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Executive Summary

The high power RF system will be a significant budgetary driver for any future collider. An order-
of-magnitude improvement in cost/capability is needed, and as a result, a robust R&D program in
next-generation, economical RF sources is essential. In this paper, we discuss the challenges and
opportunities that arise from advancing the state of the art in these devices. Specifically, research
initiatives in new circuit topologies, advanced manufacturing techniques, and novel alternatives to
conventional RF source components are discussed.
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1 Introduction

In any future large-scale, normal conducting RF accelerator facility, the capital and operational
costs of the RF power chain – the high power RF amplifiers (klystrons) and the high voltage
modulators for powering them – are substantial[1, 2, 3]. Reasonable budgeting models for a TeV-
scale collider predict that the high power RF system alone would cost more than the construction
of the accelerator itself and the tunnel required to house it; on the order of $10B. These estimates
assume the use of existing RF amplifier and modulator technologies at a combined ∼$20/peak kW.
As was stated in the 2017 DOE Radiofrequency Accelerator R&D Strategy Report:

”When pushing high gradient or intensity limits, RF sources become the leading cost
driver for normal conducting accelerators and a significant cost driver for superconduct-
ing accelerators. Only with innovative concepts for designing and building RF sources
will dramatic reduction in cost and increased efficiency be achieved.”

This same report suggests a target of $2/peak kW - at least ten times less expensive than what
is commercially available today. Whether klystrons, magnetrons, or other existing RF sources are
employed, the relative differences in their costs – even considering trade-offs with respect to peak
vs. average power, or operational lifetime – are negligible when compared to the order of magnitude
reduction in cost that is needed.

2 Research Initiatives

RF amplifiers are often thought of as “known quantities,” and while there is an abundance of
research activity in accelerating structures, R&D in high power RF sources is relatively uncommon.
Maybe it is assumed that industry will solve the cost/capability challenge for RF power – but the
prospects for this are grim indeed. Unfortunately, there are not many commercially viable uses
for megawatt-class RF amplifiers, and the devices that do exist are usually custom-designed for a
specific application. It is unreasonable to expect that an industrial supplier will invest their own
time and money to reduce cost in anticipation of a single-use system that may (or may not) be
assembled decades in the future. Because of the long time frame, high technical risk, and undefined
initial requirements associated with a next generation collider, any reasonable business plan would
“price in” the impact of these uncertainties – so when a new facility is proposed, the RF power
system will be prohibitively expensive. Support for high-risk research in RF sources is desperately
needed if we are to realize the order of magnitude improvement in cost-capability that is truly
required. Such an effort must be led by government labs and academia because these institutions
can tolerate the long term risk of this effort.

An example of a successful lab-led R&D initiative in high power RF sources has been the High
Efficiency International Klystron Activity (HEIKA), established by CERN in 2014. This effort has
supported worldwide collaboration to understand in detail how to optimize the electrical design
of high power klystrons for maximum DC-to-RF efficiency. As a result of this work, new klystron
design methods such as the Core Oscillation Method (COM) and Core Stabilization Method (CSM)
were established. New designs for COM-based 8 MW and 50 MW X-band klystron prototypes have
been completed by CERN and industrial partners.[4] In addition, a publicly available 2D klystron
simulation code called KlyC was successfully developed, benchmarked, and made available to the
RF source community.[5] The tools and design improvements arising from the HEIKA collaboration
will be helpful in developing high efficiency (and therefore lower operational cost) prototypes for
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any future demonstration-scale collider, but more work still must be done to reduce the upfront
construction costs of HPRF sources.

In the near term, research institutions should also identify and aggressively pursue new appli-
cations of RF sources and accelerator systems in the commercial, defense, and medical sectors; and
to the degree possible, develop broadly useful RF source topologies that could have a need in high
volume production. As one example, compact low-voltage klystron amplifiers are being developed
for use in multiple linac-based radiography systems (see Figure 1). If such a “building block”
RF source can be optimized for use in small and large accelerator systems alike, and standard-
ized as much as possible, then commercial opportunities and real competition between suppliers
would drive significant cost reductions. Compare this to the approach of using custom-designed
RF sources for a single facility, and the path to improved cost/capability is clear.

