
ar
X

iv
:2

20
3.

09
88

6v
1 

 [
he

p-
ph

] 
 1

8 
M

ar
 2

02
2

Transcendental Preprint
March 21, 2022

Analysis Description Language: A DSL for HEP Analysis

Harrison B. Prosper1, Sezen Sekmen2, Gokhan Unel3

1Florida State University, USA
2Kyungpook National University, Korea

3University of California, Irvine, CA, USA

ABSTRACT

We propose to adopt a declarative domain specific language for describing the
physics algorithm of a high energy physics (HEP) analysis in a standard and un-
ambiguous way decoupled from analysis software frameworks, and argue that this
approach provides an accessible and sustainable environment for analysis design,
use and preservation. Prototype of such a language called Analysis Description
Language (ADL) and its associated tools are being developed and applied in var-
ious HEP physics studies. We present the motivations for using a DSL, design
principles of ADL and its runtime interpreter CutLang, along with current physics
studies based on this approach. We also outline ideas and prospects for the future.
Recent physics studies, hands-on workshops and surveys indicate that ADL is a
feasible and effective approach with many advantages and benefits, and offers a
direction to which the HEP field should give serious consideration.

Submitted to the Proceedings of the US Community Study
on the Future of Particle Physics (Snowmass 2021)

COMPF5: End user analysis
COMPF7: Reinterpretation and long-term preservation of data and code

1

http://arxiv.org/abs/2203.09886v1


1 The framework dilemma

The High Energy Physics (HEP) community is engaged in a global effort to discover new
physics to take us beyond the standard model. To date, however, no compelling experimental
evidence exists indicating which, if any, of the current theoretical ideas are the best ones to
pursue. In the absence of firm guidance, physicists at the CERN Large Hadron Collider (LHC)
and other HEP experiments recognize the necessity of analyzing HEP data in as many ways
as possible in the hope that no stone has been left unturned. There is, moreover, a constant
flow of ideas between the experimental and phenomenology communities on how to probe new
models and unexplored final states. A central requirement for these ambitious collaborative
efforts to be successful is not only the effectiveness of the data analyses themselves but also
the effectiveness of the communication of the ideas they embody.

The collaborative efforts can be made more effective by building analysis environments
that are highly accessible, easy to use, and in which ideas are readily communicated to others.
This will lead to broader participation in HEP analysis and increase the diversity of ideas and
studies. In this White Paper, we discuss an innovative approach to analysis environments that
we argue should be vigorously pursued by HEP physicists.

Analyses in HEP require processing independent ensembles of data products called events
from real and simulated particle collisions. The physics algorithm in this processing includes
defining analysis objects, defining quantities based on event properties, selecting events, re-
weighting simulated events to improve their agreement with real collision events, estimating
backgrounds and interpreting experimental results by comparing them to predictions.

These tasks are usually performed within analysis frameworks. The use of frameworks is
the norm because of the many resources they provide to the analyst including access to large
data sets, calibration constants and large-scale computing. Analysis frameworks are written
in general purpose languages (GPL), such as C++ and Python, in order to benefit from
the flexibility and power of these languages and their extensive user support infrastructure.
However, using frameworks can erect technical and conceptual hurdles. The technical hurdle
is the need to acquire software and system level expertise. The more serious hurdle is the
tendency for the physics algorithms constituting an analysis to be scattered throughout the
framework and obscured by technical complexities. The descriptions of physics algorithms are
generally written in the same GPL as the frameworks. However, the flexibility and power that
make a GPL ideal for writing frameworks invariably yield physics algorithm descriptions that
are difficult to decipher, maintain, communicate, and reason about.

Moreover, the physicist is often faced with the multiple frameworks problem, the need to
work with different research groups who invariably use frameworks that differ in their details
even when identical concepts are being expressed. While there is a move towards fewer and
better maintained frameworks, we argue that a further step can, and should, be taken to allow
a physicist to express ideas more directly and in ways that are more natural. We argue that the
key step to be taken is decoupling the description of the analysis from the software framework
in which it runs and presenting the analysis in a standardized way.

2



2 A solution proposal

The dilemma arising from the need to use analysis frameworks and the need to reduce the
complexity experienced by the analyst can be resolved by using a domain specific language
(DSL) for describing the physics content of analyses. The DSL would be customized to express
analysis-specific concepts and reflect the conceptual reasoning of particle physicists. The utility
of a DSL would be further enhanced by taking a declarative approach, i.e. having the DSL
express only the logic of a computation without describing its control flow. This paradigm-
shifting idea has started to gain interest in the HEP community in the recent years, and several
DSL approaches are studied, which led to various working prototypes [1].

