
Transcendental Preprint
March 18, 2022

New directions for surrogate models and differentiable
programming for High Energy Physics detector simulation

Andreas Adelmann
Paul Scherrer Institute, 5232 Villigen PSI, Switzerland

Walter Hopkins, Evangelos Kourlitis
Argonne National Laboratory, Lemont, IL 60439, USA

Michael Kagan
SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA

Gregor Kasieczka
Institut für Experimentalphysik, Universität Hamburg, Germany

Claudius Krause, David Shih
NHETC, Department of Physics & Astronomy, Rutgers University, Piscataway, NJ

08854, USA

Vinicius Mikuni, Benjamin Nachman
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Kevin Pedro
Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

Daniel Winklehner
Massachusetts Institute of Technology,Cambridge, MA 02139, USA

ABSTRACT

The computational cost for high energy physics detector simulation in future
experimental facilities is going to exceed the current available resources. To
overcome this challenge, new ideas on surrogate models using machine learning
methods are being explored to replace computationally expensive components.
Additionally, differentiable programming has been proposed as a complemen-
tary approach, providing controllable and scalable simulation routines. In this
document, new and ongoing efforts for surrogate models and differential pro-
gramming applied to detector simulation are discussed in the context of the
2021 Particle Physics Community Planning Exercise (‘Snowmass’).
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1 Introduction

Experiments in high energy physics (HEP) rely heavily on simulation for a wide array of
tasks, including data selection, statistical inference, and design optimization for new exper-
iments. On the other hand, the computational demands for simulation of current and next
generation HEP experiments have inspired investigation of surrogates, or approximations
of the detector simulation, using deep generative models to decrease simulation time while
maintaining fidelity. Usually, the most computationally intensive step of the simulation
is the modeling of the detector response. Interactions between particles and the detector
material are simulated in large experimental collaborations such as ATLAS [1] and CMS [2]
using the Geant4 [3–5] software package. While full simulation ensures high fidelity sam-
ples, the computational cost becomes prohibitive as many billions of simulated events are
required to describe different Standard Model and Beyond the Standard Model processes.
For comparison, detector simulation in the ATLAS and CMS experiments consumed 40%
of the grid central processing unit (CPU) during Run 2 of the LHC experiment [6, 7], and
the expected CPU time needed to simulate an event increasing by a factor of three [8] or
more after the HL-LHC upgrade in the upcoming years.

Generative models leveraging recent advancements in machine learning (ML) are able to
build surrogate models capable of generating high fidelity samples with reduced computa-
tional cost. Common software frameworks for ML research, like TensorFlow [9], JAX [10], or
PyTorch [11] benefit from strong community support and highly efficient implementations
on hardware accelerators, such as Graphics Processing Units (GPUs). This flexibility is
easily ported to experimental facilities and lowers the barrier of entry for software develop-
ment, support, and maintenance. These improvements have the possibility to accelerate the
comparison between measurements and theoretical predictions while decreasing the need for
methods such as unfolding [12–14] once an efficient detector simulation is available.

Traditional simulation routines can be improved in multiple ways, leveraging modern
software frameworks and hardware accelerators, such as GPUs [15–17]. Alternatively, differ-
entiable programming (DP) software can also enable GPU support to traditional simulation
routines. Differentiable programs track gradients with respect to simulation parameters or
input variables at each step of the simulation program. While DP is not required for an
algorithm to benefit from modern hardware acceleration (and not all DP frameworks are
inherently GPU-compatible), differentiable programs provide additional advantages. For
example, optimization of simulation inputs can be directly inferred from experimental data
by finding the simulation parameters that jointly minimize the difference between synthetic
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and experimental data. The optimization step is performed by propagating the gradients
back through the simulation chain, thus reducing the required scale of simulated datasets
used for alternative setups [18]. DP also opens new directions for simulation modeling that
incorporate physics knowledge, which is critical for developing more robust, interpretable,
and generalizable domain-aware scientific ML [19].

Additional usage of surrogate modeling and differentiable programming for HEP in the
context of Snowmass are covered in detail in the Snowmass’21 LOIs [20,21], the upcoming
Snowmass’21 whitepaper by the Beam and Accelerator Modeling Interest Group (BAMIG)
[22], two recent ICFA newsletters [23,24], and the MODE collaboration [25].

