
involving computer algebra are limited by the available memory per core or even per node.
In addition, long run-times may be required and break-pointing might not be a good option
in practice due the required additional development efforts or the use of proprietary software
and external dependencies. We note that both memory and run-time requirements may
be intrinsically difficult to predict for such type of problems. Moreover, often a variety of
different approaches and codes will be tested or combined, and only limited human resources
are available for software development to adapt to the given constraints on the available
clusters. Currently, many of these calculations are being performed on local computing
resources, partly outside of a larger shared cluster infrastructure to circumvent constraints
imposed by general cluster policies. Regarding availability of resources, more high-memory
nodes and more flexibility on long job run-times could provide effective help. Through
snapshots, virtualization solutions in cluster environments may resolve the tension between
such calculational demands and requirements of cluster maintenance.

Machine learning. Machine learning, while being explored, has not made significant impact
yet within the research scope presented here at the multi-loop level. Machine learning is being
explored for improving traditional optimization and interpolation problems. For example the
optimization of phase-space integration has been studied, as well as the fast interpolation of
multi-loop hard scattering functions. So far the most promising applications focus on the
event generation beyond the parton level, see e.g. the Snowmass white paper on “Machine
Learning and LHC Event Generation” [230].

Availability and usability of codes. The public availability of codes and results is a crucial
aspect to improve efficiency of the community and to reduce friction in exchanges and
comparisons. State-of-the-art multi-loop amplitudes are nowadays provided by many authors
in machine-readable format, and increasingly also building blocks like master integrals or even
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reduction tables. The level of sophistication of modern tools for tasks like integral reduction
or integral evaluation clearly motivates their public availability, such that they can be used
by different research groups. Indeed, an increasing number of authors invest the required
time to make their codes accessible to others and share them early on. We believe this is an
important development which increases productivity in our field, and that attention should
be payed to longer-term career perspectives of young researchers engaging in these efforts. Of
course, public codes with proper documentation also avoids loss of intellectual achievements
if Ph.D. students or postdocs leave the field. Public availability is also relevant for entire
cross section calculations to allow for derived work and comparative studies. Currently, a
subset of NNLO codes are publicly available.

Codes using proprietary software like Mathematica or Maple are limited by license availability
for large deployments on clusters. In practice, such systems may offer distinct advantages
as a development platform and are therefore frequently used, both for less resource-critical
tasks and for prototyping. While limitations regarding the usage on clusters can eventually
be avoided with dedicated implementations not relying on proprietary software, it remains a
problem-specific decision whether the expected gains justify this additional effort.

Grade of automation. Nowadays, highly automated codes are available for the computations
of NLO corrections, including even electroweak interactions. While 2013 marked the early
advent of NNLO calculations, meanwhile a much higher level of sophistication has been
achieved by treating also 2 → 3 processes like pp→ 3 jets and lower multiplicity processes
with many scales at NNLO. Amplitudes, loop integrals and IR subtractions all pose highly
difficult problems that require dedicated efforts for their automation. With current technology
we are indeed getting closer to the automation of NNLO calculations – raw ingredients are
available for amplitudes, the numerical evaluation of loop integrals and NNLO IR subtractions
to high multiplicities. Typically generic numerical methods allow for easier automation, while
targeted analytical work can provide particularly efficient implementations. Overall, a lot of
consolidation work is still necessary for automated NNLO frameworks, which we expect to
take place in the upcoming decade.

Closing remarks. Overall the sample state-of-the-art projects surveyed for this white paper
took each 2-5 years of total PhD/postdoc research time. This is a significant time in terms
of the average hiring span of PhD students and postdocs and points to the trend for larger
collaborations to exploit synergies. Furthermore, each precision calculation (at NNLO or
beyond) relies on more than a decade of developments in the IR subtraction frameworks
and in the mathematical and algorithmic developments for amplitudes and loop integrals.
This motivates a continued effort to provide public and well documented codes for tools
and predictions, so that the whole theory and experimental communities can benefit from
state-of-the-art advancements.

Today’s typical computational resource requirements for phenomenological predictions are
at the order of a few hundred thousand core hours and reach up to about 10M core hours;
a distribution of them is sketched in fig. 1. This is in stark contrast to the last Snowmass
planning in 2013, where the use of cluster resources was more of an exception rather than
standard. The majority of people answering our survey deemed the currently-available
resources sufficient for their current projects, although in some cases easier access to suitable
cluster resources would have been beneficial. For the next 5-15 years, we expect to see
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NNLO predictions for more complex final states, the automation of these calculations, and
N3LO predictions for diboson processes. Numerical and semi-numerical methods as well as
distributed computing are expected to play an essential role in these efforts. It remains
unclear to which degree GPUs can be employed, such that the availability of CPU-oriented
cluster resources stays important. Nodes with multiple TB of memory continue to be of
high relevance for computer-algebraic components of the calculations. Flexible job run
times significantly benefit some developments, and virtualization solutions with snapshot
capabilities could enable this in cluster environments.
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[172] D. Bendle, J. Böhm, W. Decker, A. Georgoudis, F.-J. Pfreundt, M. Rahn et al.,
Integration-by-parts reductions of Feynman integrals using Singular and GPI-Space,
JHEP 02 (2020) 079 [1908.04301].

