arXiv:2203.08811v1 [physics.data-an] 16 Mar 2022

March 18, 2022

Analysis Cyberinfrastructure: Challenges and Opportunities

K. LANNON, P. BRENNER, M. HILDRETH, K. HURTADO ANAMPA, A. MALTA
RobpricUESs, K. MOHRMAN, D. THAIN, B. TOVAR

University of Notre Dame, Notre Dame, IN 46556, USA

ABSTRACT

Analysis cyberinfrastructure refers to the combination of software and com-
puter hardware used to support late-stage data analysis in High Energy Physics
(HEP). For the purposes of this white paper, late-stage data analysis refers
specifically to the step of transforming the most reduced common data format
produced by a given experimental collaboration (for example, nanoAOD for the
CMS experiment) into histograms. In this white paper, we reflect on obser-
vations gathered from a recent experience with data analysis using a recent,
python-based analysis framework, and extrapolate these experiences though the
High-Luminosity LHC era as way of highlighting potential R&D topics in anal-
ysis cyberinfrastructure.
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1 Executive Summary

Based on our experiences performing an analysis of CMS data, starting from the nanoAOD
data format, using data collected from 2016-2018 with the CMS detector (Run 2) as well as
the corresponding simulated data, we conclude that there are no fundamental limitations
that would prevent a complete analysis iteration (from nanoAOD to histograms) from being
completed in roughly 10 minutes. However, we note that this hypothetical target is not met
with the current analysis infrastructure. Reflecting on the reasons for this and considering
other related observations, we construct the following list of potentially interesting R&D
topics in the area of analysis cyberinfrastructure:



e Distributed storage systems.

e Integration between different layers in the software stack.
e Specialized facilitator training.

e Monitoring, especially across software stack layers.

e Fault tolerance and recovery across software stack layers.

e Automated tuning of workflow parameters based on information gathered during pro-
cessing.

e Approaches for addressing resource contention between users to preserve fast turn-
around time of individual analysis iterations.

2 Introduction

With the upcoming high luminosity run of the LHC (HL-LHC), the LHC physics community
is in danger of becoming victims of its own success. Motivated by the need to probe
increasingly rare physics processes, HL-LHC will deliver luminosity to the experiments at
roughly an order of magnitude higher rate than previously. The detectors will be upgraded
to collect data at higher rates as well, leading to a significantly larger volume of data for
analysts to sift through. While many aspects of LHC data processing should scale up
reasonably well without major rethinking, late-stage data analysis will require more care.
This is because in the late-stages of data analysis, progress occurs iteratively, with humans
strongly coupled in the loop. The speed of performing one pass through the data quickly
becomes the limiting factor to the pace of exploration and innovation. Already, the time
to make one pass through the LHC Run 2 dataset for most analyses has grown to be hours
or even a day or more. Scaling this up by a factor or ten or more would bring the pace of
science to a grinding halt. The challenge facing the HEP community is to find a way to
preserve or even improve the pace at which data analysis iterations can be performed in the
face of a rapidly growing volume of data.

Some discussion of terminology is in order. In this white paper, we use the term “anal-
ysis cyberinfrastructure” rather than the more common “analysis facility” to emphasize
the belief that integration of both hardware and software will be required. While the term
“analysis” may have a variety of meanings within the broader field of HEP and even within
HEP subfields (e.g. LHC physics), here by “analysis” we specifically mean the the ac-
tivities necessary to transform individual collision data in whatever is the most reduced
form provided centrally by a given experiment into histograms and other similar statistical
summaries. To give a concrete example, for the CMS experiment, this would encompass
going from the nanoAOD format to histograms. Certainly there are many other activities
that could also justifiably be construed as analysis, such as performing specialized event
reconstruction, performing fits, training machine learning methods, etc., but we will not
tackle those topics here.