This document is divided as follows. Sections 2 and 3 present brief introductions to
surrogate models based on ML techniques and differentiable programming. In Secs. 4, 5,
and 7, several ongoing projects are described and discussed. These examples are not meant
to be comprehensive, but instead illustrative of the scope of research in this area. Finally,
in Sec. 9, future directions and synergies in the short and long term future are explored.

2 Surrogate Models

The existing landscape of detector simulation consists of two primary approaches. The first
is the accurate, but computationally intensive “full simulation” using Geant4. The second
is typically called “fast simulation” and may be considered a classical version of a surrogate
model. Decreased simulation time is achieved by replacing computationally intensive parts
of the simulation with simplified detector assumptions, resulting in speed improvements of
more than 100 times compared to the full simulation. The resulting simulation, however, is
less realistic and may be unsuitable for physics measurements that rely on detailed detec-
tor effects. Within the category of classical fast simulation, there are experiment-specific
solutions [7, 26,27] and the ultra-fast generic simulation delphes [28].
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Figure 1: Depiction of different ways to incor-
porate ML in detector simulation workflows.

Figure 1 shows the different ways to in-
troduce ML to this landscape: by replac-
ing or augmenting part or all of Geant4,
or part or all of a classical fast simulation.
Each option has a different goal: increasing
speed while preserving accuracy, or preserv-
ing speed while increasing accuracy, respec-
tively. ML could also be used to create a
faster but less accurate simulation, similar
to existing classical fast simulations. Alter-
natively, different ML surrogate models ap-
proaches may be classified based on what
input data they require to produce simu-
lated events. This leads to two categories:

1. fully generative models that entirely replace classical simulation engines, taking gener-
ated particle data or random noise as input; and 2. refinement techniques that are applied
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during or after the event simulation step, taking lower-quality simulated events as input.
Popular deep learning architectures for fully generative models are divided into three main
categories including generative adversarial networks (GANs) [7,29–53], variational autoen-
coders (VAEs) [40, 54–57], and normalizing flows [58–61]. Refinement techniques may be
based on classification [45,62] or regression [63,64]. The generative models apply a stochastic
approach, while the refinement techniques are usually deterministic.

Initially proposed in [65], GANs are trained following a minimax game:

min
G

max
D

V (D,G) = Ex∼px(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] , (1)

where a generator network G is tasked to generate new samples from a noise distribution
pz(z) while the discriminator network D judges the quality of the generated samples by
comparing with target events sampled from px(x). The adversarial loss function can lead
to unstable training, often requiring additional fine tuning to achieve realistic results. An
alternative to the loss function was proposed in [66] named Wasserstein GAN (WGAN). In
the WGAN framework, the discriminator network is replaced with a critic network that uses
the Wasserstein distance between generated and data samples as a metric to be minimized
during training. There are many GAN variations that go beyond the vanilla and WGAN
approaches.

Autoencoders are composed of two components: an encoder that compresses a set of
input features into a smaller latent space, and a decoder that uses the information in that
latent space to attempt to reconstruct the input features. VAEs combine autoencoders with
a tractable latent space to generate new and realistic samples. Even though the probability
density of the data is not tractable, VAEs minimize the evidence lower bound loss:

LVAE = −Ez∼q(z|x)[log px(x|z)] +DKL(q(z|x)||pz(z)). (2)

The approximate posterior probability density q(z|x) is enforced to be a tractable distribu-
tion through the Kullback–Leibler divergence term DKL. The reconstruction loss log px(x|z)
is often defined as the mean squared error loss, in case of continuous distributions, or the
cross-entropy loss, in case of discrete distributions.

As an alternative approach to handling data with an intractable probability distribu-
tion, normalizing flows [67–69] define a bijective transformation between a tractable base
distribution, such as a normal or uniform distribution, to the data using the transformation
of variables:

log px(x) = log pz(z)− log det

∣∣∣∣∂f(z)

∂z

∣∣∣∣ , (3)

with terms ∂f(z)
∂z representing the Jacobian matrix of the transformation f . The loss function

to be minimized is then defined as − log px(x), which is equivalent to minimizing the KL
divergence between the transformed tractable base distribution and the data distribution.

