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Abstract

The phrase “more is different” is often used to refer to the new, unexpected col-
lective phenomena that can arise when the number of states in a given system
is large. In this contribution to the Snowmass 2021 Study, we describe 13 un-
expected collective phenomena that can arise when the dark sector contains a
large number of states, contrary to the usual assumptions. These 13 take-away
lessons stretch across all of the domains of relevance for dark-matter physics,
including collider signatures, direct-detection signatures, indirect-detection sig-
natures, new perspectives on dark-matter complementarity, and even unex-
pected astrophysical and cosmological phenomena that transcend those nor-
mally associated with single-component dark-matter scenarios. These lessons
— and the phenomena on which they are based — thereby illustrate the need
to maintain a broad perspective when contemplating the possible signatures
and theoretical possibilities associated with non-minimal dark sectors.
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I. INTRODUCTION: MORE IS DIFFERENT

In 1972, P. W. Anderson published an influential article [1] with the title “More Is Different”. In
this article, he emphasized the fact that systems with many degrees of freedom can often give rise to
surprising collective phenomena that transcend the sorts of expectations that arise from studies based
on systems with only a few degrees of freedom. While Anderson’s primary interest was in condensed-
matter physics (and indeed his examples focused on phenomena such as superconductivity), we
believe a similar set of lessons may apply to the dark sector. Indeed, the common paradigm for the
dark sector presupposes that the dark matter within the universe is comprised of only one, or a few,
dark-matter states. In this article, by contrast, we highlight several of the surprising “collective”
phenomena that can emerge if the dark sector is composed of a large number of dark states, each
with its own mass, lifetime, and cosmological abundance.

Of course, many models of decaying dark matter transcend the canonical WIMP or axion frame-
works and populate new regions of the dark-matter parameter space or give rise to modified signa-
tures. However perhaps none do so as dramatically as those that arise within the Dynamical Dark
Matter (DDM) framework [2]. Indeed, as we shall see, the DDM framework intrinsically relies on
the supposition that the number of states in the dark sector is large and perhaps even infinite, all
while satisfying all known phenomenological constraints. In this article, we shall therefore adopt the
DDM framework as our exemplar and focus on the surprising “collective” features that can arise
within such a framework. Given these phenomena, we shall then extract 13 different “take-away
lessons” that we believe should be borne in mind when contemplating future theoretical possibilities
for dark-matter physics.
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We stress that our purpose in this article is not to provide a review of theories with non-minimal
dark sectors and/or multiple-component dark matter. Indeed, there is already a huge literature on
these topics to which we refer the reader for further information. Rather, our goal here is to highlight
the extreme limit in which large numbers of dark-sector states conspire together to produce new and
unexpected collective phenomena. We therefore adopt DDM as the ideal theoretical framework
within which to discuss these possibilities.

II. THE DYNAMICAL DARK MATTER (DDM) FRAMEWORK AS EXEMPLAR:
MOTIVATION AND GENERAL OVERVIEW

The traditional view of dark matter asserts that one (or several) dark-matter particles χ carry
the entire dark-matter abundance Ωχ = ΩCDM ≈ 0.26. Such particles must be hyperstable, with
lifetimes exceeding the age of the universe by many orders of magnitude, usually τχ & O(1028) s.
This bound arises because any such particle which decays too rapidly into Standard-Model states is
likely to upset BBN and and light-element abundances, and also leave undesirable imprints in the
CMB and diffuse photon/X-ray backgrounds. Stability is thus critical for traditional dark matter.
Indeed, the resulting theory is essentially “frozen in time”, with quantities such as ΩCDM remaining
fixed.

Let us however imagine that the dark sector of the universe consists of N states, with N � 1 — i.e.,
an entire ensemble of states. In this case, no individual state needs to carry the full abundance ΩCDM

as long as the sum of their abundances continues to match ΩCDM. In particular, these individual
components can carry a wide variety of abundances, some large but some very small. However, a
given dark-matter component need not be stable if its abundance at the time of its decay is sufficiently
small. Indeed, a sufficiently small abundance assures that the disruptive effects of the decay of
such a particle will be minimal, and that all constraints from BBN, CMB, etc., will continue to
be satisfied. For this reason, a multi-component dark sector need not require stability for each
component. Instead, we need simply require that states with larger abundances have smaller decay
widths, but states with smaller abundances can have larger decay widths. As long as decay widths
are generally balanced against abundances in this way across our entire dark-sector ensemble, all
phenomenological constraints can be satisfied.

This, then, is the Dynamical Dark Matter (DDM) framework [2]. In a nutshell, the DDM frame-
work posits that the dark matter in the Universe comprises a vast ensemble of interacting fields
with a variety of different masses, lifetimes, and cosmological abundances. Moreover, rather than
imposing stability for each field individually, the DDM framework rests upon a balancing of lifetimes
against cosmological abundances across the entire ensemble. For this reason, individual constituents
of the DDM ensemble are decaying throughout the evolution of the Universe, from early times until
late times and even today and beyond. In general, the decay products can involve SM states as
well as other, lighter ensemble components. DDM is thus a highly dynamical scenario in which
cosmological quantities such as the total dark-matter abundance ΩCDM experience a non-trivial time
dependence beyond those normally associated with cosmological expansion. Moreover, because the
DDM ensemble cannot be characterized in terms of a single well-defined mass, decay width, or inter-
action cross section, the DDM framework gives rise to many striking experimental and observational
signatures which transcend those usually associated with dark matter and which ultimately reflect
the collective behavior of the entire DDM ensemble.

These basic features of the DDM framework are illustrated in Fig. 1. The left panel illustrates
the idea that the dark sector of the cosmic pie is composed of a number of different components
which each propagate forward in time until eventually decaying. The right panel illustrates this same
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FIG. 1. The basic features of the DDM framework. Left panel : The dark sector of the cosmic pie is composed of a number
of different components which each propagate forward in time until eventually decaying. In each case, states with larger
abundances are presumed to have longer lifetimes, and thus decay later than those with smaller abundances. Right panel : The
individual dark-sector abundances are sketched as functions of time through different epochs of the early universe. This panel
is taken from Ref. [2], where further details are provided. We thus see that dark-matter decays are occurring throughout the
history of the universe, leading to a very “dynamical” dark sector.

behavior as the abundances of these different components pass through the different epochs of the
universe, from the time of their production (here sketched as having taken place during inflation)
through the present day and beyond. In each case, states with larger abundances are presumed to
have longer lifetimes and thus decay later. These figures are drawn under the implicit assumption
that each dark-matter component of the DDM ensemble decays directly to states in the visible
sector. In such cases, the dark-matter pie slice is continually shrinking while the visible-sector pie
slice is growing. However, it is also possible to have intra-ensemble decays in which heavier dark-
matter states within the ensemble decay to lighter ensemble states (with or without the associated
production of visible-sector states). All of these properties are specified once a particular model is
constructed within the overall DDM framework.

The DDM framework was originally introduced in Ref. [2], while in Refs. [3, 4] explicit models
within this framework were constructed which were shown to satisfy all known collider, astrophysi-
cal, and cosmological constraints. Since then, there has been considerable work in fleshing out this
framework and exploring its consequences. One major direction of research consists of analyzing the
various signatures by which the DDM framework might be experimentally tested and constrained.
These include unique DDM signatures at direct-detection experiments [5], at indirect-detection ex-
periments [6–8], and at colliders [9–13]. DDM scenarios can also leave observable imprints across the
cosmological timeline, stretching from structure formation [14, 15] all the way to late-time supernova
recession data [16, 17] and unexpected implications for evaluating Ly-α constraints [18]. Such im-
prints can also potentially include a non-traditional time-evolution for the Hubble parameter [16, 17].
DDM scenarios also give rise to enhanced complementarity relations [19, 20] between different types
of experimental probes.

A second direction of DDM research over the past decade involves DDM model-building — i.e.,
examining the various ways in which suitably-balanced DDM ensembles can emerge naturally from
different models of BSM physics. It turns out that DDM models often share certain characteristics
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which allow their consequences to be studied together in a model-independent way. For example,
the masses m`, corresponding lifetimes τ` ≡ 1/Γ`, and cosmological abundances Ω` of the individual
states within the DDM ensemble at the time of their initial production often turn out to be tied
together through general (approximate or exact) scaling relations of the form

Γ` = Γ0

(
m`

m0

)γ
, Ω` = Ω0

(
m`

m0

)α
where m` = m0 + (∆m)`δ . (2.1)

Here {α, γ, δ} are scaling exponents and {m0,∆m,Γ0,Ω0} are additional free parameters. Such scal-
ing relations usually hold either across the entire DDM ensemble or within those portions of the
ensemble that are relevant for various phenomenological questions. Specific DDM models that one
can construct within the DDM framework then correspond to different sets of parameter values.
Indeed, specific DDM models that have been constructed include theories involving large extra di-
mensions, both flat [2, 3] and warped [21]; theories involving strongly-coupled hidden sectors [21–23];
theories involving large spontaneously-broken symmetry groups [24]; and even string theories [22].
Indeed, it is even possible to consider a limit with m0 > 0 and ∆m → 0, thereby giving rise to a
“continuum dark matter” model [25, 26] in which the DDM masses populate a gapped continuum
which can be self-consistently realized in a soft-wall background [27]. Moreover, the dark states
within different DDM models can accrue suitable cosmological abundances in a variety of ways.
These include not only non-thermal generation mechanisms such as misalignment production [2, 3]
and mass-generating phase transitions in the early Universe [28–30], but also thermal mechanisms
such as freeze-out [31]. In fact, DDM ensembles satisfying the scaling relations in Eq. (2.1) can even
give rise to new theoretical possibilities for stable mixed-component cosmological eras [32].

Each of these different possibilities for model-building corresponds to a specific set of values for
the parameters in Eq. (2.1). For example, realizing the DDM ensemble as the Kaluza-Klein (KK)
excitations of a dark five-dimensional scalar field compactified on a circle of radius R (or a Z2 orbifold
thereof) then results in either {m0,∆m, δ} = {m, 1/R, 1} or {m0,∆m, δ} = {m, 1/(2mR2), 2},
depending on whether mR � 1 or mR � 1, respectively, where m denotes the four-dimensional
scalar mass [2, 3]. Alternatively, taking the DDM ensemble constituents to be the bound states of a
dark strongly-coupled gauge theory yields δ = 1/2, where ∆m and m0 are determined by the Regge
slope and intercept of the strongly-coupled theory, respectively [22]. Thus δ = {1/2, 1, 2} serve as
compelling “benchmark” values. Likewise, γ is generally governed by the particular decay modes
associated with the decay rates Γ`. For example, if the DDM constituents φ` decay purely to photons
through a dimension-d contact operator of the form O` ∼ c`φ`F/Λd−4 where Λ is an appropriate
mass scale and where F is an operator built from photon fields, we have γ = 2d−7. Thus values such
as γ = {3, 5, 7} can serve as relevant benchmarks. Finally, α is governed by the original production
mechanism for the DDM constituents. For example, one typically finds that α < 0 for misalignment
production [2, 3], while α can generally be of either sign for thermal freeze-out [31].