Defined in this way, analysis may consist of up to two specific steps:

Skimming: This step refers to the selection of a specific subset of event data that can be
determined to be of interest with some relatively straightforward selection criteria.
Put another way, skimming is the process of discarding all events that you can easily
determine you have no interest in scrutinizing further.

Histogramming: This steps involves potentially deriving quantities from the raw event
data and then reducing that data (or some subset) into a statistical representation
like a histogram or something similar.

It is not necessarily the case that these two steps will be implemented as discrete activities
that can be decoupled. They may in fact be interleaved in a way that prevents running
them separately.

3 Analysis Model

In order to discuss the challenges and opportunities in a concrete way, it will be helpful to
have a specific model of analysis. For this white paper, we will use an analysis model based
on recent experiences of a specific analysis group based at the University of Notre Dame.
This analysis group is analyzing data from the CMS experiment starting from the nanoAOD
format, which is a “flat” ROOT tree data format centrally maintained by the CMS experi-
ment. The analysis software used by the group is based on the Coffea [1] analysis framework
scaled out using the Work Queue [2] back-end. Coffea is written in python and relies on
the underlying scientific python ecosystem, including numpy [3] and matplotlib [4] as well
as some more specialized python packages for HEP, notably awkward [5] and uproot [6]. Tt
is worth noting that Coffea follows a numpy-like approach with an emphasis on performing
calculations on “columns” of data loaded from the nanoAOD ROOT files with the columns
held in memory. While we think it’s fair to say that this is an emerging trend in HEP data
analysis, it also engenders complications that will impact some of our conclusions in this
white paper. Analysis models based on other programming styles, like the more traditional
“nested-loops” construction may lead to different conclusions than what we present here.

For this white paper we will focus primarily on insights gleaned from following this
single analysis group, although at the end of the document, we will also discuss some
considerations for scaling up to support multiple analysis groups. An important parameter
for this discussion is the amount of data that the group is analyzing. Table 1 shows the
amount of data used by this analysis*. The analysis underway uses data collected by the
CMS experiment during LHC’s Run 2 (2016-2018), but Table 1 also includes estimates
of total data volume that might be expected by the end of LHC Run 3 (2025) and the
HL-LHC (~ 2040). These estimates are obtained simply by scaling the data volume up
by a factor of two and twenty respectively, based on on rough projections of the amount

*For the curious, this analysis involves selecting a sample of top quark collisions in a final state involving
multiple charged leptons and subjecting that sample to a data analysis similar to the one described in [7]



Period Unskimmed | Skimmed
Run 2 11.5TB 2.5TB
Run 3 23TB 5TB
HL-LHC 230 TB 50 TB

Table 1: The data used in the reference analysis considered in this white paper (labeled
“Run 27), as well as estimates for the data volume for future periods obtained by scaling
by factors of two (for Run 3) and twenty (for HL-LHC).

of data expected to be recorded by the CMS detector during those periods. Clearly, there
are many complicating factors that are being glossed over here that might reduce (software
improvements, more effective selection strategies, etc.) or increase (greater complexity of
data coming from additional overlapping collisions, known as pile-up, expected for later
running) the projected amounts of data relative to these estimates. The numbers here are
intended simply to set the order order of magnitude of the data expected, and should not
be taken as precise predictions.

The data tallied in Table 1 includes both the actual data recorded by the CMS detec-
tor as well as the appropriate simulated data needed to perform the data analysis. The
“unskimmed” column represents the amount of data in the full nanoAOD datasets with no
preselection or reduction applied. The “skimmed” column shows the data remaining after
applying some fairly loose selection criteria and only saving the events passing. Typically,
the analysts can work with the skimmed data volume as the requirements were inclusive
enough that all desired events were selected in the skim.