The general calculation of the determinant in Eq. 3 has O(D3) computational cost.
This limitation is mitigated by restricting the bijective transformation f to the family of
functions with triangular Jacobian matrix, bringing the computational complexity down to
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O(D). There exist two main architectures to ensure a triangular Jacobian: bipartite [70]
flows based on so-called coupling layers or autoregressive [71, 72] flows based on masked
neural networks (NNs) [73]. Practically speaking, their main difference is the speed in
which both directions of the bijector can be evaluated. In bipartite flows accessing the log-
likelihood of data and sampling is equally fast. Autoregressive flows have a fast and a slow
direction. Masked Autoregressive Flows (MAFs) [71] are fast in density estimation, but a
factor D, given by the dimension of data space, slower in sampling. Inverse Autoregressive
Flows (IAFs) [72] are fast in sampling, and a factor D slower in estimating the density of
data points. See [68, 69] for more details on normalizing flows. An application of density
estimation for calorimeter simulation is described in Sec. 5. A simplified depiction of the
different generative strategies is shown in Fig. 2.
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Figure 2: Summary of different machine
learning methods used for generative models.

A natural question about surrogate
models is to what extent the generated sam-
ples increase the statistical power with re-
spect to the training data. At its core, the
benefit from deep generative models comes
from their ability to interpolate in high di-
mensions. One source of statistical ampli-
fication from the training dataset is from
combinatorics - there are combinatorially
many ways to attach showers to N parti-
cles in an event and deep generative mod-
els can naturally interpolate from the train-
ing dataset to have the correct kinematic
properties. Interpolation also can result
in improved statistical precision from the
smoothness properties of neural networks (a
form of ‘inductive bias’) [74,75].

Further refinements to generated sam-
ples can be derived to improve generation quality. Those corrections can be coupled either
to ML-based surrogate models or to classical fast simulation routines. Advantages of refine-
ment in the former case include that the training is often more stable than for the original
generative model, and correspondingly, the generative model may not need to match the
precision of Geant4. Alternatively, replacing the generative model with a classical simula-
tor and relying on ML only for refinement may decrease the probability of unphysical output
and provide better extrapolation beyond the training data. Some example applications of
this type are discussed in Sec. 4.

3 Differentiable Programming

An alternative but complementary direction for surrogates lies in recent advancements in
differentiable programming (DP). In DP, software is written in, or transformed into, dif-
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ferentiable code via the use of automatic differentiation (AD) [76], an algorithmic way
to efficiently evaluate derivatives of computer programs. When software is written in DP
frameworks, access to the dependence of predictions on inputs is enabled through gradients.

Forward pass

Backward pass

Simulation

 Inputs

Simulation

 Outputs

x1
x2
x3. . .
xn

y1
y2
y3. . .
ym

∂yj

∂xk

Figure 3: An illustration of differentiable pro-
gramming for detector simulation.

These gradients are a significant addi-
tion to the information typically provided
by simulators and crucially can be used in
downstream modeling and inference tasks.
This approach is flexible and optimizable;
differentiable HEP software and ML tools
can be mixed, for instance to use ML sur-
rogates of non-differentiable computations,
and can be jointly optimized to improve
speed and prediction accuracy. When de-
veloped with DP, HEP simulation tools, and
the physics knowledge they encode, can be
used as physics prediction engines directly within ML pipelines for developing physics-
informed ML tools. An illustration of differentiable programming is shown in Fig. 3. We
note that deep generative models are a type of differentiable detector simulation, since gra-
dients are readily available for neural networks. More details on differentiable programming
for detector simulation are given in Sec. 7.

4 ML-based Correction to Accelerate Geant4 Calorimeter
Simulations

In full simulation routines, particles can be fully tracked using the complete underlying
physics knowledge (FullSim) or approximate parametrizations can be used to simplify and
accelerate the process (FastSim). Although future experiments plan to be heavily based on
FastSim methods, the usage of FullSim is still imperative [77] (including FastSim tuning).

Focusing on the FullSim, among the most computationally demanding apparatuses to
simulate are dense highly segmented particle physics detectors (e.g. calorimeters). This is
because highly energetic particles produce cascades of secondary particles, resulting in an
exponential number of particles with respect to the particle energy. The actual limit on the
lowest energy particle simulated is controlled by range cuts. Increased range cuts correspond
to increased production energy thresholds, thus reducing the number of produced secondary
particles. As an immediate effect, the computational demands of the simulation are reduced.
A side effect can be the reduction of the accuracy of the simulation. The extent of the
inaccuracy increases as the range cut grows relative to the scale of the sensitive elements
of the detector. While other parameters in Geant4 may also be varied with effects on
the simulation computing time and accuracy, range cuts have been found to be the most
impactful.