While there are many motivations for considering the DDM framework to be a realistic description
of the dark sector, perhaps the most compelling emerges within string theory. In many string
scenarios, the Standard Model is presumed to live on a four-dimensional brane while many other
gauge-neutral fields (such as gravitons, gravitini, axions, other axion-like particles, string-theory
moduli, right-handed neutrinos, and a plethora of dark-matter candidates) are presumed to live in
a higher-dimensional bulk. However, because these fields carry no SM quantum numbers, they are
effectively “dark”; likewise, because they live in a higher-dimensional bulk, they appear as infinite
towers of Kaluza-Klein states. Indeed, within such string theories, nothing stabilizes these KK
towers. As a result, string theories naturally give rise to DDM-like dark sectors of the sort we have
outlined here [2, 22].

The DDM framework is thus a rich arena in which to explore new theoretical and phenomenological
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possibilities for non-minimal dark sectors when the number of dark states grows large and new
collective phenomena emerge. Many of these new possibilities will be outlined below. However,
given the above discussion of the DDM framework, we believe that there are two general lessons
which we can already draw concerning such non-minimal dark sectors.

• Lesson #1: The dark sector need not have a unique mass, decay cross-section, or cosmologi-
cal abundance. Accordingly, it may be necessary to rethink the manner in which experimental
or observational bounds on the dark sector are typically quoted — including those which are
generally plotted in the mass/cross-section (mχ, σχ)-plane. Indeed, it may be necessary to
shift to more general parameters — such as the scaling exponents and associated variables
outlined in Eq. (2.1) — which allow for more general dark sectors.

• Lesson #2: Stability need no longer be the governing principle for the dark sector. Indeed,
dark matter may be decaying throughout the history of the universe, so long as the cosmologi-
cal abundances of the individual dark-matter components are properly balanced against their
decay widths. This balancing between lifetimes and abundances is actually the fundamen-
tal principle governing the dark sector, and reduces to the traditional notion of dark-matter
stability only in the limit in which the number of states in the dark sector is taken to one.

III. LESSONS REGARDING THE EXPERIMENTAL AND OBSERVATIONAL
SIGNATURES OF THE DARK SECTOR

We now turn to lessons concerning the potential experimental and/or observational signatures of
such non-minimal dark sectors. As we shall see, these span the space from signatures accessible to
collider experiments to those accessible via direct-detection experiments as well as indirect-detection
observations. As we shall see, these signatures are often extremely different from what might be
expected from single-component dark sectors. Non-minimal dark sectors also lead to significant
enhancements in our traditional view of the complementarities between these different dark-matter
discovery channels.

A. Unexpected collider signatures: New shapes for kinematic distributions

Models within the DDM framework can give rise to a variety of distinctive signatures at colliders.
One such signature involves a modification of the distributions of kinematic variables for collider
processes involving substantial missing transverse energy /ET . The choice of which such variables
are the most auspicious for distinguishing DDM ensembles from traditional, single-particle dark-
matter candidates ultimately depends on the properties of the DDM ensemble constituents χ` and
the manner in which they couple to the fields of the visible sector.

One possibility is that the dark and visible sectors are coupled by a mediator ψ which is charged
under the Standard-Model SU(3) color gauge group. This possibility is of particular interest both
because the mediator can be produced copiously through strong interaction at a hadron collider and
because the decay of each mediator particle necessarily yields both dark- and visible-sector particles.
For example, if the mediator ψ is an SU(3)-octet fermion and the DDM ensemble constituents χ`
are SM-singlet fermions, ψ will decay primarily via processes of the form ψ → qqχ`. Since all of the
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ensemble constituents have identical quantum numbers, any χ` with a mass m` < mψ can appear
in the final state of this decay. However, since they have different masses, the distribution of the
invariant mass mjj for the resulting pair of hadronic jets is different for each final-state χ`. The
overall mjj distribution, which receives contributions from all of these decay processes, can therefore
differ dramatically from the mjj distribution characteristic of a single-particle dark-matter scenario
with the same coupling structure [9].

Of course, in cases in which only a small number of the χ` are kinematically accessible through
ψ decays, these invariant-mass distributions will be distinguished by the presence of a multiple
kinematic edges. By contrast, in cases in which the number of kinematically-accessible χ` is large,
the decay phenomenology of the ψ particles will depend more sensitively on the full structure of the
DDM ensemble and qualitatively different features can emerge. Indeed, in such scenarios, individual
kinematic edges will no longer be manifest. Instead, the invariant-mass distributions can exhibit
distinctive smooth shapes not realized in single-particle dark-matter scenarios.

In order to demonstrate this, let us consider decays of the form ψ → χ`jj where each j signifies
a jet. Let us also assume a mass spectrum for the χ` of the form in Eq. (2.1), and as an example
let us also choose benchmark values mψ = 1.5 TeV, m0 = ∆m = 200 GeV, and δ = 0.5. We
find that N ≈ 43 ensemble states will be kinematically accessible. In the left panel of Fig. 2, we
show the resulting smooth kinematic distributions that emerge if we assume that the ψ → χ`jj
decays have couplings c` which scale across the DDM ensemble as c` ∼ c0(m`/m0)

η where the curves

FIG. 2. In a non-minimal dark sector with many dark-matter states, the distributions associated with kinematic process can
be deformed to take smooth, wholly new characteristic shapes that which significantly differ from those associated with single-
component dark matter. Left panel : An example from collider physics. Here we plot the invariant-mass distributions for a pair
of hadronic jets produced by the decay ψ → qqχ` of a fermionic mediator particle ψ to the constituents χ` of a DDM ensemble
at a hadron collider. This figure is taken from Ref. [9]. Right panel : An example from a direct-detection experiment, to be
discussed in Sect. III D. Here we plot the nuclear recoil-energy spectrum that arises when a flux of dark-sector constituents
from the galactic halo undergoes elastic spin-independent scattering off nuclei within the detector volume. This figure is taken
from Ref. [5].



7

shown in red, orange, green, blue, and purple correspond to η = {−2,−1, 0, 1, 2}, respectively. By
contrast, in black we show the kinematic distribution that emerges for a traditional dark-matter
particle of mass m0. While the invariant-mass distributions for our multi-component dark sectors
closely resemble the traditional single-component distribution for η � 0 (in which case the decay
ψ → χ0jj dominates), we see that this distribution begins to take an entirely different shape as η
increases. Indeed, as η increases, the decaying ψ parent is effectively allowed to decay into increasing
numbers of the DDM constituents. More of the ensemble thus becomes kinematically accessible, and
the invariant-mass distribution assumes a new shape entirely [9].

we see, then, that these distributions for non-minimal dark sectors can differ significantly from
those associated with single-particle dark-matter scenarios. For this reason, these distributions can
provide a powerful experimental discriminant between DDM ensembles and more traditional dark-
matter candidates. Indeed, we see from Fig. 2 that one feature that may entirely disappear is
the sharp kinematic edge at mψ − mχ, where mχ is the mass of the single dark-matter particle.
Then then potentially robs us of a means of determining the dark-matter mass — all of which is
consistent with Lesson #1, in which we pointed out that no single mass can be associated with a
multi-component dark sector. Interpreting the properties of the underlying DDM ensemble from
these new distributions is thus an important challenge.

Distinctive distributions for other kinds of kinematic variables can also arise within the context
of non-minimal dark sectors. For example, in DDM scenarios in which the mediator is an SU(3)
color triplet scalar φ and the χ` are SM-singlet fermions, φ decays primarily via processes of the
form φ → qχ`. Thus, the pair production of these mediators gives rise to a populations of dijet
events with substantial /ET . The distributions of the kinematic variables /ET and MT2 obtained for
such events in DDM scenarios can likewise differ significantly from the corresponding distributions
obtained for single-particle dark-matter scenarios [10].

Although our discussion has focused on only a few examples, we believe that the general lesson is
clear.

• Lesson #3: In a collider experiment, the distributions of kinematic variables associated
with a given dark sector can exhibit a variety of shapes that are qualitatively different from
those that are typically assumed for a single dark-matter particle. Indeed, these new shapes
can be entirely smooth and even lack expected features such as kinematic endpoints. In a
similar way, different kinematic cuts may become appropriate when analyzing such collider
data, and these cuts will generally be highly correlated with these kinematic distributions.
These issues are discussed further in Refs. [9, 10].

B. Unexpected collider signatures: Extended mediator-induced decay chains

Non-minimal dark sectors can also give rise to rather exotic collider processes, and these in turn
can also produce unexpected collider signatures.

As an example, let us consider a process which is very natural from the perspective of a non-minimal
dark sector. In general, in order to suppress the couplings between the dark and visible sectors, a
standard assumption is that these two sectors communicate only through a mediator. However, if
the dark sector contains multiple components with similar quantum numbers, then this mediator also
generically gives rise to intra-ensemble dark-sector decays, with heavier dark components decaying
to lighter dark components. Indeed, the heavier states within a DDM ensemble can often have
significantly shorter lifetimes than the lighter ensemble constituents which dominate the dark-matter
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abundance at the present time, which in turn implies that that a significant number of these heavier
χ` can be unstable on collider timescales. As a result, extended decay chains can arise involving
multiple intra-ensemble decay steps, with each step of the decay chain also producing visible matter.
The visible by-products of such mediator-induced decay chains can therefore serve as a unique
signature of such scenarios.

χn

φ† χn1

q q̄

χnS

q q̄ q q̄ q q̄

φ† φ† φ†χn2 χn3
χnS−1

FIG. 3. An extended decay chain that can arise due to the existence of a non-mimimal dark sector. Such decay chains involve
multiple successive intra-ensemble decays of the form χn → qqχn′ , where χn′ is lighter than χn. Each step of the decay chain
shown here is facilitated by an off-shell t-channel mediator particle φ† and yields a pair of hadronic jets. Such a decay chain
ultimately terminates in a light collider-stable particle χnS for some nS which manifests itself as /ET . This diagram is taken
from Ref. [12].