We should note however that while the focused discussions and developments of DSLs for
analysis are relatively new, the HEP community has, for many years, already been using DSLs
embedded within the ROOT framework [2] under the guise of TTreeFormula, TTree::Draw and
TTree::Scan, which allow visual or textual representation of TTree contents for simple and
quick exploratory analysis. Though these include only arithmetic operations, mathematical
functions and basic selection criteria, they have served as highly practical tools for analysis.

There are two main approaches in designing DSLs. Embedded DSLs rely on the syntax
of an existing GPL, while external DSLs have a custom syntax of their own, more tailored to
the semantics of the context they describe. For analysis in HEP, both approaches have been
considered.

For embedded DSLs, one early example is the F.A.S.T. framework [3] that incorporates a
YAML-based declarative DSL for analysis description that manages both analysis definitions
and data processing. It is used in CMS, LZ and DUNE analyses. The more recent DSL
developments are based on Python. For example NAIL (Natural Analysis Implementation
Language) [4] is a declarative Python-based embedded DSL with a syntax resembling that
of ROOT framework’s RDataFrame (RDF) [5], and that can be converted to an RDF-based
C++ code. It has been used in the CMS analyses that observed the first evidence for Higgs
to two muon decays [6]. Another Python-based DSL linked to RDF is defined within the
bamboo framework [7], which is used in CMS for several analyses including Phase-2 studies
for Snowmass. One more declarative example within Python is FuncADL [8], which explores
functional programming and query languages such as LINQ [9], and is inspired by a former
infrastructure called LINQtoROOT [10].

The embedded DSL approach benefits from the guidance of an already existing syntax, the
potential prior familiarity of the user community with the rules of that syntax, and the existence
of infrastructures to make that syntax executable. However, using a GPL syntax would not be
completely immune to the issue of intermixing the physics algorithms and technical operations.
We therefore advocate the external DSL approach as a more robust way of isolating the physics
information.

On the external DSL side, the most developed example is “Analysis Description Language”,
or shortly ADL [11, 12, 13], which is a declarative DSL describing the physics content of a HEP
analysis in a standard and unambiguous way in a framework-independent manner. There
also exists a toy language called PartiQL, designed to demonstrating features that would be
a radical departure from general purpose languages, addressing problems specific to particle

3



physics [14]. It is extended in AwkwardQL, designed to perform set operations on data expressed
as awkward arrays [15].

An external DSL describing HEP data analysis must satisfy at least three requirements:
1) it must be natural to a physicist, 2) it must be unambiguous, and 3) it must be domain
complete, meaning that it can describe a very large fraction of (and ideally all) conceivable
analyses now and throughout the LHC era. To be useful, the language must satisfy a 4th
requirement: the possibility to render it executable, preferably in an automated fashion.

Adapting a DSL, in particular, an external DSL, would yield many advantages. First, a
DSL makes analysis writing explicit and clear. It can be designed to avoid potential ambiguities
– e.g., when reconstructing a Z boson, whether one selects the opposite-sign, same-flavor lepton
pair within the Z mass range with the highest transverse momentum leptons or the pair closest
to the Z mass; which isolation criteria are used for which muon definition; which version of an
an event variable calculation is used in the control region, etc. Moreover, a HEP-specific DSL
would allow the rapid prototyping of analyses and dramatically reduce the time needed to test
“what-if” ideas as well analysis sensitivity and optimization studies. Framework-independence
would also make it straightforward to write, test, compare and document alternative object or
event selections and their performances in parallel in an organized way. This feature can be
further generalized by building tools that automatically generate large sets of optimal analyses
to explore the huge variety of final states proposed by current and future models of new physics.

Second, having a standard DSL using HEP semantics will make analyses self-documenting
and, therefore, easier to communicate their physics content, thus facilitating their validation
and review by others. This could include communication within the analysis team, with
reviewers and referees, or with others who wish to understand the analysis. The DSL would
also serve to communicate analysis ideas and practices between different communities, such
as between different experiments or between experimentalists and theorists. For example, an
experimentalist could easily communicate object definitions to a theorist, while a theorist could
develop a discriminating variable that depends on properties of common objects that could be
directly used by an experimentalist.

Third, adapting a DSL would facilitate the (re)interpretation of analysis results by the
analysis teams, physicists from other experiments or theorists. In particular, (re)interpretation
studies by phenomenologists require reimplementations of analyses, which can be very difficult
if the published information is inadequate as reported by the community [16, 17]. Ready access
to complete, accurate descriptions of analyses that can be executed in multiple frameworks will
enable correct re-execution of published analyses.