Figure 1: Examples of compact, low-voltage klystron designs for commercially compact accelerator
systems, which could be standardized and produced at large volume. [B. Weatherford and S.
Tantawi]

Longer term, fundamental and exploratory research dedicated to RF sources and their compo-
nents is essential for more than marginal improvements. The most reasonable approach involves
optimizing the complete RF power chain, which naturally leads to using lower voltage modulators
made from mass-produced commercially available components, which are simpler and require less
infrastructure and maintenance. Then, new RF sources are needed which can operate efficiently
at low voltage and high current. Multiple-beam amplifiers leverage this concept, but this scaling
approach can add complexity and does not really solve the fundamental problem - breaking the
tradeoff between efficiency and perveance that is inherent in conventional linear-beam devices. Re-
considering RF sources in this way raises several interesting fundamental physics and engineering
challenges.

One approach involves using multi-dimensional electron beams, Figure ??, allowing for higher
current densities at a given voltage. This relaxes requirements on the beam focusing magnets and
could potentially minimize the impact of space charge on RF efficiency. In another approach, the
trajectory of a monoenergetic beam is modulated and interacts with a higher order mode in the
output cavity; this could be promising for high efficiency amplification or frequency multiplication.

Just as the chain of modulator and RF source needs to be optimized holistically, the same is
true of the components which comprise the RF source itself. The most expensive parts of existing
klystron builds tend to be the electron source, focusing magnet, and the assembly labor (via multiple
brazing steps). These pain points should all be attacked in parallel because a breakthrough in any
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Figure 2: RF source topologies utilizing multi-dimensional beams. Radial klystron array (top) [S.
Tantawi]; Deflected beam amplifier (bottom) [M. Franzi and S. Tantawi]

one area will create new opportunities in the others. For example, if a high current density electron
source can be generated that is less sensitive to impurities than thermionic cathodes, then perhaps
the source can operate with a lower quality vacuum, and the assembly process can be simplified.
Similarly, advances in microfabrication or additive manufacturing could enable new field emitters
or focusing magnet topologies, respectively.

There are many interesting possibilities for a robust RF source research program. Novel al-
ternatives to thermionic cathodes are needed, especially if they are suitable for massively parallel
systems. Plasma cathode electron sources can deliver up to hundreds of Amperes of electron current
at hundreds of Volts, and can operate at substantial pressures, partially mitigating the need for
pristine vacuum environments. Advances in the control of carbon nanotube growth and patterning
processes (Figure 3), along with their high resilience to ion bombardment, present another possi-
bility, as do microfabricated field emitter arrays. Beam focusing in RF sources is another major
challenge – with magnets for a single klystron costing tens of $k themselves, alternative focusing
approaches for low voltage beams should be investigated. Potential areas of interest could include
multiple stage electrostatic focusing of low voltage beams, self-focusing of high current beams in a
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plasma background, and hybrid approaches of combined electrostatic and magnetic focusing. These
efforts would require significant computational and experimental work but raise many interesting
basic physics questions, and in some cases, could be synergistic with R&D efforts in the plasma
wakefield accelerator community.

Figure 3: Growth simulation (left) and SEM images (right) of carbon nanotube forest samples for
field emitter characterization studies. [M. Maschmann, S. Kovaleski, and B. Weatherford]

Additive manufacturing is a promising development for minimizing the touch labor required to
assemble an RF source, and the availability of commercial additive processes is growing rapidly.
Developing inexpensive additive processes specifically for the niche of vacuum devices is a difficult
undertaking. However, widely available additive manufacturing processes are constantly evolving,
and many could be suitable for RF source fabrication, but they have not been fully characterized
with respect to RF losses, high vacuum, high voltage, etc. In certain subsystems of an RF amplifier,
particularly in klystrons where RF ohmic losses are only appreciable near the tube output, or in
low-duty operation, additive manufacturing could be feasible (see Figure 4). When existing additive
processes are not suitable, fundamental research in novel additive manufacturing processes should
be supported as well.

3 Conclusion

In summary, the high cost of RF power can be a major budgetary constraint for any new high energy
physics facility. Although it is often assumed that RF sources are “established,” the truth is the
current state of the art is nowhere near what the high energy physics community needs regarding
cost/capability. Solving this enormous physics and engineering problem will require significant
support for both computational and experimental R&D efforts in RF sources[6]. A real solution
demands that we fundamentally re-imagine RF source topologies and rigorously attack the many
exciting basic questions that arise from this challenge.
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Figure 4: Klystron body produced by direct metal laser sintering (left); Mandrel (negative space)
of klystron RF circuit (right). [J. Merrick, C. Wehner, and E. Nanni]
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