In Fig. 3, we show an example of such a decay chain in which each decay step proceeds through an
off-shell t-channel mediator particle φ and yields a SM quark/antiquark pair as well as a single lighter
ensemble constituent. Extended decay chains of this sort can even give rise to events involving large
jet multiplicities, both at the parton and detector levels [12].

We emphasize that such extended decay chains can arise in a variety of different theoretical contexts
that need not necessarily involve dark-matter physics [33–46]. Indeed, one would not normally
interpret such decay chains as having any relation to dark matter, given that the dark matter that
exists today must be comprised of one or more particles whose lifetimes are sufficiently long that
such particles are necessarily collider-stable. However, within the context of a non-minimal DDM-
like dark sector, these dark-matter states are merely the lightest components of a unified tower of
dark states which also include heavier states with extremely short lifetimes. Thus such decay chains
can actually arise from (and thereby provide evidence of) a non-minimal dark sector — even if the
individual steps of the decay chain involve particles that are too short-lived to comprise the dark
matter today.

The above discussion assumes that the decay chain involves only prompt decays — i.e., that the
χ` states involved in the chain have extremely short lifetimes — while the final state produced is
collider-stable. However, it is possible for additional experimental signatures to arise from the decays
of χ` ensemble constituents whose lifetimes τ` lie between these extremes. Such ensemble constituents
can then be considered long-lived particles (LLPs), and the the decays of such particles with proper
decay lengths cτ` ∼ O(10 mm − 100 m) can give rise to macroscopically displaced vertices within a
collider detector. The successive intra-ensemble decays of such states as in Fig. 3 can then give rise to
“tumblers” [13] — i.e., sequences of displaced vertices arising from sequential decays within the same
decay chain. Kinematic correlations between the momenta of the visible particles in tumbler events
can then be used in order to distinguish tumblers from other events involving multiple displaced
vertices.
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• Lesson #4: If the dark sector contains multiple components with similar quantum num-
bers, then mediators which connect this dark sector to the visible sector can also give rise
to mediator-induced decay chains in which heavier dark components decay to lighter dark
components and also simultaneously produce large numbers of states in the visible sector.
Such decays may either be prompt, as in Ref. [12], or correspond to displaced vertices, as in
Ref. [13], the latter giving rise to so-called “tumbler” events. Thus, contrary to expectations,
the appearance of such decay chains may well be associated with a dark sector — even though
such decay chains involve particles that are too short-lived to comprise the dark matter today.
For more information, see Refs. [12, 13].

C. Unexpected collider signatures: Non-minimal dark sectors at dedicated LLP
detectors

There is yet another unique possibility for collider signatures associated with non-minimal dark
sectors. Of course, ensemble constituents with lifetimes even longer than those considered above
will appear only as /ET within the main collider detector wherein they were initially produced.
However, dark-sector constituents with lifetimes cτ` ∼ O(10 m − 107 m) could nevertheless lead to
signals at dedicated LLP detectors such as MATHUSLA [47, 48], FASER [49], and Codex-b [50, 51].
MATHUSLA, for example, is capable of probing regions of DDM parameter space inaccessible to the
ATLAS and CMS detectors themselves [11, 48]. Moreover, correlating information obtained from
LLP searches at MATHUSLA with information obtained from a variety of searches at the main CMS
detector can yield further insight into the structure of a DDM ensemble and the properties of its
constituents.

It would not normally be expected that a dedicated LLP detector such as MATHUSLA or FASER
should be relevant for dark-matter physics. Indeed, traditional dark-matter candidates are presup-
posed to have such long lifetimes that their “decay lengths” cτ greatly exceed the range to which
such LLP detectors are sensitive. However, within a non-minimal DDM-like dark sector, dark states
of many different lifetimes are all locked together within a common ensemble whose properties are
governed collectively, such as through the scaling relations in Eq. (2.1). By observing the extra-
ensemble decays of those dark-sector states whose lifetimes may lie within the range to which these
LLP detectors are sensitive, it thereby becomes possible for such LLP detectors to indirectly con-
strain the properties of the dark matter today. Indeed, LLP detectors such as MATHUSLA and
FASER have extremely small backgrounds, thereby providing ideal environments for such studies.

• Lesson #5: Contrary to conventional expectations, dedicated LLP detectors such as MATH-
USLA and FASER can provide important constraints on dark-sector physics. Such detectors
could therefore potentially serve as discovery and diagnosis tools for non-minimal dark sec-
tors. Moreover, because of their extremely small backgrounds, such LLP detectors may well
be the first or only discovery opportunities for non-minimal dark sectors — especially if a
majority of the dark-sector states have decay lengths exceeding the sizes of the traditional
main-line detectors. For more details, see Refs. [11, 52].



10

D. Unexpected signatures at direct-detection experiments

Many of the lessons learned for the collider signatures of non-minimal dark sectors also apply for
the signatures of these sectors in direct-detection experiments. This is especially true of Lesson #3.

In a direct-detection experiment, the incoming dark-matter particle(s) scatters off a nucleus asso-
ciated with the substance (e.g., argon or xenon) contained within the detector volume. One then
measures the recoil-energy spectrum of this nucleus and thereby aims to deduce the mass of the
dark-matter particle involved in the scattering. If only one WIMP-like particle species comprises
the dark matter, then a characteristic recoil-energy spectrum can be expected. This recoil-energy
spectrum falls extremely rapidly as a function of the recoil energy. However, if the galactic halo
contains significant abundances of many dark-sector ensemble constituents, our detector may be
subjected to a flux of dark-sector particles whose relative flux fractions depend on the physics of the
associated halo.

In the right panel of Fig. 2, we illustrate the nuclear recoil-energy spectra that arise when the dark
sector comprises a DDM ensemble. We assume that the masses and abundances of the different dark-
matter components in the galactic halo scale as in Eq. (2.1), and likewise we assume that each such
state experiences an effective coupling to nuclei which scales similarly with a scaling exponent β. We
also assume that these couplings are dominated by elastic, spin-independent χ`/nucleon interactions.

Holding the χ0/nucleus elastic scattering cross-section σ
(0)
SI fixed (where χ0 is the lightest ensemble

constituent), we find the nuclear recoil spectra shown, where the different colors correspond to
different values of the mass-splitting parameter ∆m in Eq. (2.1).

As ∆m→∞, only the lightest ensemble state contributes to scattering within the detector, thereby
reproducing the traditional nuclear recoil spectrum. However, as ∆m decreases, increasingly many
ensemble states can scatter with the nuclei and thereby contribute to the nuclear recoil spectra.
For relatively large values of ∆m, this gives rise to resolvable kinks in the recoil-energy spectra.
However, once ∆m becomes sufficiently small, an entirely new shape for the nuclear recoil spectrum
begins to emerge — one which is completely smooth and which no longer resembles that for a single
dark-matter particle. Measuring such spectra therefore becomes a powerful experimental way of
identifying the existence of a non-minimal dark sector, and the precise shape that emerges can be
exploited to learn about the collective properties of the entire dark sector.

• Lesson #6: Within a direct-detection experiment, the individual dark-sector constituents
which comprise a non-minimal dark sector can conspire to provide unexpected shapes for
the corresponding nuclear recoil-energy spectra which cannot be obtained for single dark-
matter components. Indeed, as evident from the right panel of Fig. 2, these recoil spectra
can generally be wider, signalling enhancements in the recoil fluxes per unit energy bin, and
pass through inflection points as functions of the recoil energy, all while remaining relatively
smooth. The shapes of these spectra can therefore be used in order to deduce the existence of
a non-minimal dark sector and its properties within the galactic halo. For more information,
see Ref. [5].

E. Unexpected signatures at indirect-detection experiments

Indirect-detection experiments are also highly sensitive to the potential non-minimality of the
dark sector. Indirect-detection experiments operate by measuring the fluxes of SM particles which
presumably originate as the products of the annihilation or decay of dark-sector particles within
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the galactic halo and then propagate across interstellar distances before being observed. These
SM particles include not only photons but also a variety of cosmic-ray particles such as electrons,
positrons, nuclei and anti-nuclei, and even neutrinos. The corresponding flux spectra can thus
provide an “indirect” window into the properties of the dark sector from which they originated.

Several data anomalies within different photon and cosmic-ray flux spectra have received signif-
icant attention over the past decade. These include an excess in gamma-rays emanating from the
direction of the galactic center, as observed by FERMI-LAT; an excess in the flux of cosmic-ray
antiprotons observed by AMS-02; and a similar excess in cosmic-ray positrons observed by a variety
of indirect-detection experiments including HEAT, PAMELA, AMS-01, FERMI-LAT, and AMS-02.
Possible explanations involving dark matter have been proposed for each of these anomalies. How-
ever, whether or not the flux spectrum which results from any model of annihilating or decay dark
matter agrees with the observed spectrum depends on the masses, couplings, etc.., of the particle
species which constitute the dark matter. As a result, flux spectra with a particular shape or pro-
file may be difficult to realize within the context of scenarios in which a single particle or a small
number of particles constitute the dark matter. By contrast, scenarios involving large numbers of
dark-matter states can give rise to a far broader array of flux spectra with qualitative features which
are extremely difficult to produce within the context of single-particle models.

The cosmic-ray positron excess furnishes one motivation for considering the more general flux
spectra associated with large numbers of dark-matter states. This flux is higher than anticipated
based on estimates of standard astrophysical backgrounds, suggesting that this flux may indeed be
receiving additional contributions from annihilating or decaying dark-matter particles. The simplest
models of annihilating or decaying dark-matter particles predict that such a positron flux excess
should exhibit a distinctive peak which then rapidly falls as a function of energy. Such an abrupt
downturn was not observed in early AMS-02 results; rather, the data suggested that the flux spectrum
exhibited a plateau at high energies. While more recent AMS-02 data suggest that the cosmic-ray
positron flux may indeed experience a downturn at high energies, exactly how abrupt this downturn
might be remains uncertain.

Within traditional minimal dark sectors, there are a number of possible explanations which could
account for the absence of an abrupt downturn in the positron flux spectrum at high energies. How-
ever, these explanations tend to invoke either the existence of complex dark-matter annihilation
or decay processes involving exotic intermediate states which only subsequently decay into the ob-
served particles, or dark-matter particles which decay primarily via three-body processes involving
additional fields. These mechanisms also require that the dark-matter state(s) have rather heavy
TeV-scale masses. These features are required in order to ensure that the resulting electron and
positron flux spectra are significantly “softer” (i.e., broader and more gently sloped) than those
produced by a single dark-matter particle undergoing a two-body decay directly to SM states.