The other salient factor required to model analysis activities is some measure of the CPU
processing resources required. To make it easy to combine with the data volumes provided
above, we estimated that our analysis code can process 1 GB of data in approximately 3.3
minutes using a single core. This estimate was obtained using Intel Xeon CPUs E5-2680 v3
@ 2.50GHz with 128GB of RAM. This analysis software performs a variety of tasks, includ-
ing selecting events and objects (electrons, muons, jets) within these events that pass certain
selection criteria, considering combinations of objects (electron or muon pairs that comprise
a Z boson and jet triplets representing a hadronic top quark decay), and calculating derived
quantities connected with the individual objects or combinations, and filling histograms
with those quantities. While certainly this just represents one possible example of analysis
code, we argue that it is reasonably representative, falling in between the extremes of a
very simple analysis (e.g. one that simply analyzes collisions containing lepton pairs from
Drell-Yan production) and very complicated and computationally intensive analyses (e.g.
one that computes matrix element probabilities or evaluates a computationally expensive
deep neural network for each event). Nevertheless, one should keep in mind that depending
on where an analysis falls along this spectrum, the conclusions presented here may vary.



4 Analysis Turn-Around Time: The 10-Minute Challenge

The scientific process is driven by iterative exploration, cycling between making hypothesis
and testing them, trial and error. In the context of “analysis” as defined here, one iteration
represents making a change to the analysis, as expressed in code, and then using the updated
code to process the data into histograms. The amount of time that it takes to complete one
iteration therefore represents a key limiting factor on the pace of scientific innovation. On
the other hand, obtaining the shortest possible analysis turn-around time requires analyzers
to invest effort into optimizing their analysis workflow, which is effort not spent on physics
analysis. It has been our observation that the equilibrium between these two considerations
has, over a broad range of time, resulted in analysis iteration times in the range of a few
hours to “overnight.” Is it possible to do significantly better than this?

Let’s start with an admittedly arbitrary target of 10 minutes to complete one iteration.
That is to go from the reduced common format (i.e. nanoAOD) to histograms. We will
consider the question both for the skimmed and the unskimmed scenarios outlined above,
since the skimming requirements change infrequently enough to allow the skimmed sample
to constitute a stable starting point for analysis. The first consideration we will examine
involves the I/O rates needed to attain this 10-minute goal. Those rates are summarized
in Table 2. The table includes the necessary rates not just for a 10-minute turn-around
time, but also for longer times. Clearly, even for the skimmed Run 2 dataset, a 10-minute
turn-around time is beyond the capabilities of standard hard-drive performance. However,
using a distributed storage cluster should provide the necessary aggregated bandwidth. For
the Run 2 case, assuming each server in the storage cluster can perform at 5 Gb/ sf, seven
servers should be able to supply the necessary bandwidth for the skimmed case, twice that
many servers could provide a 20-minute turn-around time for the unskimmed case. At the
HL-LHC scale, using performance numbers for today’s hardware, a 10-minute turn-around
time might not be feasible. However, for skimmed data, it would be possible to obtain a 1-2
hour turn-around time with a reasonably sized (11-22 server) storage cluster. Depending
on future pricing, using higher performance storage options, such as SSD or NVMe storage
coupled with higher internet speeds should allow even faster turn-around times. So, while
the challenge is far from trivial, the goal of 10-minute turn-around time seems achievable
from an I/O rate standpoint.

The next aspect to consider in hitting this 10-minute goal is CPU concurrency. Using
the figure of 3.3 minutes to process 1 GB of data explained in Section 3, we can calculate the
amount of concurrency required to process the data from Table 1 in 10 minutes. The results
of this calculation are in Table 3. For the Run 2 dataset, the numbers shown in this table
for processing skims are well within reason for a large Tier-3 site and would represent only
a fraction of the size of a Tier-2 site. Even for the HL-LHC, the required CPU resources
shouldn’t be prohibitive. It should be noted that for one analysis iteration, these resources
would only be used for 10 minutes, making this an ideal use-case for leveraging opportunistic
resources, including processing resources claimed by job pilots that have unclaimed slots
but that are too close to the end of their lifetime to match to more conventional processing

f Assumes a multi-disk storage server provisioned with standard consumer grade HDs.