Moreover, the ability to describe an analysis in a framework-independent manner simplifies
analysis preservation beyond the lifetime of analysis frameworks and of the experiments. The
preservation aspect of DSLs is also discussed in a dedicated Snowmass White Paper contri-
bution on data and analysis preservation [18]. A preserved repository of analyses written in
a standard, easy-to-learn DSL would also constitute a learning database for students or other
physics enthusiasts. Such a resource would permit learning by example from a wide spectrum
of physics analyses that may inspire new analysis ideas.

A framework-independent description of a physics analysis with an external DSL would
also facilitate multi-purpose use of the description. The description could be automatically

4



translated or incorporated into the framework most suitable for a given purpose. For example,
runtime interpretation may be suitable for rapid analysis prototyping or for training students;
automatic translation to C++ could be relevant for memory efficiency; translation to Python
could capitalize on its extensive scientific computing ecosystem; or translation to YAML may
be more relevant for analysis queries. A framework-independent description, underpinned by
advanced compiler technology, would make it possible to map a DSL into future GPLs and
frameworks.

In the following, we will focus on ADL, which was designed and implemented by our team,
and provide more details on the design principles and physics applications along with ideas
and prospects for the future.

3 ADL and CutLang - The Present

ADL originated from a series of discussions at the Les Houches Physics at TeV Colliders
Workshop in 2015, where a group of experimentalists and theorists (including the authors)
agreed that a standardized way to describe LHC analyses could be of great benefit to the
community. Motivations, use cases, and features that would inform the design of such a
language were debated and resulted in the first prototype of an external DSL called the “Les
Houches Analysis Description Accord (LHADA)” [19]. At the same time, a parallel effort called
CutLang [20, 12, 21] was exploring a runtime interpretable external DSL that provides an easy
analysis environment, in particular for beginner students. The LHADA and CutLang languages
were based on the same design principles, and had similar syntax, and thus were merged in
2019, combining the best of both into a single prototype DSL called ADL [11, 12, 13]. ADL
has been designed focused on LHC physics, it should be principally applicable to data analysis
in other HEP experiments.

ADL is a human-readable language written in a plain text file, called an ADL file, that
contains the physics algorithm description. The ADL file consists of multiple types of blocks
rendering a clear separation between different analysis components, including object, variable,
and event selection definitions. Blocks have a keyword-expression structure, where keywords
specify analysis concepts and operations. ADL uses block names and keywords that are mean-
ingful in the HEP domain, such as object, region, reject, select, weight. An object

block defines the processing to be applied to a collection of objects. A region defines a filter
that is applied to the event. The output of a region is true or false, that is, whether the
current event is to be kept or discarded. Weights other than 0 and 1 can also be assigned
to objects and regions using the keyword weight. ADL includes mathematical and logical
operations, comparison and optimization operators, collection reducer operators, 4-vector al-
gebra and standard HEP functions (e.g. ∆φ, ∆R). One- and 2-dimensional histograms for
object and event quantities can also be defined. Preexisting selection results including event
counts and associated uncertainties (e.g., those published by experiments) can be documented
in an ADL file.

One should note however that some analyses may contain variables which are impractical
or impossible to describe directly with the ADL syntax. These include quantities calculated
with complicated algorithms (such as complex kinematic variables) or non-analytical functions

5



(such as machine learning models). ADL’s method is to encapsulate these in self-contained
external functions written with a GPL, and reference those functions from within an ADL file.
The functions would be stored in a central, accessible database. Though this method excludes
part of the analysis details from the ADL file, it keeps intact the clear and organized structure
for the description.

Two approaches have been studied to render ADL executable. One is the transpiler ap-
proach, where an analysis written in ADL syntax is converted into a GPL. An example is the
prototype adl2tnm transpiler, where a Python script translates ADL into C++ code that can
be compiled into an executable program [22]. The other approach, explored by CutLang, is
runtime interpretation, where ADL can be directly executed, without the need of intermediate
translation or compilation. CutLang is written in C++ and and is based on ROOT classes. It
performs automatic ADL parsing using Lex & Yacc. The interpreter is extended with a frame-
work to manage input/output operations. It can automatically recognize and process multiple
input event formats commonly used in HEP. CutLang is available in multiple platforms includ-
ing Docker, Conda and Jupyter. Technical description and capabilities of CutLang, which is
the most complete infrastructure for processing ADL, is provided in full detail in [20, 21, 12].
Transpiler and runtime interpreter infrastructures are collectively referred to as compilers.