By contrast, non-minimal dark sectors can accomplish this feat with significantly lighter dark-
matter constituents undergoing simple two-body decays to leptons [6]. Moreover, this can be done
without running afoul of numerous other competing constraints on decaying dark matter. Even more
dramatically, DDM-like frameworks make the fairly robust prediction that the positron fraction
should, after rising, ultimately level off and then remain roughly constant out to approximately
1 TeV, without experiencing any sharp downturns. This behavior is shown in Fig. 4 for DDM
ensembles of states with masses in the range 200 GeV <∼ m`

<∼ 800 GeV which primarily decay into
µ+µ− pairs. Indeed, it is ultimately the successive decays of the different dark-matter constituents of
the DDM-like ensemble which are responsible for this success, with the rigid structure of dark-sector
ensemble — as encapsulated within the scaling relations in Eq. (2.1) — requiring that any excess
positron flux which is already consistent with existing data at low energies subsequently exhibit a
“plateau” as a function of energy, declining at best only slowly at higher energies. Thus, in this way,
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FIG. 4. Non-minimal dark sectors can change the predicted cosmic-ray fluxes that are measured via indirect-detection
experiments in ways that are difficult to realize with only a single species of dark-matter particle. Here we show the positron
fraction of the total e+ and e− flux that would emerge from a DDM-like ensemble in which the dark-sector constituents φ` have
masses in the range 200 GeV <∼ m`

<∼ 800 GeV and primarily decay into µ+µ− pairs. Each of the brown curves indicates the
flux predicted within a different possible DDM ensemble, where we have considered only those ensembles which are consistent
(to within 3σ) with existing data. While a single dark-matter candidate would generally predict a significant downturn in
the positron flux at higher energies, the accumulation of positrons from the sequential decays of the different components of
a non-minimal dark-sector ensemble continues to support the positron flux out to much higher energies — precisely as was
suggested by early AMS-02 results released in 2013. This figure is taken from Ref. [6].

the sequential decays of the ensemble constituents have the net effect of “supporting” the positron
flux out to higher energies than could otherwise be achieved with only one or several dark-matter
states.

Within the context of the galactic-center gamma-ray excess, the profile of the corresponding flux
spectrum can also serve to constrain models of annihilating or decaying dark matter. For example, it
has been shown [8] that the flux spectra which arise in scenarios with large numbers of dark-matter
states are capable of modeling the observed flux spectrum quite accurately, while at the same time
manifesting other characteristic features which provide clues as to their origin.

• Lesson #7: Non-minimal dark sectors can lead to photon and cosmic-ray flux spectra which
exhibit unorthodox energy-dependences whose features tend to be broader than those asso-
ciated with a single dark-matter particle. These flux spectra need not exhibit abrupt cutoffs
at high energies, but can actually experience a nearly flat plateau across a wide range of en-
ergies as a result of the sequential decays of the different constituents within the dark sector.
In this way, non-minimal dark sectors can model observed flux spectra at indirect-detection
experiments in ways that minimal dark sectors cannot easily emulate. For further discussion,
see Ref. [6].
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F. New directions in dark-matter complementarity

As we have discussed, there exist many search strategies for discovering dark matter. These include
the possibility of dark-matter production at colliders; direct detection of cosmological dark matter
through its elastic scattering off ordinary matter at underground experiments; and indirect detection
of dark matter through observation of the remnants of the annihilation of cosmological dark matter
into ordinary matter at terrestrial or satellite-based experiments.

At first glance, these different techniques may seem to be entirely independent, relying on three
independent properties of dark matter, specifically its amplitudes for production, scattering, and
annihilation. However, these three amplitudes are often related to each other through crossing
symmetries. As a result, these different search techniques are actually correlated with each other
through their dependence on a single underlying interaction that couples dark matter to ordinary
matter. It then follows that the results achieved through any one of these search techniques will have
immediate implications for the others. Indeed, this is the origin of the celebrated “complementarity”
which connects the different existing dark-matter search techniques.

For a traditional dark-matter particle χ, this complementarity is often explained through a diagram
such as that shown in the left panel of Fig. 5 in which an effective interaction involving two χ particles
and two Standard-Model (SM) particles is shown. For such an interaction, each of the different
processes and search strategies outlined above simply corresponds to a different direction for the
flow of time (as indicated via the blue arrows): time flowing horizontally to the right corresponds
to dark-matter annihilation, while time flowing horizontally to the left corresponds to dark-matter
production (as in a collider) while time flowing vertically (either upward or downward) corresponds
to dark-matter elastic scattering. Indeed, viewed from this perspective, each of the different search
strategies discussed above potentially provides a different set of constraints on the properties of this
same fundamental interaction, such as its characteristic mass scale Λ. Note that such a diagram is
symmetric under inversion of the vertical direction.

This situation changes dramatically (and indeed becomes far richer) for a non-minimal dark sec-
tor. In particular, if we assume that the dark sector consists of at least two different dark-matter
components χi and χj with different masses mj > mi, then our previous (χ ·χ ·SM ·SM) interaction
can now become a (χi · χj · SM · SM) interaction. In such cases, the resulting complementarity
relations will differ from the single-particle case in two fundamental ways. First, the kinematics
associated with each of the traditional complementarity directions is altered: the dark-matter an-
nihilation of one dark particle against itself or its antiparticle becomes co-annihilation between two
different dark species; the dark-matter production becomes asymmetric rather than symmetric; and
the dark-matter scattering — previously exclusively elastic — now becomes inelastic, taking the form
of either “up-scattering” or “down-scattering” depending on whether it is the incoming or outgoing
dark-matter particle which has greater mass (thereby reflecting the breaking of the vertical inversion
symmetry of this diagram). These kinematic changes are illustrated in red text in the right panel of
Fig. 5, and can significantly affect the phenomenology of the corresponding processes.

But perhaps even more importantly, an entirely new direction for dark-matter complementarity
also opens up. This is the possibility of dark-matter (intra-ensemble) decays from heavier to lighter
dark-matter components. Indeed, this process corresponds to a “diagonal” direction for the imagined
flow of time, as shown in Fig. 5, and thus represents an entirely new direction for dark-matter
complementarity ! Indeed, such a diagonal direction was not available in single-component theories of
dark matter due to phase-space constraints, and is ultimately driven by the non-zero mass difference
mij ≡ mj −mi between the associated parent and daughter dark-matter particles.

At a practical level, this enhanced complementarity extends our parameter space from one direction
parametrized by Λ to a plane parametrized by (Λ,mij). Here Λ might generally represent the scale of
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FIG. 5. A new direction for dark-matter complementarity. Left panel : Considering the four-point interaction shown With
only a single dark-matter state χ, we see that dark-matter production, annihilation, and elastic scattering correspond to the
three different directions for the flow of time indicated by blue arrows. Right panel : For a non-minimal dark sector, by contrast,
the two χ legs of this diagram may correspond to dark-matter particles χi and χj with differing masses mj > mi. In such
cases, dark-matter annihilation becomes dark-matter co-annihilation, the dark-matter production becomes asymmetric, and the
elastic scattering becomes inelastic and corresponds to either up-scattering or down-scattering. However, we also see that a new
“diagonal” direction for the flow of time becomes possible, as shown. This corresponds to dark-matter decay χj → χi ·SM ·SM.

new physics associated with the four-point diagram under discussion, or other parameters associated
with this process. From this vantage point, traditional complementarity analyses can now be seen
as the mij → 0 limit within a larger structure. Indeed, the constraints from the diagonal “decay”
processes can be truly complementary to those from the other directions within Fig. 5 in the sense
that the constraints from such intra-ensemble decays might overlap the previous constraints within
certain regions of the larger (Λ,mij)-plane while also providing constraints at entirely new locations
within this plane which are beyond the reach of the other search strategies. Explicit examples of
this phenomenon within such enlarged parameter spaces are given in Refs. [19, 20].

Of course, we have already considered some of the constraints that might emerge from intra-
ensemble dark-matter decays (see, e.g., Lesson #4 above). However, our point here is that these
decays are actually part of a larger complementarity, probing the same effective dark/visible interac-
tion, and that this enhanced complementarity can generically be an important ingredient in probing
and constraining the parameter spaces of theories with non-minimal dark sectors.

• Lesson #8: Non-minimal dark sectors generically lead to enhanced complementarities be-
tween different search strategies, effectively introducing a new, fourth “diagonal” direction
corresponding to intra-ensemble dark-matter decay. This feature is illustrated in Fig. 5, and
can provide additional constraints on the dark-matter parameter apace which are indeed com-
plementary to the others, often inhabiting regions of dark-matter parameter space that are
beyond those reached by the traditional search strategies based on dark-matter production,
scattering, and annihilation. For further details and examples, see Refs. [19, 20].
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IV. LESSONS REGARDING POTENTIAL NEW PHENOMENOLOGIES FOR
THE DARK SECTOR

In this section we provide illustrative lessons concerning potential new collective phenomena that
can emerge in non-minimal dark sectors and thereby have important ramifications for their eventual
phenomenologies. Our goal, as it has been throughout this work, is to emphasize features that
transcend our usual expectations and which could thereby point the way to new research directions.

A. Decoherence: A new way for the dark sector to stay dark

Despite the existence of many different dark-matter components φ` within a non-minimal dark
sector, it may often happen that only a particular linear combination

φ′ ≡
N∑
`=0

c`φ` (4.1)

couples to the visible sector, where N � 1. While there are many scenarios under which such
a coupling structure might arise, particularly natural examples include higher-dimensional setups
in which the SM lives on a four-dimensional brane embedded within a higher-dimensional bulk.
Indeed, such scenarios are generic within string theory. In such scenarios, the fields living in the
bulk are necessarily neutral under SM gauge symmetries and therefore function as dark matter. Such
fields might include members of the gravity (super-)multiplet, axions and other axion-like particles,
string-theory moduli, right-handed neutrinos, etc. From a four-dimensional perspective, each of
these higher-dimensional bulk fields appears as an infinite tower of Kaluza-Klein states and thus
constitutes a DDM-like dark-matter ensemble. For any such higher-dimensional field Φ, the most
natural coupling to the visible sector living on the brane takes the form

Lint 3
∫
d4x dny ψSM(x) Φ(x, y) δn(y − y∗) (4.2)

where y are the coordinates of n compactified extra spacetime dimensions, where y∗ is the location
of the brane within this higher-dimensional space, and where ψSM(x) schematically represents a
four-dimensional visible-sector field. Decomposing Φ(x, y) into KK modes φ`(x) and corresponding
KK wavefunctions f`(y) appropriate for the compactification geometry via

Φ(x, y) =
∞∑
`=0

φ`(x) f`(y) (4.3)

and subsequently performing the y-integral in Eq. (4.2) then yields a four-dimensional coupling
between ψSM(x) and the particular KK linear combination φ′(x) ≡∑∞`=0 c`φ`(x) where c` = f`(y∗).