Unskimmed Skimmed
Iteration Time Run 2 Run 3 HL-LHC Run 2 Run 3 HL-LHC
10min. | 150Gb/s 310Gb/s 3,100Gb/s | 33Gb/s 65Gb/s 650Gb/s
30min. | 51Gb/s 100Gb/s 1,000Gb/s | 11Gb/s 22Gb/s 220Gb/s
60min. | 26Gb/s 51Gb/s  510Gb/s | 5Gb/s 11Gb/s 110Gb/s
120 min. | 13Gb/s 26Gb/s  260Gb/s | 3Gb/s 5Gb/s 54Gb/s

Table 2: Aggregate I/0 rates for the storage system storing the analysis data required to
achieve the given turn-around time. The data volumes correspond to the relevant entries
in Table 1.

Unskimmed Skimmed
Iteration Time | Run 2 Run 3 HL-LHC | Run2 Run 3 HL-LHC
10min. | 3,800 7,600 76,000 810 1,600 16,000
30min. | 1,300 2,500 25,000 270 540 5,400
60 min. 630 1,300 13,000 130 270 2,700
120 min. 320 630 6,300 70 130 1,300

Table 3: The number of CPUs that must be used in parallel to process the data listed in
Table 1 in the stated iteration time.

jobs. The I/O needs of a given analysis processing task should be reasonably modest,
on the order of 40 Mb/s meaning that a single compute host can easily support multiple
processing tasks. In fact, the more challenging requirement, based on experiences with
the analysis group at Notre Dame and the processes software, as described in Section 3,
is likely the memory requirement. Individual processing tasks use anywhere from 1 GB to
5 GB. The upper-end of this range tends to result from a rather memory-intensive custom
histogram implementation required by that specific analysis. It should be noted that the
processing in a Coffea task, to date, is always single-threaded. If Coffea were to support
multithreaded processing, which should be reasonably straightforward to implement through
the numpy-like data structures on which Coffea is based, then the memory requirement could
be significantly reduced, allowing multiple processing threads to share a common memory
allocation for the memory-heavy histograms.

Given that the possibility of a 10-minute iteration time seems achievable with the current
Run 2 datasets, it is interesting to ask how close we’ve come to hitting that mark at
Notre Dame. The Notre Dame Tier-3 provides roughly 1,000 CPU cores of dedicated
processing resources, and has opportunistic access to another 30,000 CPU cores hosted at
Notre Dame’s Center for Research Computing. At any given moment, up to 30% of the
CRC resources are idle and available for opportunistic use. All computing resources are
provisioned with at least 1 Gb/s ethernet connections and most have between 4-5 GB/core
of memory. Notre Dame’s storage cluster consists of fifteen servers hosting a combined
storage of roughly 800 TB of storage, with each server equipped with 10 Gb/s ethernet. The



storage cluster uses the HDFS filesystem and is accessible over the LAN via XRootD. The
XRootD infrastructure consists of a redirector node and data servers running on five of the
fifteen storage server nodes. Notre Dame also deploys on XCache infrastructure consisting
of a redirector and five caching proxies, each of which has 24-72 TB cache storage and a
10 Gb/s ethernet connection to the WAN.

All told, the above resources should be sufficient to achieve a 10-minute turn-around
time (or close to it) per analysis iteration. However, the best actual performance observed
so far has been approximately 2-3 hours for one analysis iteration. The performance gap
is not fully understood at the time of this writing, but it seems to be connected to per-
formance of the HDFS or XRootD software layers of the storage infrastructure, possibly
related to the metadata handling or overhead processing network transactions. Arriving at
this level of performance required diagnosing and improving bottlenecks located in several
other elements of the software stack before hitting this bandwidth limitation in the storage
software layer. The experience of working to achieve optimal performance factors into the
observations made in subsequent sections of this white paper.