These compilers are embedded in frameworks that manage the analysis workflow. For
example, CutLang may refer to both the compiler/interpreter and the surrounding framework.
In a typical ADL workflow, the system takes as input the ADL file, external functions (when
required) and events in ROOT format. The output includes cutflows, counts, histograms, and
optionally, sets of selected events.

Current versions of ADL and CutLang are already being used to perform physics studies.
Tens of published LHC analyses from from different areas (e.g. especially from supersymmetry
and exotics but also from top and Higgs physics), including several CMS Phase-2 analyses
performed for Snowmass 2021, have been studied and implemented with the ADL syntax.
Some of these analyses, which can be already processed by CutLang, are published in a github
database [23]. The database can be used as a physics information source, serve reinterpre-
tation studies as well as analysis queries, comparisons and combinations. It is intended as a
preliminary step towards long-term analysis preservation. ADL and CutLang were also used
in a Future Circular Collider (FCC) sensitivity study [24] and proved to be a very practical
approach that could be employed in similar future projection studies. Moreover, they are also
used in schools for training students in HEP analysis [25]. Additionally, work is in progress
to establish ADL/CutLang as an accessible analysis model for ATLAS and CMS Open Data.
However, the most important physics goal is to achieve the capability of performing a full-
fledged LHC data analysis with ADL and tools (in particular, CutLang). Work has already
started in this direction.

4 ADL and CutLang - The Future

The prototyping of ADL and CutLang along with the physics studies described above demon-
strated the feasibility, effectiveness and potential of using an external DSL for HEP data
analysis. The field tests also indicated that analysts with different levels of skill find ADL and

6



CutLang easy to learn and use. However there is still much to accomplish until we arrive at a
fully domain complete language capable of expressing more than 90% of known analyses (in-
cluding those based on machine learning). Similarly, infrastructures such as CutLang need to
be adapted to incorporate all language extensions and to comply with all requirements of large
scale data analysis. We should strongly emphasize that a realistically useful DSL can only be
built upon implementing a large variety of analysis examples, and that the current prototypes
immensely benefited from this approach. Therefore physics applications should progress in
parallel, and an iterative design approach would be the most effective. In the following, we
present some ideas and prospects for the future of DSL design, derived from our experience
with ADL and CutLang.

4.1 Extending the language scope

While the existing ADL prototype can already express simple analysis operations such as object
and event selections, or basic variable definitions, it needs to be extended. ADL, or any other
candidate for a domain-complete DSL would need to include syntax representations for the
following HEP analysis elements in its scope:

• Combinations — A flexible way to describe combinations of objects to form new ones
should be available. Examples include the reconstruction of all possible top quark can-
didates from the Lorentz boosted or resolved decay modes in an event; or a general way
to express the combination of collections of objects to form a single collection of object
tuples upon which algorithms can be applied. The main challenge is to guarantee type
safety, i.e., to block users from combining uncombinable objects, which would be verified
statically by the compiler.

• Associations — The syntax to define one-to-many object associations, e.g., between
a jet and its constituent particles or a track and its associated hits is required. The
challenge is to devise a syntax that is clear and intuitive for the users and leaving the
low-level routines to the compiler.

• Low-level and non-standard objects — Support for defining low-level objects (e.g.,
hits, cells), and non-standard objects like long-lived particles (e.g., disappearing tracks,
displaced muons, etc.) is needed.

• Miscellaneous constructs — Support for handling multi-dimensional arrays and ex-
tended support for implicit loops should be provided. This is needed for example, to loop
through particles associated with a jet, or in cases where a selection is applied on a jet
based on a quantity computed in comparison with every other jet in the same collection,
such as min(∆R(jet, jet)).

• Systematic uncertainties — A syntax is required to specify systematic uncertainties
and describe how these are to be propagated to conclusions.

7



4.2 Advancing the infrastructures and auxiliary tools

CutLang (and partially adl2tnm) already provide compiler infrastructures capable of handling
the current ADL syntax and the foreseen near future additions to it, along with frameworks
to perform basic analysis operations. However these tools have been built by physicists with
no formal computing backgrounds, and could benefit from partial redesign based on formal
computational methods. Below we list several ideas that could advance the development
of compiler infrastructures for parsing and processing ADL and auxiliary tools that would
contribute to extended uses of analyses written with a DSL syntax. Some of these ideas are
already being pursued for CutLang and adl2tnm. They can also be adapted by other DSLs.