In such situations, dark-matter production processes that involve the visible sector can produce
dark matter only in the linear combination φ′. However, once produced, φ′ will rapidly decohere if
N � 1. This state will therefore no longer be detectable at later times through processes involving
visible-sector interactions, since these processes continue to be sensitive to only the linear combina-
tion φ′. The dark-matter state φ′ will thus be essentially invisible as far as subsequent visible-sector
detection is concerned.

This decoherence phenomenon was first discussed within the context of large extra spacetime
dimensions in Ref. [53], and was subsequently extended in Refs. [2–4]. It can easily be under-
stood through elementary quantum mechanics. Because each component state φ` has its own mass
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m` and energy E`, the different φ` components within φ′ fall out of phase with each other under
time-evolution. For N � 1, the resulting destructive interference then prevents any meaningful
reconstitution of the original linear combination φ′ at any later time. Indeed, the physics behind
this decoherence phenomenon is the same as that underlying neutrino oscillations, except that in
this case the value of N in Eq. (4.1) is presumed large. In general, letting Pφ′→φ′(t) denote the φ′

survival probability, we find that the time-averaged probability P generically scales as 1/N . We thus
find that P → 0 as N → ∞. This occurs even if the masses/energies of the different components
happen to be related to each other through rational multiplicative factors.

FIG. 6. Dark-matter decoherence in a non-minimal dark sector. If the visible sector couples to only a particular linear
combination φ′ of individual mass-eigenstate dark-matter components φ`, then only this linear combination can be produced or
detected through processes involving the visible sector. Here, within a certain model [53], we show the probability Pφ′→φ′(t) that
φ′ survives after a certain time has elapsed (or after a certain propagation distance has been traversed) for linear combinations
involving N = 1, 2, 3, 5, 30 dark-sector states [curves (a) through (e) respectively]. We see that φ′ decoheres rapidly, even for
relatively small values of N , and thus becomes essentially invisible as far as subsequent couplings to the visible sector are
concerned. This figure is taken from Ref. [53].

This decoherence phenomenon is illustrated in Fig. 6, where we plot the survival probability
Pφ′→φ′(t) for a φ′ linear combination drawn from an example in Ref. [53] involving N + 1 different
components for N = 1, 2, 3, 5, 30. We see that P → 0 as N → ∞. We also see that P is already
very small (and thus below expected detector capabilities) even for relatively small values of N .
Decoherence thus provides a novel “collective” mechanism through which the dark matter arising
within a non-miminal dark sector may remain dark.
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• Lesson #9: Within non-minimal dark sectors, dark matter can quickly “decohere” and
thereby become invisible to subsequent detection within the visible sector, as illustrated in
Fig. 6. This decoherence phenomenon is fairly generic, emerging as a collective phenomenon
involving multiple dark-sector components and requiring nothing more than a setup in which
the visible sector couples to only a particular linear combination of these components. Deco-
herence thus provides a new mechanism that may help dark matter remain dark. For further
details and phenomenological implications, see Refs. [2–4, 53, 54].

B. Surprises in thermal freeze-out: Rising, falling, and non-monotonic abundance
distributions

Thermal freeze-out is one of the most widely discussed and widely exploited methods of abundance
generation in the dark-matter literature, providing a natural and versatile mechanism through which
a neutral, weakly-interacting massive particle species χ which is initially in thermal equilibrium can
acquire a present-day abundance ΩCDM ≈ 0.26. This mechanism not only underpins the so-called
“WIMP miracle” but can also yield similar abundances for dark-matter particles which do not
participate in SM weak interactions but which nevertheless have annihilation cross-sections similar
to that of a traditional WIMP. The range of dark-matter masses mχ for which thermal freeze-

out is typically relevant spans the range O(1 keV) <∼ mχ
<∼ O(100 TeV). The lower limit to this

range reflects the requirement that the dark-matter candidate be “cold” — i.e., non-relativistic —
during the freeze-out epoch, while the upper limit stems from considerations related to perturbative
unitarity. However, there are ways of circumventing this upper bound and thereby broadening the
window of applicability. For example, this bound is considerably relaxed in theories in which the
dark and visible sectors thermally decouple well before the freeze-out epoch.

This picture changes drastically for DDM-like non-minimal dark sectors [31]. First, because each
constituent state χ` has its own mass m`, the different states can freeze-out at different times and
temperatures. But even more importantly, the freezing-out of the dark sector ultimately endows each
of the individual components with its own abundance Ω`, leading us to think of Ω` as a function
of the corresponding mass m`. Of course, both of these features ultimately depend on the specific
interactions that dominate the couplings between the dark and visible sectors and perhaps even
couple the dark sector to itself.

The usual WIMP miracle is predicated on a simple 2→2 interaction of the form χχ→ φ→ ψSMψSM

where the dark-matter states χ` are Dirac fermions, where ψSM denotes a visible-sector Dirac-fermion
state, and where φ is an s-channel scalar mediator. Moreover, the result underpinning the WIMP
miracle implicitly assumes that mχ � mφ,mψ. For a non-minimal dark sector, this process naturally

generalizes to become χ`χ` → φ→ ψSMψSM. However, because we are now considering the χ` states
to be members of a DDM ensemble, the masses m` of the states in this ensemble can stretch across
a large mass range for which the implicit WIMP assumption m` � mφ is no longer always valid.
Thus new features can emerge within the spectrum of abundances, even if we continue to take
mψ � mφ,m`. For example, when m` � mφ, we find Ω` ∼ m2

` . However, when m` � mφ we find
Ω` ∼ m−2` . As discussed in Ref. [31], this implies that the abundance falls as a function of mass
for the lighter dark-matter constituents within the dark sector but then rises as a function of mass
for the heavier constituents. Indeed, in this scenario the minimum abundance is obtained for the
constituent with m` = mφ/2, implying that this portion of the ensemble may not be significantly
populated through thermal freeze-out even though both the lighter and heavier parts of the ensemble
are populated ! It is especially noteworthy that thermal freeze-out can produce abundances which
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scale inversely with mass — at least over a portion of the total ensemble — since this property helps
in creating the conditions for balancing lifetimes against abundances as described in Lesson #2.

More complicated situations can also be imagined. For example, in addition to higher-point
interactions involving more states, it is also possible to have off -diagonal 2 → 2 interactions of
the form χ`χm → φ → ψSMψSM. These may often (but not always) be suppressed relative to the
diagonal interactions. Likewise, there can also be intra-ensemble annihilation processes of the form
χ`χ` ↔ χmχm, which we shall also assume to be suppressed. However, even if we restrict our
attention to processes of the form χ`χ` → φ→ ψSMψSM, it is possible to imagine choosing alternate
spins for the χ`, φ, and ψSM fields as well as alternate Lorentz coupling structures at each vertex.

In Fig. 7 we illustrate three of the possible sets of abundances {Ω`} (shown in blue, red, and
orange) that can result for different choices of spins and coupling structures. Given these results,
we see that a wide set of possibilities are possible — even including Ω` functions which are not only
non-monotonic but which also simultaneously exhibit local maxima as well as local minima.

This non-monotonic behavior in the ensemble abundances Ω` as functions of the ensemble masses
m` gives great flexibility to the DDM model-builder. Indeed, through these mechanisms it is possible
to build models of non-minimal dark sectors in which the individual constituents are endowed with
cosmological abundances which either rise or fall with mass, or experience local maxima or minima.
However, the presence of non-monotonicities in these cases also allows for other possibilities. For ex-
ample, through appropriate choices of constituent masses m` and the dominant interactions through
which they are coupled to the visible sector, one can imagine situations in which thermal freeze-
out yields growing abundances for one dark-matter ensemble (or one portion of a DDM ensemble)
and yet decreasing abundances for another. Indeed, we see that it is even possible to preferentially
populate only selected portions of an ensemble, and even have these portions be separated by sig-
nificant energies. These observations thus significantly enrich the phenomenological possibilities for
model-building, all while continuing to assume only a single universal coupling between the dark
and visible sectors.
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FIG. 7. The freeze-out abundances Ω`, plotted as a functions of the ensemble constituent dark-matter masses m` over the
kinematically allowed range mψ ≤ m` ≤ mφ/2 for the benchmark ratio mφ/mψ = 20. As discussed in Ref. [31], the different
colors correspond to different spins and possible coupling structures for the fields that are involved in the dominant 2 → 2
freeze-out process, and the abundances in each curve are normalized so that the entire dark sector in each case has total
abundance

∑
` Ω` = ΩCDM ≈ 0.26. This figure is taken from Ref. [31].
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• Lesson #10: Thermal freeze-out of DDM-like non-minimal dark sectors can endow their
constituents with richly varying cosmological abundances. Depending on the properties of
the dark sector in question, not only can these abundances rise or fall as a function of mass
across a single ensemble, but they can also exhibit non-monotonic behaviors, with certain in-
termediate portions of the ensemble either becoming dominant or effectively invisible relative
to their nearest ensemble neighbors either higher or lower in mass. Indeed, all of this can
be accomplished without varying the underlying interactions between the dark and visible
sectors. For further details, see Ref. [31].

C. Surprises in misalignment production: Dark-matter resonances, re-overdamping,
and a slingshot

If freeze-out is the “classic” thermal mechanism for endowing dark matter with a cosmological
abundance, then misalignment production is the classic non-thermal mechanism for achieving the
same goal for scalar fields. However, as we shall see, misalignment production is also capable of
yielding a number of remarkable new features when a non-minimal dark sector is involved.

Misalignment production ultimately works by endowing a massless scalar field with a non-zero
energy density. This happens as the result of a mass-generating phase transition which gives this
scalar a non-zero mass m. However, it is critical to realize that such cosmological phase transitions
are generally not instantaneous. Instead, they unfold across time intervals of non-zero duration.
Thus, under misalignment production, the scalar field accrues a mass according to a squared-mass
function m2(t) which begins at m2(t) = 0 at early times prior to the phase transition, ends at some
final value m2(t) = m2 after the phase transition, but otherwise evolves smoothly and monotonically
from 0 to m2 during the time interval over which the phase transition unfolds.