[173] M. Heller and A. von Manteuffel, MultivariateApart: Generalized partial fractions,
Comput. Phys. Commun. 271 (2022) 108174 [2101.08283].

[174] X. Chen, T. Gehrmann, E. W. N. Glover, A. Huss, P. Monni, E. Re et al., Third order
fiducial predictions for Drell-Yan at the LHC, 2203.01565.

[175] M. Cacciari, F. A. Dreyer, A. Karlberg, G. P. Salam and G. Zanderighi, Fully
Differential Vector-Boson-Fusion Higgs Production at Next-to-Next-to-Leading Order,
Phys. Rev. Lett. 115 (2015) 082002 [1506.02660].

[176] S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and
its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007)
222002 [hep-ph/0703012].

[177] T. Becher and M. Neubert, Drell-Yan Production at Small qT , Transverse Parton
Distributions and the Collinear Anomaly, Eur. Phys. J. C 71 (2011) 1665 [1007.4005].

[178] G. Billis, M. A. Ebert, J. K. L. Michel and F. J. Tackmann, A toolbox for qT and
0-jettiness subtractions at N3LO, Eur. Phys. J. Plus 136 (2021) 214 [1909.00811].

[179] I. W. Stewart, F. J. Tackmann and W. J. Waalewijn, N-Jettiness: An Inclusive Event
Shape to Veto Jets, Phys. Rev. Lett. 105 (2010) 092002 [1004.2489].

[180] R. Boughezal, C. Focke, X. Liu and F. Petriello, W -boson production in association
with a jet at next-to-next-to-leading order in perturbative QCD, Phys. Rev. Lett. 115
(2015) 062002 [1504.02131].

[181] J. Gaunt, M. Stahlhofen, F. J. Tackmann and J. R. Walsh, N-jettiness Subtractions for
NNLO QCD Calculations, JHEP 09 (2015) 058 [1505.04794].

[182] Y. Li and H. X. Zhu, Bootstrapping Rapidity Anomalous Dimensions for
Transverse-Momentum Resummation, Phys. Rev. Lett. 118 (2017) 022004
[1604.01404].

[183] A. A. Vladimirov, Correspondence between Soft and Rapidity Anomalous Dimensions,
Phys. Rev. Lett. 118 (2017) 062001 [1610.05791].

[184] M.-x. Luo, T.-Z. Yang, H. X. Zhu and Y. J. Zhu, Unpolarized quark and gluon TMD
PDFs and FFs at N3LO, JHEP 06 (2021) 115 [2012.03256].

25

https://arxiv.org/abs/2203.17170
https://arxiv.org/abs/2203.04269
https://doi.org/10.1088/1742-6596/368/1/012049
https://arxiv.org/abs/1111.0868
https://arxiv.org/abs/1206.4740
https://doi.org/10.1007/JHEP02(2020)079
https://arxiv.org/abs/1908.04301
https://doi.org/10.1016/j.cpc.2021.108174
https://arxiv.org/abs/2101.08283
https://arxiv.org/abs/2203.01565
https://doi.org/10.1103/PhysRevLett.115.082002
https://arxiv.org/abs/1506.02660
https://doi.org/10.1103/PhysRevLett.98.222002
https://doi.org/10.1103/PhysRevLett.98.222002
https://arxiv.org/abs/hep-ph/0703012
https://doi.org/10.1140/epjc/s10052-011-1665-7
https://arxiv.org/abs/1007.4005
https://doi.org/10.1140/epjp/s13360-021-01155-y
https://arxiv.org/abs/1909.00811
https://doi.org/10.1103/PhysRevLett.105.092002
https://arxiv.org/abs/1004.2489
https://doi.org/10.1103/PhysRevLett.115.062002
https://doi.org/10.1103/PhysRevLett.115.062002
https://arxiv.org/abs/1504.02131
https://doi.org/10.1007/JHEP09(2015)058
https://arxiv.org/abs/1505.04794
https://doi.org/10.1103/PhysRevLett.118.022004
https://arxiv.org/abs/1604.01404
https://doi.org/10.1103/PhysRevLett.118.062001
https://arxiv.org/abs/1610.05791
https://doi.org/10.1007/JHEP06(2021)115
https://arxiv.org/abs/2012.03256


[185] M. A. Ebert, B. Mistlberger and G. Vita, Transverse momentum dependent PDFs at
N3LO, JHEP 09 (2020) 146 [2006.05329].

[186] F. Caola, W. Chen, C. Duhr, X. Liu, B. Mistlberger, F. Petriello et al., The Path
forward to N3LO, in 2022 Snowmass Summer Study, 3, 2022, 2203.06730.

[187] I. Moult, L. Rothen, I. W. Stewart, F. J. Tackmann and H. X. Zhu, Subleading Power
Corrections for N-Jettiness Subtractions, Phys. Rev. D 95 (2017) 074023 [1612.00450].
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