5 Complexity of the Software Stack

Cyber technologists like to borrow common words and concepts like “architecture” and
“cloud” to try to make complex systems more understandable to society. The term “layer
cake” has been used similarly in everything from cybersecurity to operating systems to
computational workflows. While this nomenclature is helpful, it is also potentially dangerous
as the human experience is more apt to see the layer cake in example Figure la than the
more cyber accurate layer cake in example Figure 1b. While the layer cake in Figure la
gives both the chef and the diner a well defined process and experience, the layer cake in
Figure 1b is fraught with culinary challenges for both the chef and the diner. In the HEP
analysis community, we have users with a very nuanced palette that requires an analysis
facility much more like the layer cake in Figure 1b (known as a “PieCaken”); we must
therefore set the user expectations and engineering design priorities accordingly. Finally,
while scaling up additional layers or consumers of the Figure la cake is straight forward;
scaling up the PieCaken with additional layers will undoubtedly have unexpected taste
outcomes and scaling up the user base and workload types will undoubtedly result in users
and workloads that simply do not align with the very unique characteristics of the facility.

A more technical diagram representing the “layer cake” of typical HEP analysis cyber-
infrastructure is shown in Figure 2. This diagram makes it clear that there are numerous
layers that must act in concert to achieve the desired performance of an analysis iteration.
The layers can be roughly classified as follows:

Analysis Software: This includes the software the the analysts write themselves along
with any direct dependencies. User analysis software should not be viewed as simple.
It may take the form of one or more user created libraries (installed via cloning
repositories or pip) as well as one more more applications built on top of those libraries,
and also libraries from the broader scientific python ecosystem, including potentially



(a) Photo courtesy of [8] (b) Photo courtesy of [9]

Figure 1: The analysis facility software stack can be seen as a “layer cake,” but is it more
accurate to view it as a chocolate layer cake as in (a) or a “PieCaken” as in (b)?

machine learning libraries. At Notre Dame, this includes the TopCoffea software [10]
which consists of both a library component as well as applications.

Analysis Framework: This layer sits directly underneath the analysis software to facil-

itate the interaction between the analysis software and the common reduced data
format (e.g. nanoAOD) as well as providing some connection to scale-out mecha-
nisms. At Notre Dame, this includes Coffea [1] which provides an interface to the
nanoAOD data through awkward [5] and uproot [6]. The interface to Work Queue [2]
is also used as a mechanism for scaling out the analysis workflow at Notre Dame.

User Interface: This layer is responsible for providing users with the ability to interact

with the computational resources. At Notre Dame, this layer consists of an interactive
linux login node that also provides a Jupyterhub instance. In the future this might be
enhanced by or replaced with a more extensive Jupyterhub or Binderhub infrastructure
managed via Kubernetes across multiple servers.

Batch Infrastructure: This layer connects the distributed application and framework to

the computational resources to perform the analysis. It includes both the batch system
itself as well as any software that interfaces to the batch system to generate jobs. It
should be noted that in some cases, the submit node to the batch system may not
be the same node as the interactive node for users on the cluster. At Notre Dame,
the batch system is HTCondor (two pools, one dedicated and one opportunistic each
accessible via a different submit node) and a Work Queue factory.

Storage Infrastructure: Cyberinfrastructure pertaining to storage consists of a stack

with potentially several layers. The top-most layer may consist of applications that
transform data from one format to another, potentially also caching the results of that
transformation. Examples of such software include ServiceX [11] and SkyhookDM [12].
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Figure 2: A schematic of an analysis. This diagram represents the overall vision intended
for the Notre Dame analysis cyberinfrastructure, although currently not all aspects are
implemented. These details are included in the text.