This much is standard and is familiar from the case in which φ denotes an axion. Indeed, even in
the case of the QCD axion, the non-perturbative instanton-induced mass-generating phase transition
is not truly instantaneous, but instead unfolds smoothly over a non-zero time interval.

Given this, let us now consider how this picture generalizes if we have a non-minimal dark sector
in which the single field φ is replaced by an entire ensemble of states φ` with masses m` prior to the
phase transition. For simplicity we shall assume that the φ` fields share the same quantum numbers.
In this case, the time-evolving mass function m2(t) is replaced by a mass matrix M2

`,`′(t) which takes
the general form

M2
`,`′(t) = m2

` δ`,`′ + (∆m2)`,`′(t) . (4.4)

Here the first term in Eq. (4.4) represents the masses of the ensemble constituents that existed prior
to the phase transition while the second term represents the extra time-dependent mass contributions
that accrue as the phase transition unfolds. Note that we assume that all components of the ∆m2(t)
matrix have the same time-dependence since they are all being produced through a common phase
transition. In general the magnitudes of the individual entries within the ∆m2(t) matrix will depend
on the properties of the specific phase transition, and self-consistency requires only that they lead
to a Hermitian mass matrix M2

`,`′(t) with non-negative eigenvalues. Note, however, that we have
allowed the mass-generating phase transition to introduce off-diagonal mass terms. We have done
this because dynamical mass generation can generally give rise to mixing amongst scalars which
share the same quantum numbers. This implies that the mass eigenstates of the theory need not be
the same before and after the phase transition.
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If all of the original ensemble masses m` had been vanishing, every entry in the total mass matrix
M2

`,`′(t) would have carried the same time dependence. The resulting mass eigenvalues λ2` of M2
`,`′(t)

would thus all be monotonically increasing from zero, evolving together in a fixed ratios towards
their final late-time values as the mass-generating phase transition unfolds. However, because of the
presence of non-zero ensemble masses m` prior to the phase transition, the different entries within
M2

`,`′(t) do not carry the same time dependence. It is therefore not required that the mass eigenvalues
λ`(t) evolve monotonically as the phase transition unfolds.

We shall focus our attention on cases in which the lightest mass eigenvalue λ20 evolves non-
monotonically during the phase transition. While we have mathematically explained how such a
non-monotonicity might arise, it is also easy to understand how such a non-monotonicity might
arise in physical terms. In general, the lightest eigenvalue λ20 will begin to rise from zero as the
mass-generating phase transition begins. Indeed, if the mixing with the next-lightest mode is par-
ticularly strong, this eigenvalue will start to approach the second-lightest eigenvalue. However, as
these two eigenvalues approach each other, level repulsion begins to set in. This then causes the
lightest eigenvalue to drop again, after which the mass-generating phase transition is complete.

The net result is that the lightest eigenvalue λ0(t) can experience a “pulse” during the mass-
generating phase transition. Such a “pulse” for λ0(t) is illustrated in left panel of Fig. 8. In this
figure, τ represents a dimensionless time and the phase transition is presumed to occur at a time
centered around τG unfolding over an interval of duration ∆G.

The existence of such a pulse can then give rise to two dramatic effects. The first is that this
pulse can stimulate a parametric resonance which pumps huge amounts of energy into the lightest
mode. In general, a parametric resonance can be established for an oscillator if the mass term

FIG. 8. Left panel : In a non-minimal dark sector, the lightest state may experience a mixing with the next-lightest state.
During a mass-generating phase transition, the lightest state can thus experience an increase in its mass λ0 which is ultimately
curtailed and reversed by level repulsion. This process thereby effectively creates a “pulse” in the mass of the lightest state, as
shown. The width of this pulse (and by extension its effective frequency) is correlated with the time interval ∆G over which the
mass-generating phase transition occurs. Right panel : This “pulse” can stimulate a parametric resonance which pumps huge
amounts of energy into the lightest state. Here we show the late-time energy density of the lightest state as a fraction of the
value this quantity would have had for an instantaneous phase transition, plotted as a function of ∆G. The different curves
correspond to cases with different degrees of mixing with the next-highest state, with maximal mixing achieved as ξ → 1. We
see that the parametric resonance becomes stronger as the mixing tends towards maximal, and occurs only for specific discrete
values of ∆G. Likewise, we see that the parametric resonance induced by the pulse can enhance the resulting energy density of
the lightest state by many orders of magnitude beyond traditional expectations. These figures are taken from Ref. [28].
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for the oscillator is varied sinusoidally at a frequency which is twice the natural frequency of the
oscillator, or integer multiples thereof. However, each φ` mode behaves as an oscillator as long as it
is underdamped; likewise, even though the mass term for the lightest mode experiences only a single
pulse, this pulse acts as if it were effectively a portion of such a sinusoidal oscillation whose effective
frequency is related to the magnitude ∆G of the time interval through which the mass-generating
phase transition occurs. As it turns out, even such a portion is sufficient to induce a parametric
resonance. We therefore expect that a parametric resonance will be established for certain discrete

“resonant” values ∆
(n)
G of the phase-transition time interval.

In the right panel of Fig. 8, we have adopted a specific two-state model for simplicity [28] and
calculated the exact late-time energy density of the lightest state as a fraction of the value that this
quantity would have had for an instantaneous phase transition. This fraction is then plotted as a
function of ∆G for different degrees of mixing as quantified by a “mixing saturation” parameter ξ,
with ξ = 0 signifying the absence of mixing between the two states and ξ = 1 signifying maximal
mixing. We see from the figure that significant enhancements occur for certain discrete “resonant”

values of ∆
(n)
G , and that these enhancements are stronger when the mixing becomes stronger. Of

course, in the ξ → 0 limit the heavier state decouples; this then corresponds to the case of single-
component dark matter. However we now see that as the mixing between the states becomes
stronger, the parametric resonance induced by the pulse also strengthens and can ultimately enhance
the resulting energy density of the lightest state by many orders of magnitude beyond traditional
expectations !

The second remarkable feature induced by the pulse shown in the left panel of Fig. 8 is that it
allows a field which is already underdamped (with 3H < 2m) to revert back to an overdamped
phase (with 3H > 2m). This “re-overdamping” phenomenon is illustrated in the left panel of
Fig. 8. We stress that in single-component theories of dark matter, this cannot happen: since the
Hubble parameter is monotonically falling, the only transition that can ever occur for a scalar field
of constant or monotonically increasing mass is one from an overdamped phase to an underdamped
phase. However, as we have seen, mixing between different states within a DDM-like ensemble can
induce a non-monotonic pulse for the lightest mass eigenvalue. It is this monotonicity which then
engenders the possibility of re-entering an overdamped phase.

Even though this process puts the field back into an overdamped phase, the properties of this
re-overdamped phase need not resemble those of the original overdamped phase. The reason for this
is that the intervening underdamped phase will have generally endowed the field with a non-zero
velocity. It therefore follows that the field will generally enter the re-overdamped phase with a non-
zero velocity — something it would never have had in the original overdamped phase. As a result,
the field will generally not be fixed during this re-overdamped phase, but will instead find itself slowly
“skidding” to a halt under the influence of Hubble friction.

Because of the non-zero velocity that this field has while “skidding”, this field does not generally
have an equation of state w = −1 during the re-overdamped phase. On the other hand, because this
phase is overdamped, it experiences no tendency towards oscillation and we do not have w = 0 either.
Thus this phase is neither vacuum energy nor matter — it is a wholly new phase which transcends the
usual possibilities for scalar fields, one which gives rise to a non-trivial, evolving equation of state.
The non-trivial behavior of the field and its energy density during such a re-overdamped phase are
shown in Fig. 9.

As we have seen, the pulse sketched in the left panel of Fig. 8 has given rise to two distinct
phenomena: the parametric resonance and the entry into a re-overdamped phase. However, under
certain circumstances [30] these two features can be combined in order to “slingshot” the field to
extremely large values. This behavior is shown in Fig. 10. Indeed, the parametric resonance can
be exploited in order to pump the field into a state with large oscillations and correspondingly
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FIG. 9. The behavior of a scalar field (blue curve in left panel) and its associated energy density (blue curve in right panel)
as the field transitions from an initial overdamped phase to an underdamped phase and then back to a re-overdamped phase,
as illustrated in the left panel of Fig. 8. Note that all quantities are plotted in Planck-scale units, and that intervals during
which the field is overdamped are shaded in blue. In each panel, the green curves indicate the behavior that would have been
expected with the same late-time mass eigenvalue but with an instantaneous phase transition (i.e., with no intervening pulse,
or equivalently if there had been no level repulsion relative to other states in the system). We see from the blue curves that
because the field generally enters the re-overdamped phase with a non-zero velocity, it slowly “skids” to a halt. During this
skidding, we see that the behavior of the field and its energy density are not like either vacuum energy or matter. Instead, this
represents a wholly new phase with a non-trivial, evolving equation of state. This figure taken from Ref. [28].

large velocities, whereupon a carefully-timed transition out of the underdamped oscillatory phase
“releases” the field at the time of its maximum velocity. Indeed it is shown in Ref. [30] that this
can actually occur quite generically without fine-tuning. Although the field will eventually skid to a
halt during the subsequent re-overdamped phase, the field can nevertheless reach huge field values
before coming to a halt.

This mechanism for generating large field values thus functions as a “slingshot” [30]. Indeed, in
ancient times, a slingshot of the David/Goliath variety was fashioned by attaching a projectile to a
rope, twirling the rope around overhead with increasing speed, and then releasing the projectile at
just the right moment so as to launch the projectile in the desired direction. Our slingshot mechanism
is essentially the same: the field begins with an interval of periodic oscillations enhanced through
a parametric resonance, followed by a “release” from the oscillatory behavior at just the proper
moment so as to propel the field towards large magnitudes with maximum velocity. Indeed, just as
with an ancient slingshot, the time of release must occur at the moments during the oscillations when
the field has its maximum velocity, with successive higher orders of resonance alternating between
forward or backward motion of the projectile.