• New compiler infrastructure: — A layered design can be implemented by recycling
the existing functionality of CutLang and adl2tnm to a new framework and by partially
reusing their frontend (e.g., parsing methods, lex and yacc modules, and translation
rules). Performing semantic and logic checks on the ADL file is also needed. The specific
goal would be to follow the LLVM [26] compiler infrastructure that provides its own
LLVM Intermediate Representation (IR) language. Since some GPLs have already es-
tablished a connection to LLVM, ADL would benefit from an integration with libraries
written in these languages, and thus can be easily converted to those languages.

• Automated syntax verification: — This is required for a reliable use of the language.
If one continues building on top of LLVM IR, a number of general purpose optimization
passes and program verification tools [27, 28, 29] which rely on state-of-the-art theorem
provers and decision procedures such as [30] become available. Accepted practice in the
verification community is to conduct verification lazily and make use of abstraction [31,
32], but the choice of an appropriate abstraction is non-trivial and depends on the class
of programs being verified.

• Interfacing with physics data types and tools: — HEP data is typically stored in
ROOT files containing event-level information such as physics objects and their proper-
ties, and generic information, such as triggers, scale factors and weights. Any compiler
for a DSL needs to be made mutually compatible and capable of automatically reading
and processing a wide range of common data formats used by the LHC experiments and
phenomenologists, in order to appeal to a broad user base. CutLang and adl2tnm have
achieved this goal partially, but further work is required to reach complete automation.

• Static analysis: — The self-documenting nature of DSLs can be taken a step further
with tools to assist and automate query among or comparison between multiple analyses
in the space of event properties. Parsing source code to deduce facts about it without
actually running the code is called static analysis. Preliminary work has been done
to build tools to perform simple static analyses with ADL [33]. Such tools can help
researchers get a complete view of which event final states are covered or not, which
analyses have disjoint or overlapping selection regions, and inform researchers wishing to
combine analyses or design new ones.

• Differentiable programming: — A typical goal of an HEP analysis is to maximize
quantities such as the expected statistical significance of a result. Such problems could
be addressed by using differentiable programming provided that selection thresholds can

8



be treated as differentiable parameters. A dedicated effort called GradHEP has started
within the HEP community towards building automatic differentiation tools to make
analyses completely differentiable [34]. The greatest challenge is to develop differentiable
replacement analogues for non-differentiable operations such as binning and sorting com-
monly used in HEP analyses. The DSL approach is well suited to serve as a medium
for differentiable programming, as it systematically organizes the description of parame-
ters to be differentiated. Feasibility studies have started towards building an ADL-based
differentiable analyses infrastructure for analysis optimization.

4.3 Expanding practical use and physics applications

ADL, or any other DSL for HEP analysis is only meaningful if widely used in physics studies,
which is feasible only if it fulfils a comprehensive set of analysis requirements. A critical step
in achieving this is to put DSLs and their accompanying infrastructures to thorough practical
use with a variety of physics implementations, even during the design phase. The ADL team
has embraced this hands-on approach, which led to identifying and incorporating a number
of missing features in the language and infrastructures. In order to further expand ADL’s
physics applicability, we intend to continue a direct involvement in physics studies through
the activities listed below. We invite the HEP community to participate in these activities
and share feedback, which will help us provide an increasingly functional, robust and reliable
language and infrastructures for HEP analysis, in particular, for realistic use with LHC data.

• An analysis implementation and validation campaign: — Implementing a wide
variety of published LHC analyses in ADL and keeping these synchronized with refine-
ments to the language is essential and will be undertaken. Such implementations and
debugging will likely continue to yield a list of unanticipated functionality needed to
handle intricacies of real-world analyses. Moreover, community challenges, such as the
HSF Data Analysis Working Group analysis benchmarks would also help to ensure the
completeness of ADL or other DSLs. The syntactic consistency of implemented analyses
could be verified using the automated methods described above. ADL algorithms could
also be validated by comparing the results obtained from running ADL with those from
the published analyses. To aid this process, we are building a validation chain for public
use that automates the event production, analysis running and result comparison steps.

• A set of ADL hackathons: — Organizing a number of Hackathons on ADL analysis
implementation and debugging will provide a focused and lively environment to effectively
improve the functionality of ADL and CutLang.

• Studies for future colliders: — Physics sensitivity studies are crucial in motivating
future colliders by demonstrating their physics capabilities. These studies, based on
Monte Carlo events simulated with public tools are considerably less complex with respect
to analysis of real data, and can already be performed with ADL and CutLang, as
demonstrated in the published example [24]. We encourage the use of ADL and CutLang
for such studies, which provide a practical analysis environment, even for colleagues with
minimal analysis experience.