This section outlines an approach to accelerate the FullSim execution time. One possi-
bility is to use a deep generative model as a base that is then refined [45]. Another approach
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is applying aggressive range cuts and then correcting the reduced accuracy simulation (re-
ferred to as modified) using ML methods. There are several complementary techniques to
derive these corrections.

One method relies on event-level weights. A neural network is trained to classify the
nominal versus the modified simulation and the classification score is used to calculate a
multi-dimensional density ratio. This ratio is finally used to reweight the modified observ-
ables back to the nominal ones. The classification score is then used to approximate the
density ratio r(x). There are many ways to do this (see Ref [78]), but the most common
approach is to use the binary cross entropy loss function and then derive r as:

r(x) =
ρ(y = 1|x)

1− ρ(y = 1|x)
≈ pfull(x)

pfast(x)
, (4)

where ρ is the classifier and x is a set of observables used in the reweighting. The ap-
proximation in the above equation is a well-known result from statistics (see e.g., [79, 80]).
Additional post-processing can improve the approximation [81].

There is no unique way to pick x. One possibility is to refrain from choosing any specific
high-level observables and instead learn directly from the lowest level inputs (e.g. energy
deposits per calorimeter cell). An advantage of using high-level features is that it provides
some regularization so that if the original model has phase space gaps in high-dimensions,
there will not be infinities in the likelihood ratio [45].

Serving as a proof of concept, an example reweighting application using the lowest
level inputs has been developed for the International Large Detector (ILD) electromagnetic
barrel calorimeter [82]. The multilayer calorimeter consist of 30 layers, each one segmented
in 30 × 30 cells. The data are projected into 3D images, where the color of each of the
27,000 voxels represent the energy deposit in the cell. A convolutional neural network
(CNN) utilizing 3D convolution operations is trained to discriminate nominal from modified
simulation events in order to approximate the ratio of Equation 4. Preliminary results shown
in Figure 4 showcase the improvement of the reweighted modified simulation, resembling the
high accuracy nominal Geant4 simulation. The tradeoff of the correction via reweighting
is the statistical dilution of the simulation sample [45].

An alternative method directly modifies the simulated event contents. A first proof of
concept for this method is described in Ref. [64], based on an approach used in industry
to accelerate MC ray-tracing [83], has recently been published. Geant4 with an increased
range cut provides the modified simulation, and a CNN is used to regress the energy value of
each pixel, with the detector represented as a digitized grid. Figure 5 shows the promising
results for photon showers in the CMS electromagnetic calorimeter. Regression approaches
can also be applied to improve high-level variables, which may complement the low-level
approach.

These correction approaches can reduce the computational complexity for two reasons:
1) the absolute time reduction of the simulation from a faster surrogate (either a deep gen-
erative model or higher range cuts) can reduce the calculation time by orders of magnitude
and 2) the correction may be applied in parallel to many events utilizing parallel computa-
tions in accelerator hardware, such as GPUs. The overall speedup from this approach may
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Figure 4: Comparison of the nominal, modified, and reweighted event energy deposit at
the ILD barrel calorimeter induced by 10 GeV electron showers. The nominal distribution
uses a 0.1 mm range cut, while the modified uses 10 mm, leading to ∼15% simulation CPU
speedup.

be limited by the throughput of the classical fast simulation engine, in this case the modi-
fied Geant4. However, the potential for greater accuracy and reliability may make such a
trade-off worthwhile, if the overall speedup is enough to meet the computing challenges of
the HL-LHC and future colliders.
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Figure 5: Left: A comparison of the per-pixel energy distribution for the modified simula-
tion, the CNN output, and Geant4. Right: Per-event comparisons of the number of hits,
with the concordance correlation [84] between Geant4 and the other simulations listed in
parentheses and the gray line indicating exact agreement. These figures are reproduced
from Ref. [64].
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5 Detector Simulation with Normalizing Flows

Ideal surrogate models are fast and at the same time indistinguishable from the full simu-
lation based on Geant4. The latter can be tested by training a neural network classifier
on “real” (based on Geant4) and “fake” (generated from the surrogate) samples [85].
Previous surrogate models, based simple on GANs or VAEs, have failed such a test and
yielded samples that were separable to nearly 100%. Normalizing Flows (NFs) provide an
alternative approach to generative modeling, since they learn the likelihood of the data
explicitly, in contrast to GANs and VAEs that only implicitly learn the data distribution.
Maximizing the log-likelihood of the training data directly is more stable and not prone to
mode-collapse. In addition, picking the model with the lowest validation loss seems to be
an effective model selection strategy, which is a challenge for deep generative adversarial
models.