Although such a slingshot might have a plethora of uses, one natural idea [30] arises when φ
represents the inflaton. In such cases, the slingshot provides a dynamical way of propelling the
inflaton to large super-Planckian field values φ/MP ∼ O(10) — exactly as often required as part of
the initial conditions for a successful inflationary epoch. This slingshot effect, operating during a
pre-inflationary phase of the universe, can thereby help to significantly enlarge the space of viable
inflationary models.
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FIG. 10. A general “slingshot” mechanism through which a scalar field (here shown in Planck-scale units) can be dynamically
propelled to extremely large field values. This mechanism operates by having the field experience a parameteric resonance
during which the field develops large velocities, followed by a carefully-timed “release” out of the oscillatory phase into a
subsequent re-overdamped phase during which the field slowly skids to a halt. In the special case in which the scalar field
is an inflaton, this mechanism provides a dynamical method of generating the extremely large super-Planckian field values
φ/MP ∼ O(10) that are required for a subsequent period of inflation. This figure is taken from Ref. [30], where more details
can be found.

• Lesson #11: Misalignment production of scalar non-minimal dark sectors can lead to a
number of unique phenomena that arise when the different dark-sector components mix and
which therefore would not have been possible for minimal dark sectors. These include methods
of enhancing the final abundances of dark-sector states by many orders of magnitudes; the
emergence of unusual scalar-field behaviors which correspond to non-trivial equations of state;
and new mechanisms for dynamically propelling scalar fields to large, super-Planckian values.
For more details, see Refs. [28–30].

D. Non-traditional dark-matter phase-space distributions

Dark-matter phase-space distributions often function as the central quantities in dark-matter
physics, encoding whether the dark matter is hot or cold, thermal or non-thermal, and so forth.
These distributions also lead to direct predictions for the corresponding late-time matter power spec-
tra which encode vital information about structure formation in the early universe, and eventually
even lead to predictions for potentially observable late-time quantities such as the mass distributions
of virialized dark-matter halos.

As we shall now demonstrate, non-minimal dark sectors can lead to unexpected dark-matter mo-
mentum distributions f(p) — even when the relevant dark-matter production mechanism is relatively
simple (such as occurs for thermal freezeout), and even when all of the non-trivial dynamics asso-
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ciated with the non-minimal dark sector has concluded long before the current epoch. Indeed, we
have already seen in Lessons #10 and #11 that relatively straightforward production mechanisms
such as thermal freeze-out and misalignment production can lead to unexpected abundances within
a non-minimal dark sector. We now demonstrate that even the phase-space distributions of the
particles that comprise these abundances can be profoundly altered, taking shapes that are highly
unorthodox from a single-particle perspective.

One way in which this can happen in a non-minimal dark sector is through the sorts of intra-
ensemble decays already discussed, in which a heavier dark-sector component decays to lighter ones
within the same ensemble. To see this how this may lead to distortions in the final dark-matter
phase-space distributions, let us consider the three-state system [14] illustrated in the left panel of
Fig. 11. Here the three states are labeled ` = 0, 1, 2 in order of increasing mass, and we shall
assume that only the heaviest φ2 state is initially populated. For simplicity, we shall even assume
that this state has the simple thermal distribution function sketched in solid blue in the left panel
of Fig. 11 when plotted versus log p. Within an FRW universe, this “packet” then redshifts to the
left (i.e., towards lower momenta, as indicated in dashed blue) until it decays. For simplicity, let
us assume that each decay is a two-body decay, with the ` = 2 state preferentially undergoing a
decay of the form 2 → 1 + 0. This then produces two daughters (dark green), one for the ` = 1
state and the other for the ` = 0 state. Each of these new daughter packets then redshifts until the
` = 1 daughter (now dashed green) undergoes its own decay into two kinematically identical ` = 0
granddaughters (orange). As shown in the left panel of Fig. 11, these granddaughters may happen to
have a non-negligible overlap with the redshifted ` = 0 daughter (dashed green). These distributions
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FIG. 11. Left panel : One possible scenario wherein the dynamics associated with a non-minimal dark sector makes it possible
for a relatively straightforward production mechanism such as thermal freeze-out to give rise to a non-trivial (even bimodal!)
dark-matter phase-space distribution at late times. In this example, the results of two independent intra-ensemble decay chains
superpose to produce the final complex dark-matter phase-space distribution. Right panel : The final phase-space distributions
for nine different models of non-minimal dark sectors, each of which involves ten different levels. As discussed in the text, these
models differ in their possible branching ratios for the decays at each stage, but in each model the number of possible decay
chains quickly proliferates. We see that a wide variety of final dark-matter distributions are possible, ranging from unimodal and
bimodal distributions to multi-modal distributions exhibiting complex patterns of peaks and troughs as functions of momentum.
These figures are taken from Ref. [14].
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therefore superpose, and the resulting total distribution continues to redshift as a single unit. The
resulting dark-matter phase-space distribution (black) is thus highly complex and even bimodal —
even though our original distribution was thermal and hence unimodal!

Although the left panel of Fig. 11 is simply a sketch, its basic features are essentially accurate,
as is its final lesson. Indeed, each decay produces offspring packets whose widths in momentum
space are larger than those of the packet from the preceding generation; likewise these offspring
packets also generally have higher momenta than those of the corresponding parent packet. This is
all consistent with the underlying decay kinematics. Each of the offspring packets nevertheless has
the same total area as the parent packet from which it emerged, since each daughter is descended
from a single parent. Also note that in this sketch we are showing not the dark-matter phase-space
distributions f(p, t) but rather their cousins g(p, t) ≡ (ap)3f(p, t), where a is the FRW scale factor.
Since f(p, t) is the quantity whose d3p integral yields the physical number density n(t), it then
follows from isotropy that g(p, t) is the quantity whose d log p integral yields the co-moving number
density. Under cosmological redshifting, the g(p) distribution has the advantageous property that
when plotted versus log p it simply slides rigidly to the left as if on a cosmological “conveyor belt”
without any distortion to its shape [14].

In sketching the left panel of Fig. 11, we have nevertheless neglected numerous effects arising
from the full kinematics of particle decay, especially when the dark matter does not have a single
momentum but instead has an actual phase-space distribution stretching across many momenta. We
have also considered only a simple three-state system, whereas a larger non-minimal dark sector
with a whole tower of independent states can give rise to a virtual proliferation of independent
decay chains, each endowed with its own branching ratios. One might therefore suspect that certain
features shown in the left panel of Fig. 11 — such as the distinct bimodality of the final phase-
space distribution g(p) — might ultimately be “washed out” when all of these effects are combined.
However, this is not the case. In the right panel of Fig. 11 we show the exact numerical results
(obtained through direct numerical solution of appropriately coupled Boltzmann equations) for the
final dark-matter phase-space distributions g(p) that emerge within nine different models, each of
which involves ten distinct levels. Each model has its own set of possible two-body decay φ` → φ`′φ`′′
branching fractions, and we have varied these branching fractions across the different models so as
to survey decay phenomenologies that involve different levels of asymmetry between the daughter
masses in each decay as well as different levels of marginality (ranging from nearly marginal to highly
exothermic). As evident from the right panel of Fig. 11, the resulting phase-space distributions vary
greatly across these models: some are unimodal, some are bimodal, and others are multi-modal,
exhibiting complex patterns of peaks and troughs as functions of p. The results shown in this
figure are particularly remarkable since in each case we began with purely thermal phase-space
distributions! Thus, within a non-minimal dark sector, all of these different distributions with
different internal structures can emerge from the same thermal freezeout.

The fact that the distributions g(p) emerging from this analysis vary significantly across the dif-
ferent models considered implies that these distributions contain imprints of this non-trivial early-
universe dynamics. As such, these imprints within g(p) then translate to specific features in the pre-
dicted linear matter power spectrum P (k) (where k is a relevant wavenumber) and even to observable
quantities such as the corresponding mass distribution dn/d logM of late-time virialized dark-matter
halos. Indeed, there exist sophisticated numerical codes which allow one to determine the P (k) that
corresponds to a given g(p), and likewise there exist procedures (not only numerical techniques such
as N -body simulations but also analytic methods such as the extended Press-Schechter formalism)
which allow one to determine dn/d logM from P (k). Using this technology, one can then study
how the unique features within phase-space distributions such as those shown in the right panel of
Fig. 11 translate to these latter quantities. These issues were studied in some detail in Ref. [14] (for
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the matter power spectrum) and Ref. [15] (for halo-mass distributions).

Another potential consequence of dark-matter ensembles on the spatial distribution of matter is
the modification of galactic morphologies. Such modifications can arise as a consequence of dark-
matter self-interactions and can involve an alteration of the dark-matter halo profile or even the
development of a dark disk in addition to the halo. Indeed, the latter possibility occurs even within
two-component dark-matter scenarios [55], and additional degrees of freedom in the dark sector
would almost certainly give rise to additional possibilities.

For simple umimodal g(p) distributions of the sort that arise within single-component dark sec-
tors, a standard procedure is to identify an “average” momentum 〈p〉 that characterizes the entire
distribution. This “free-streaming scale” then translates to a specific k-value within P (k) beyond
which a suppression of structure develops. However, for the complex g(p) distributions that emerge
within non-minimal dark sectors, the identification of an average momentum 〈p〉 no longer captures
the underlying physics. This then translates to a more complex behavior for P (k) and dn/d logM .

An important practical question is the inverse “archaeological” problem: to what extent can we
exploit the information encoded in a given P (k) or dn/d logM in order to reconstruct the features of
the dark-matter g(p) distribution from which they must have arisen? As we have seen, this question
becomes especially critical for non-miminal dark sectors, where such extremely complicated distri-
butions can arise. At first glance, answering this question would seem to be practically impossible,
since the mapping from g(p) to P (k) and dn/d logM is highly complex and almost impossible to
invert. It is also highly non-local, in the sense that the dark matter contained within a specific
momentum slice of g(p) affects the values of P (k) over an entire range of k-values. However, in
Refs. [14] and [15], remarkably simple empirical analytic expressions were developed which were
shown to permit the reconstruction of most of the salient features of g(p) directly from P (k) and —
under certain conditions — even dn/d logM . Even more interestingly, these reconstruction formulae
are local , indicating that the individual features of P (k) at a specific value of wavenumber k and the
features of dn/d logM at a specific halo mass M give direct information about the behavior of g(p)
at a corresponding specific value of p. Indeed, these reconstruction methods work for the simple
phase-space distributions that arise in minimal dark sectors as well as the complicated distributions
that emerge in non-minimal dark sectors. These results — along with others in Refs. [14] and [15]
— therefore provide important tools for learning about, and potentially constraining, the features
of non-minimal dark sectors and their dynamics in the early universe.