9



• Analysis of real data with ADL: — The ultimate goal of ADL is to accommodate
all requirements of a detailed real data analysis in HEP. ADL and CutLang are already
partially employed in the ongoing design of two Run 2 ATLAS exotic searches, and more
will follow both in ATLAS and CMS.

4.4 Analysis preservation

The thousands of analyses designed by HEP experiments and phenomenologists covering a
wide range of subjects offer a tremendous source of physics content that would serve to inspire
new analysis ideas or train the next generation of physicists. It is therefore critical to preserve
this content in a most accessible and sustainable manner. The standard and self-documenting
character of ADL renders it a naturally effective candidate for analysis preservation. Below
we list several ingredients for achieving analysis preservation with ADL.

• A set of ADL databases: — Three web-based, searchable, citable databases could be
built to host content created with ADL in order to preserve analysis information. First, an
ADL analysis database would host ADL files of implemented analyses. Second, an ADL
objects database would host object definitions written in ADL (e.g., an ATLAS isolated
tight electron or a CMS top quark identified with DNN-based medium tagging). Third,
an ADL functions database would host external functions of non-trivial or non-analytical
variables (e.g., complex kinematic variables, DNN discriminants). Analysts would have
access to object definitions or external functions by via unique identifiers, e.g., a doi

number, and editors could be built that allow navigating these unique identifiers. As
the databases would be searchable, it would be possible to search for all analyses with
2 leptons or with missing transverse energy of at least 500 GeV, or for all non-isolated
ATLAS muon definitions. The HEP community would be able to add new analyses,
functions, and objects to these databases.

• LHC Run 2 and Run 3 analyses in ADL: —The new analyses using LHC Run 2 and
Run 3 data could consider accompanying their publications with ADL implementations
of their analysis algorithms as supplementary material.

• Documentation: — Thorough documentation is indispensable for the wide-range use
and sustainability of any construct or infrastructure, in particular those claiming to serve
long-term analysis preservation. Therefore, all information related to ADL including its
formal definition will be clearly documented. A user manual, tutorials, tools, analyses and
physics studies will be easily accessible. Source codes of the compiler infrastructures will
be publicly available on so that interested parties can contribute to their development.

4.5 An AI vision for the future

While our focus in this section has been to present prospects for the immediate future, our
vision is a world in which the beginner student and the ageing professor use the same intuitive
language to explore HEP data even long after the end of the experiment that produced them.
It is also conceivable that the increasing power of artificial intelligence (AI) will establish direct

10



human-machine interfaces that would respond to the spoken words of a future analyst: “get the
ATLAS Run 2 data and simulation, select events with at least one lepton and 3 jets and miss-
ing transverse energy more than 100 GeV, display the transverse mass distribution, subtract
contribution from top quark backgrounds, plot data versus simulation...”, etc. Performing Big
Data analyses this way would allow future generations of scientists to be more creative and
industrious. Instead of spending time struggling with the syntax of a next-generation GPL,
the future citizen scientist would spend time in an absorbing conversation with the AI interface
to the LHC data. The ADL idea is a first step in realizing this vision.

5 Summary

We presented the recently emerging approach of using a domain specific language (DSL) to ex-
press the physics algorithm of HEP data analysis in a standard and unambiguous way, via the
specific example of Analysis Description Language (ADL). This approach increases the accessi-
bility of the analysis physics algorithm by decoupling it from the analysis software frameworks,
limiting the latter’s scope only to technical operations. ADL, which is a declarative external
DSL, can be rendered executable by any compiler infrastructure capable of handling its syn-
tax, notably the runtime interpreter CutLang. ADL can facilitate the abstraction, design,
visualization, validation, combination, reproduction, (re)interpretation and overall communi-
cation of the physics algorithm, and provide an organized and sustainable medium for long
term analysis preservation. Prototype design of ADL and CutLang along with several physics
applications established the feasibility and potential of this approach. A clear roadmap is laid
out with concrete steps for future language extensions, technical advancements, physics studies
and analysis preservation. Pursuing it with the HEP community’s support will evolve ADL
into a robust, reliable and effective analysis environment that inspires innovative exploration
of new ideas with HEP data towards scientific discovery.

Acknowledgements

We thank our collaborators in the ADL/CutLang team for all their valuable contributions
via technical or physics studies, and Grigory Fedyukovich for suggestions on the compiler
infrastructures. We also acknowledge the many ideas and support we received from colleagues
who participated to the initial LHADA proposal. SS is supported by the Basic Science Research
Program through the National Research Foundation of Korea (NRF) funded by the Ministry of
Education under contracts NRF-2021R1I1A3048138, NRF-2018R1A6A1A06024970 and NRF-
2008-00460.