Below that one finds a data delivery layer, such as XRootD or HT'TP which provides
a link between higher layers in the system and the distributed lower layers. The data
delivery system may be accessed directly by the distributed analysis application or via
the transformation layer described above. The data delivery layer may also provide
access to data over the WAN as well as caching services. Below the delivery layer sits
the distributed file system layer. This layer presents a unified view of the distributed
storage as if it were a single file system. Options include HDFS, CephFS, or EOS.
At Notre Dame, our storage infrastructure currently has no transformation layer. We
use XRootD for data delivery through two redirectors: one for our local storage and
one for our XCache system. Our distributed file system layer is currently HDF'S, but
we are investigating changing to CephF'S or EOS for performance reasons. The HDFS
storage cluster consists of fifteen data servers totaling almost 800 TB of raw storage
while the XCache system consists of five caching proxy servers providing a total of
about 300 TB of cache space.

While this multi-layered software approach has numerous benefits, there are challenges
that should not be ignored. Especially when it comes to obtaining optimal performance,
bottlenecks can occur at any layer in the stack. Because the stack encompasses the full
range from user written analysis code to relatively low-level software associated with the
storage and compute infrastructures, it is unlikely that any one person associated with
the cyberinfrastructure will have a sufficiently broad expertise to identify and resolve any
possible bottlenecks. Changes at one layer can manifest unintended consequences at other
layers.

Although these challenges should not be ignored or underestimated, there are a number



of opportunities for mitigating them. From the cyberinfrastructure perspective, a focus
on integration across the layers can provide important advantages when trying to diagnose
potential bottlenecks. To this end, monitoring should not be omitted from the design
of the analysis infrastructure. While monitoring is often approached layer-wise, with the
low-level cyberinfrastructure monitoring delegated to systems administrators while higher
levels primarily serve users, a vertically integrated monitoring approach that aggregates
information from across the layers provides a better approach and should be attainable
with industry-standard tools already compatible with many of the layers our software stack
(e.g. Prometheus, Loki, Logstash, Elasticsearch, Grafana, and Kibana). Another important
opportunity for addressing these challenges comes in human form, through training. While
training of users and administrators involved with the analysis cyberinfrastructure is very
important, we should also not neglect the possibility of training specific facilitators, who
understand the full stack from the user level to the systems administrator level to serve as
liaisons and troubleshooters. Such trained experts could find a home either within specific
experiments (e.g. CMS, ATLAS, etc.) or in broader organizations such as WLCG or
OSG, to provide assistance in diagnosing and tuning the software stack of multiple analysis
facilities. Combining integrated monitoring with specially trained analysis facilities experts
would provide a significant advantage in the quest to obtain optimal performance.

Another aspect which spans the software stack and impacts the ability to achieve the
desired end-to-end throughput is the resilience of each interconnected layer. Failures, espe-
cially transient ones, are an unavoidable fact of life in distributed computing. However, it is
often difficult for a given software layer to decide how to respond to a failure. For sporadic
failures, retries, especially with appropriate delays or fallback mechanisms, are essential for
achieving reliable performance at scale. However, retries and fallbacks in one layer can
also mask persistent problems in another layer while slowing overall throughput to a crawl.
To achieve reliably high performance while also being able to respond to and fix problems
as they arise, the individual layers in the infrastructure need to be able to communicate
about error mechanisms, and any information about encountered errors needs to be able to
percolate up to a level at which humans (users, sysadmins, or ideally both) have visibility.

6 Managing Variability in Analysis Tasks

Another significant challenge facing analysis cyberinfrastructure is contending with the
potentially broad range of analysis workflows. While we have focused on one particular
set of analysis workflows that we argue can be taken as representative, we should not
ignore that there are plenty of possible variations on that theme. For instance, the chosen
example workflow is based on the nanoAOD data format from CMS, but not every analysis
can start from that format. How do things change if an analysis requires a less reduced
data format? The representative analysis has as a goal the production of histograms for
statistical analysis, but what about workflows that output instead a dataset of individual
events, perhaps for use in machine learning training? Even our representative example
can display significant variations in resource requirements and performance needs. One
analysis processor used as part of the representative analysis activity focuses on extracting
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and caching global information, like the sum of all MC weights for each simulated sample
under various systematics scenarios. This processor does much less computation than the
representative processor while also reading a smaller amount of data from each processed
file. On the other hand, by flipping a few switches, the standard analysis processor can be
put in a mode which performs substantially more computation and furthermore is extremely
memory intensive. It is easy to imagine (and we have in fact observed) that an optimal
configuration of analysis cyberinfrastructure for one of the possibilities outlined above will
likely not be optimal for others. Experience also suggests that its not feasible for users to do
extensive optimization for each possible variation in their analysis activities to ensure they
always make optimal choices. Therefore, without some strategy to address these variations,
obtaining the desired performance for actual analysis deployed within any specific analysis
infrastructure seems unlikely.