• Lesson #12: Non-minimal dark sectors can give rise to dark matter with extremely complex
non-thermal phase-space distributions — even if we begin with relatively simple dark-matter
production mechanisms such as thermal freezeout. Because of their complexity, the result-
ing phase-space distributions cannot be characterized by a single “free-streaming scale”, as
is typically assumed for minimal dark sectors. Instead, such distributions contain impor-
tant imprints of this non-trivial early-universe dynamics. This information can then be used
to predict unexpected features in the corresponding matter power spectra P (k) that gov-
ern structure formation, and even in the corresponding mass distributions dn/d logM of the
eventual virialized dark-matter halos. Even more interestingly, there exist relatively sim-
ple empirical ways of inverting this process, starting with a given matter power spectrum
and/or halo-mass distribution and reconstructing the dark-matter phase-space distribution
from which it emerged. These methods apply for the simple phase-space distributions that
arise in minimal dark sectors as well as the complicated distributions that emerge in non-
minimal dark sectors. These issues are discussed further in Refs. [14, 15].
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E. Stasis in an expanding universe

We conclude our discussion by describing what is perhaps the most intriguing phenomenon that
can arise within a non-minimal dark sector: the theoretical possibility of a new kind of stable
cosmological era in which no single kind of energy need dominate. We are certainly used to the idea
of having cosmological eras which are dominated by matter, radiation, or even vacuum energy, and
indeed each of these eras is stable and would persist forever if the domination of matter, radiation, or
vacuum energy during that epoch were exactly 100%, with no admixture of the other components.
However, in an expanding universe that simultaneously contains matter, radiation, and vacuum
energy, we know that the relative abundances of these different components cannot remain constant
because these different kinds of energy scale differently as the universe expands. We therefore
find, for example, that a mixed-component radiation-dominated epoch inevitably becomes a matter-
dominated epoch — simply as a result of cosmological expansion — and similarly such a matter-
dominated epoch inevitably gives way to one which is dominated by vacuum energy. As a result,
moments such as matter-radiation equality are fleeting.

For a non-minimal dark sector, however, this lore is incorrect. Indeed, as we shall now discuss,
with non-minimal dark sectors it becomes possible to achieve a form of “stasis” for cosmologies
consisting of both matter and radiation in which the total matter and radiation abundances each
remain constant despite cosmological expansion. For example, it is possible to have a cosmological
epoch during which the abundances of matter and radiation each remain stable at 50% (or at 75%
versus 25%, or any other desired values). Indeed, as we shall demonstrate, such periods of “stasis”
can persist for an arbitrarily large number of e-folds before coming to a natural end. The existence
of this kind of stasis epoch therefore gives rise to a host of new theoretical possibilities across the
entire cosmological timeline.

It may initially seem impossible to arrange such periods of stasis between matter and radiation.
After all, as the universe expands, the matter abundance will inevitably come to dominate the
radiation abundance; this is so intrinsic a prediction of the Friedmann equations that this conclusion
seems unavoidable. On the other hand, matter can decay back into radiation. This can then provide
a natural counterbalance to the effects of cosmological expansion. Given this, it is natural to ask
whether these two effects be balanced against each other in order to induce an extended time interval
of stasis during which the matter and radiation abundances each remain constant.

Of course, particle decay is a relatively short process, localized in time. In order to have an
extended period of stasis we would therefore require an extended period during which particle decays
are continually occurring. This could potentially be realized if we had a large tower of matter states
φ` (` = 0, 1, ..., N − 1), with each state sequentially decaying directly into radiation. However, as we
have seen in Sect. II, precisely such towers of states emerge within the DDM framework (and within
non-minimal dark sectors more generally), arising within many scenarios for physics beyond the SM
and satisfying the exact or approximate scaling relations in Eq. (2.1). The question is then whether
the sequential decays down such tower can be exploited in order to counterbalance the effects of
cosmological expansion and thereby sustain an extended period of cosmological stasis.

At first glance, such a balancing might seem to be impossible. After all, the abundance Ω`(t) of each
ensemble constituent initially grows according to a common power-law as the result of cosmological
expansion before ultimately experiencing exponential decay after its decay time τ` ≡ 1/Γ` is reached.
Stasis would then require that all of this occurs for each ensemble constituent — each with its own
independent abundance and lifetime according to Eq. (2.1) — in such a way that the total matter
abundance ΩM ≡

∑
` Ω`(t) remains constant.

However, it turns out that this is exactly what occurs [32]. This dynamics is plotted in the left
panel of Fig. 12. Before any decays have begun, no radiation has yet been generated; we thus start
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FIG. 12. Left panel : The individual matter abundances Ω`(t) (orange/blue) and the corresponding total matter abundance
ΩM (red), plotted as functions of the number N of e-folds since the initial φ` production. These curves were generated
through a direct numerical solution of the relevant Boltzmann equations for our discrete tower of decaying states without
invoking any approximations, and correspond to the parameter choices (α, γ, δ) = (1, 7, 1), for which ΩM = 1/2. Although each
individual Ω` component exhibits a non-trivial behavior, first growing as a power-law due to cosmological redshifting before
ultimately decaying exponentially, their sum ΩM nevertheless evolves towards a stasis epoch in which ΩM remains essentially
constant (in this case for approximately 15 e-folds) before exiting stasis. Even longer periods of stasis can be produced if N
is increased. Eventually the stasis ends with the final decays of the lightest states. Right panel : Sketch of the traditional
ΛCDM cosmology (upper portion) as well as a possible alternative cosmological history (lower portion) in which a stasis epoch
with ΩM = Ωγ = 1/2 is “spliced” into the reheating portion of the cosmological timeline. In each case we have sketched the
abundances associated with vacuum energy (red), matter (blue), and radiation (orange) as time proceeds, with corresponding
background shadings indicating the dominant component in each epoch. In the alternative cosmology shown, reheating occurs
during the stasis epoch and results from the decays of the φ` states. These figures are taken from Ref. [32], where further
details can be found.

with ΩM = 1 and Ωγ = 0. However, once the states with shortest lifetimes (here assumed to be
the heaviest states at the top of the tower) begin to decay, ΩM begins to fall while the radiation
abundance Ωγ begins to rise. Ultimately, as the decays progress down the tower, we then evolve
towards a “stasis” during which ΩM and Ωγ are constants. This stasis state then persists throughout
the remaining decay process until the lightest, longest-lived states in the tower finally decay. This
then signals the end of the stasis epoch, leaving us with ΩM = 0 and Ωγ = 1.

It is important to note that the emergence of such a stasis epoch is not fine-tuned. Indeed, for
any tower of states parametrized by any values of the scaling exponents (α, γ, δ) in Eq. (2.1), an
eventual period of stasis will emerge. As such, the stasis state is actually a global attractor within
these systems, with the universe naturally evolving towards such long-lasting periods of stasis for
any values of (α, γ, δ). Indeed, the corresponding value of ΩM during this stasis epoch is then given
by

ΩM =
2γδ − 4(1 + αδ)

2γδ − (1 + αδ)
. (4.5)

Interestingly, the special case with (α, γ, δ) = (1, 7, 1) — one of the well-motivated benchmarks
discussed in Sect. II — yields ΩM = 1/2. This then corresponds to a case of stasis exhibiting matter-
radiation equality. More details can be found in Ref. [32], including the possibility of introducing
into such matter-radiation scenarios additional energy components with other equations of state.

Needless to say, our results give rise to a host of new theoretical possibilities for physics across the
entire cosmological timeline. In particular, it is possible to imagine “splicing” an epoch of stasis into
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the standard ΛCDM timeline, either as an additional segment inserted into the timeline or as the
replacement for a segment which is removed. In the right panel of Fig. 12 we illustrate the standard
ΛCDM cosmological timeline (upper portion) as well as a modified timeline (lower portion) in which
an extended period of stasis with ΩM = 1/2 has been inserted during the reheating epoch. This then
yields an alternative cosmology in which reheating occurs during the stasis epoch and results from
the decays of the φ` states. Other cosmological timelines involving stasis epochs are also possible.

• Lesson #13: With non-minimal dark sectors it becomes possible to achieve a form of
“stasis” for cosmologies consisting of both matter and radiation in which the total matter
and radiation abundances each remain constant despite cosmological expansion. Such periods
of stasis can persist for an arbitrarily large number of e-folds. During these periods, the
effects of cosmological expansion are counterbalanced by the effects of intra-ensemble decays.
As discussed, the stasis state is not fine-tuned but actually represents a global attractor
within the dynamics of such systems. The existence of such stasis states therefore gives
rise to a host of new theoretical possibilities across the entire cosmological timeline, ranging
from potential implications for primordial density perturbations, dark-matter production, and
structure formation all the way to early reheating, early matter-dominated eras, and even the
age of the universe. For more details and discussions, see Ref. [32].

V. CONCLUSIONS

In reviewing the salient features of the Dynamical Dark Matter edifice — and of non-minimal dark
sectors more generally — it is best to recall that “small [constructions] may be finished by their
first architects; grand ones, true ones, ever leave the copestone to posterity” [56]. Indeed, we have
only begun to scratch the surface of the new dark-matter and dark-sector phenomenologies which are
possible for non-minimal dark sectors, choosing to highlight here only a handful which illustrate their
tremendous range and scope. Ultimately, of course, it is data which will confirm whether the ideas
presented here will have relevance for the natural world. However, as part of the Snowmass planning
process, we believe that it is of critical importance to bear these possibilities in mind, if only to
avoid the narrowness of perspective that comes from adhering to certain overly-constraining initial
assumptions. Indeed, the research community has already been surprised by the relative difficulty
in discovering compelling evidence for either weak-scale SUSY or corresponding WIMP-like dark
matter. We therefore offer these ideas as examples of how far from those assumptions the truth
may lie, all while remaining within the space of well-motivated extensions to the Standard Model.
Indeed, further observations along these lines can be found in the papers cited.

• Take-Away Summary Lesson: Multi-component dark sectors are well motivated, with
many common extensions to the SM (extra spacetime dimensions, large hidden-sector gauge
groups, string theories, etc.) involving large numbers of extra states. Stability is not always
guaranteed for such towers of states, implying that they can decay throughout the evolution
of the universe and even today. As realized through the Dynamical Dark Matter framework,
these ideas lead to a number of unexpected possibilities for dark-matter phenomenology and
model-building. It is therefore important that we shed our theoretical prejudices and embrace
all the possibilities that dark-sector non-minimality and instability allow.
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