References

[1] S. Sekmen, P. Gras, L. Gray, B. Krikler, J. Pivarski, H.B. Prosper et al., Analysis
Description Languages for the LHC, PoS LHCP2020 (2020) 065 [2011.01950].

11

https://arxiv.org/abs/2011.01950


[2] R. Brun and F. Rademakers, ROOT — An object oriented data analysis framework,
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 389 (1997) 81 .

[3] B. Krikler, “FAST.” https://fast-carpenter.readthedocs.io/en/latest/.

[4] A. Rizzi, “NAIL.”
https://indico.cern.ch/event/769263/timetable/#25-nail-a-prototype-analysis-l.

[5] D. Piparo, P. Canal, E. Guiraud, X. Valls Pla, G. Ganis, G. Amadio et al., RDataFrame:
Easy parallel ROOT analysis at 100 threads, EPJ Web Conf. 214 (2019) 06029. 8 p.

[6] CMS Collaboration collaboration, Evidence for Higgs boson decay to a pair of
muons, JHEP 01 (2021) 148 [2009.04363].

[7] P. David, Readable and efficient HEP data analysis with bamboo,
EPJ Web Conf. 251 (2021) 03052 [2103.01889].

[8] M. Proffitt and G. Watts, FuncADL: Functional Analysis Description Language,
EPJ Web Conf. 251 (2021) 03068 [2103.02432].

[9] “Language Integrated Query (LINQ).”
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/.

[10] G. Watts, Using Functional Languages and Declarative Programming to analyze ROOT
data: LINQtoROOT, J. Phys. Conf. Ser. 608 (2015) 012024.

[11] H. B. Prosper, S. Sekmen and G. Unel, “ADL Web Portal.” cern.ch/adl.

[12] G. Unel, S. Sekmen, A.M. Toon, B. Gokturk, B. Orgen, A. Paul et al., CutLang V2:
towards a unified Analysis Description Language, Front. Big Data 4:659986 (2021)
[2101.09031].

[13] H.B. Prosper, S. Sekmen, G. Unel and A. Paul, Recent advances in ADL, CutLang and
adl2tnm, EPJ Web Conf. 251 (2021) 03062 [2108.00857].

[14] J. Pivarski, “PartiQL.” https://github.com/jpivarski/PartiQL.

[15] L. Gray, “AwkwardQL.” https://github.com/lgray/AwkwardQL.

[16] LHC Reinterpretation Forum collaboration, Reinterpretation of LHC Results for
New Physics: Status and Recommendations after Run 2, SciPost Phys. 9 (2020) 022
[2003.07868].

[17] S. Kraml, B.C. Allanach, M. Mangano, H.B. Prosper, S. Sekmen, C. Balazs et al.,
Searches for New Physics: Les Houches Recommendations for the Presentation of LHC
Results, Eur. Phys. J. C 72 (2012) 1976 [1203.2489].

[18] M. Feickert, S. Kranl et al., Data and Analysis Preservation, Recasting, and
Reinterpretation, in Proceedings of the US Community Study on the Future of Particle
Physics (Snowmass 2021), 2022.

12

https://doi.org/https://doi.org/10.1016/S0168-9002(97)00048-X
https://fast-carpenter.readthedocs.io/en/latest/
https://indico.cern.ch/event/769263/timetable/#25-nail-a-prototype-analysis-l
https://doi.org/10.1051/epjconf/201921406029
https://doi.org/10.1007/JHEP01(2021)148
https://arxiv.org/abs/2009.04363
https://doi.org/10.1051/epjconf/202125103052
https://arxiv.org/abs/2103.01889
https://doi.org/10.1051/epjconf/202125103068
https://arxiv.org/abs/2103.02432
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/
https://doi.org/10.1088/1742-6596/608/1/012024
cern.ch/adl
https://doi.org/10.3389/fdata.2021.659986
https://arxiv.org/abs/2101.09031
https://doi.org/10.1051/epjconf/202125103062
https://arxiv.org/abs/2108.00857
https://github.com/jpivarski/PartiQL
https://github.com/lgray/AwkwardQL
https://doi.org/10.21468/SciPostPhys.9.2.022
https://arxiv.org/abs/2003.07868
https://doi.org/10.1140/epjc/s10052-012-1976-3
https://arxiv.org/abs/1203.2489


[19] G. Brooijmans, C. Delaunay, A. Delgado, C. Englert, A. Falkowski, B. Fuks et al., Les
Houches 2015: Physics at TeV colliders - new physics working group report, in 9th Les
Houches Workshop on Physics at TeV Colliders (PhysTeV 2015) Les Houches, France,
June 1-19, 2015, 2016 [1605.02684].