Fortunately, again, there are a number of strategies than can be pursued to meet this
challenge. One often overlooked option is to design analysis cyberinfrastructure with an
intentionally limited scope. The more variety of workflows supported by analysis cyberin-
frastructure, the more problematic it is to provide optimal performance across the whole
range of workflows. Allowing the designers of analysis cyberinfrastructure to focus on a nar-
rower range of use cases, opens the possibility of using strategies that wouldn’t apply across
the broader spectrum of possibilities. Of course, this suggests that it may be necessary
to create multiple analysis cyberinfrastructure software stacks, each targeting a particular
subset of use cases. While this might seem like a losing proposition, the fact that the un-
derlying building blocks are highly modular and therefore likely to be useful in more than
one cyberinfrastructure stack, plus the increased possibility of using targeted automatic
optimization in the more narrowly defined use-case sets may ultimately outweigh the costs
of developing multiple special-purpose cyberinfrastructure stacks.

Within the specific analysis use-case of going from most-reduced event data format (e.g.
nanoAOD) to histograms, we have observed a number of possible automatic optimisation
strategies that seems promising. For example, within the Coffea framework, one parameter
that has a significant impact on performance is the “chunk size” used in processing the
data. Chunk size is defined as the maximum number of events that the analysis processor
will attempt to analyze in a single task. (Smaller amounts of data may be used in practice
because the Coffea framework will not combine date from multiple files into a single chunk.)
There are multiple competing factors that must be accounted for when tuning chunk size.
Chunk size impacts the memory requirements of the processing as larger chunk sizes imply
more data will be held in memory simultaneously. Large chunk sizes also limit the maximum
amount of processing concurrency as individual chunks are processed in a single-thread.
Choosing a smaller chunk size can avoid the issues previously mentioned, but choosing a
chunk size that is too small will lead to other problems. A small chunk size partitions
the dataset into many tasks, multiplying any per task overhead. Having a large number
of chunks puts more load on the components tasked with tracking the processing tasks
and generates more work in aggregating the results of the processing. Leaving the choice
of chunk size to users often results in poor analysis throughput and sometimes even in
analysis workflows that cannot be completed. However, we have found that it’s possible
to implement an algorithm to dynamically scale the chunk size during an analysis run to
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meet a pre-defined run-time or memory usage target or a combination of the two [13]. With
this auto-scaling approach, chunk size can be adjusted based on the observed statistics of
already completed tasks, and if the chunk size becomes so large that it exhausts the resources
provisioned for processing, the failed tasks can be automatically retried with smaller chunk
size. While this algorithm cannot match the performance obtained using an optimally-tuned
chunk size estimated a priori, the loss of performance relative to that benchmark may be an
acceptable trade-off for the performance boost obtained for the average user who is freed
from the need to exhaustively benchmark and tune prior to each analysis run.

7 Multi-User Considerations

So far, this white paper has focused on considerations relevant for cyberinfrastructure used
by a small number of individual users, largely because those are the situations that we have
directly explored at Notre Dame. Nevertheless, it will be important to consider how these
observations and strategies evolve as we scale the analysis cyberinfrastructure up to support
many users operating in an uncoordinated fashion. There are two main aspects that we
consider as we scale up the cyberinfrastructure: data volume and user activities.