[20] S. Sekmen and G. Ünel, CutLang: A Particle Physics Analysis Description Language
and Runtime Interpreter, Comput. Phys. Commun. 233 (2018) 215 [1801.05727].

[21] G. Unel, S. Sekmen and A.M. Toon, CutLang: a cut-based HEP analysis description
language and runtime interpreter, in 19th International Workshop on Advanced
Computing and Analysis Techniques in Physics Research: Empowering the revolution:
Bringing Machine Learning to High Performance Computing (ACAT 2019) Saas-Fee,
Switzerland, March 11-15, 2019, 2019 [1909.10621].

[22] G. Brooijmans, M. Dolan, S. Gori, F. Maltoni, M. McCullough, P. Musella et al., Les
Houches 2017: Physics at TeV Colliders New Physics Working Group Report, in 10th
Les Houches Workshop on Physics at TeV Colliders (PhysTeV 2017) Les Houches,
France, June 5-23, 2017, 2018,
http://lss.fnal.gov/archive/2017/conf/fermilab-conf-17-664-ppd.pdf [1803.10379].

[23] “ADL LHC analyses repository.” https://github.com/ADL4HEP/ADLLHCanalyses.

[24] A. Paul, S. Sekmen and G. Unel, Down type iso-singlet quarks at the HL-LHC and
FCC-hh, Eur. Phys. J. C 81 (2021) 214 [2006.10149].

[25] A. Adiguzel, O. Cakir, U. Kaya, V.E. Ozcan, S. Ozturk, S. Sekmen et al., Evaluating
Analysis Description Language Concept as a First Introduction to Analysis in Particle
Physics, 2008.12034.

[26] “The LLVM Compiler Infrastructure.” https://llvm.org/.

[27] A. Gurfinkel, T. Kahsai, A. Komuravelli and J.A. Navas, The SeaHorn Verification
Framework, in CAV, vol. 9206, pp. 343–361, 2015.

[28] F. Merz, S. Falke and C. Sinz, LLBMC: Bounded Model Checking of C and C++
Programs Using a Compiler IR, in VSTTE, vol. 7152, pp. 146–161, 2012.

[29] X. Wang, L. Zhang and P. Tanofsky, Experience report: how is dynamic symbolic
execution different from manual testing? a study on KLEE, in Proceedings of the 2015
International Symposium on Software Testing and Analysis, ISSTA 2015, Baltimore,
MD, USA, July 12-17, 2015, M. Young and T. Xie, eds., pp. 199–210, ACM, 2015.

[30] L.M. de Moura and N. Bjørner, Z3: An Efficient SMT Solver, in TACAS, vol. 4963,
pp. 337–340, 2008.

[31] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu and H. Veith, Counterexample-guided
abstraction refinement, in CAV, vol. 1855, pp. 154–169, 2000.

[32] K.L. McMillan, Lazy abstraction with interpolants, in CAV, vol. 4144, pp. 123–136, 2006.

13

https://arxiv.org/abs/1605.02684
https://doi.org/10.1016/j.cpc.2018.06.023
https://arxiv.org/abs/1801.05727
https://arxiv.org/abs/1909.10621
http://lss.fnal.gov/archive/2017/conf/fermilab-conf-17-664-ppd.pdf
https://arxiv.org/abs/1803.10379
https://github.com/ADL4HEP/ADLLHCanalyses
https://doi.org/10.1140/epjc/s10052-021-08982-4
https://arxiv.org/abs/2006.10149
https://arxiv.org/abs/2008.12034
https://llvm.org/


[33] G. Brooijmans, A. Buckley, S. Caron, A. Falkowski, B. Fuks, A. Gilbert et al., Les
Houches 2019 Physics at TeV Colliders: New Physics Working Group Report, in 11th
Les Houches Workshop on Physics at TeV Colliders (PhysTeV 2019) Les Houches,
France, June 10-28, 2019, 2, 2020 [2002.12220].

[34] “gradHEP.” https://gradhep.github.io/.

14

https://arxiv.org/abs/2002.12220
https://gradhep.github.io/

	1 The framework dilemma
	2 A solution proposal
	3 ADL and CutLang - The Present
	4 ADL and CutLang - The Future
	4.1 Extending the language scope
	4.2 Advancing the infrastructures and auxiliary tools
	4.3 Expanding practical use and physics applications
	4.4 Analysis preservation
	4.5 An AI vision for the future

	5 Summary