For data volume, at first glance, the situation is not so challenging. The total data
volume used by the reference analysis studied in this white paper represents roughly 10%
of the total nanoAOD data volume for CMS Run 2. Assuming that ratio holds and scaling
up by a factor of twenty for HL-LHC, this means the ultimate data volume for HL-LHC to
store all of the common reduced format data for a given experiment would be on the order
of 2.5PB. It would certainly be feasible to host the entire unskimmed common reduced
dataset at a single site, and even having multiple distributed copies should be possible.
A bigger challenge will be to provide resources for skims. If there is no coordination of
skimming activities, skims will scale not just by the data volume, but also by the number of
separate analysis groups supported by the analysis facility. Assuming the size of the skims
for the reference analysis considered here are representative, then if more than five groups
independently create skims from a given subset of the data, the total skim volume will
exceed the unskimmed volume. Of course, there should be a large overlap of data selected
by different skims, and accounting for that overlap has the potential to reduce the amount
of storage that would need to be allocated. Perhaps the most promising avenue to explore
would be to replace the concept of manually generated skims with a more automated process
of caching specific subsets of data as they’re accessed.

Scaling for the processing resources is more complicated to estimate. If we focus for the
moment on the Run 2 scale of analysis, a facility with 1,000 CPU cores should enable one
research group to turn an analysis iteration around in 10 minutes. Then, naively, assuming
an 8 hour work day, this hypothetical facility could support 50 complete analysis iterations
per day. While this is certainly true in terms of raw capacity, it misses the subtleties
that arise if there are multiple analysis groups operating in an uncoordinated fashion. In
other words, if we were to assume that the 50 iterations represented 10 different analysis
groups performing 5 complete passes per day, there is no reason to believe that those passes
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would align nicely in time to ensure the groups would never be contending for resources.
As soon as two group try to access the same resources at the same time, the 10-minute
turn-around time will be compromised as the system resources have to be split, delivering,
for example, a 20 minute turnaround time to two groups working in parallel. While, on
some level, this might be unavoidable, it would be good to explore strategies for mitigating
this effect. However, these strategies will need to be coordinated across the full “layer cake”
of the cyberinfrastructure, rather than using the conventional approach of independently
addressing resource contention at the computing and storage layers (e.g. via a “fair share”
metric). One possible way to achieve this sort of cross-layer coordination would be to
employ a central manager process that receives and evaluates processing requests holistically,
prioritizing the completion of whole workflows quickly rather than just maximizing average
throughput across all workflows.

Another open question to consider when exploring approaches to scaling up analysis
cyberinfrastructure to support multiple groups is whether it makes sense to focus on the
approach of scaling up through a specially-designed physical facility to support multiple
analysis groups, to approach analysis cyberinfrastructure as an add-on feature to existing
computational facilities (such as LHC Tier-2 sites), or to design analysis cyberinfrastructure
to be deployed in a cloud-like approach across a variety of different physical resources from
experiment owned sites like LHC Tier-1, 2, and even 3 facilities, to resources that are used on
a more temporary basis, such as HPC facilities or even commercial cloud resources. While
it may be difficult to find a definitive answer to this question today, it is worth noting that
following the best practices for providing analysis cyberinfrastructure as a service (i.e. using
containerization and container orchestation to automate the deployment and operation) will
leave open the possibility of deploying across non-conventional resources while still providing
benefit even to deployments at custom-desitned and purpose-built facilities.

8 Conclusion and Outlook

It is no doubt clear that without investments in new approaches to late-stage data analysis,
on the HL-LHC time scale there is a danger of scientific progress stagnating as the time
to complete one analysis iteration grows with the data volume past the limits of human
attention spans and patience. However, hopefully this white paper has successfully argued
that there are a number of promising avenues along which to tackle this challenge. Fur-
thermore, many of these promising approaches would also lead to short-term benefits that
would substantially improve analysis productivity even in the present day.
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