The proof of concept of this approach is given in [59, 60] (called CaloFlow), based
on the same detector geometry that was studied in [29, 30]. This geometry is a simplified
version of the ATLAS electromagnetic (ECAL) calorimeter, consisting of 3 layers with 288,
144, and 72 voxel, respectively. A new instance of CaloFlow was trained for each particle
type (e+, γ, π+). In CaloFlow, the data likelihood is learned in two steps, with two
separate NFs. The first step only learns how the total deposited energy is distributed
across the three calorimeter layers, conditioned on the incident energy, p1(Ei|Einc), with
Etot =

∑
iEi. CaloFlow uses a MAF for flow 1. The second step learns the normalized

shower shape, i.e. how the energy deposited in each layer is distributed into the voxels,
conditioned on the energy deposition of each layer and the incident energy, p2(I|Ei, Einc).
Both autoregressive architectures, MAFs and IAFs, have been applied to this step in [59]
and [60] respectively. However, the high dimensionality of the voxel space made a training
based on the log-likelihood prohibitive for the IAF. Instead, the flow of [60] was trained using
probability density distillation, a method originally developed for speech synthesis in [86].
In generation, one first samples Ei from flow 1. These energies are then given to flow 2 to
generate the showers. After shower generation, the resulting showers are renormalized to
have the energies according to the Ei of flow 1.

Table 1 shows the main results of that approach, given by the training of a binary neural
classifier. While this GAN-based model yields samples that are distinguishable from the
Geant4 samples, the NF-based model has a much higher fidelity and can fool the classifier
much more often. ∗ The generation of samples, especially with CaloFlow v2, is as fast
as the GAN. Differences in training time become irrelevant once more than 109 showers are
generated, see Fig. 6. Figure 7 shows some example distributions for π+ showers, comparing
Geant4 to CaloGAN [29,30] to CaloFlow [59,60].

In order for normalizing flow-based models to be used by the experimental collabora-
tions, they have to prove their performance in more realistic setups as well. These will either
have a higher number of voxels (like the ILD or CMS high granularity [87] calorimeters)
and/or a conditioning on incident angle and/or position. Additional studies on the specific

∗It is also possible that more recent, state-of-the-art GANs or VAEs perform better on this dataset, which
is an interesting topic for future studies.
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Table 1: AUC and JSD metrics for the classification of Geant4 vs CaloGAN, CaloFlow
v1, and CaloFlow v2 showers. Classifiers were trained on each particle type (e+, γ, π+)
separately. All entries show mean and standard deviation of 10 runs and are rounded to 3
digits (lower numbers are better). Taken from [60].

DNN-based classifier

AUC / JSD Geant4 vs.

CaloGAN CaloFlow v1 CaloFlow v2

e+
unnormalized 1.000(0) / 0.995(1) 0.859(10) / 0.365(14) 0.786(7) / 0.201(11)

normalized 1.000(0) / 0.997(0) 0.870(2) / 0.378(5) 0.824(4) / 0.257(8)

γ
unnormalized 1.000(0) / 0.998(0) 0.756(48) / 0.174(68) 0.758(14) / 0.162(18)

normalized 1.000(0) / 0.994(1) 0.796(2) / 0.216(4) 0.760(3) / 0.158(4)

π+
unnormalized 1.000(0) / 0.993(0) 0.649(3) / 0.060(2) 0.729(2) / 0.144(3)

normalized 1.000(0) / 0.997(1) 0.755(3) / 0.153(3) 0.807(1) / 0.230(3)
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Figure 6: Comparison of shower generation times of Geant4, CaloGAN [29,30], CaloFlow
v1 [59], and CaloFlow v2 [60].

NF architecture, such as autoregressive vs. bipartite flows, convolutional and other types of
networks to give parameters of the transformation, or new bijective transformations might
reveal more efficient (in terms of memory usage and/or sampling time) setups. Novel setups
might also circumvent the 2-step approach of CaloFlow.
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Figure 7: Distributions of energies in the 3 Calorimeter layers and total deposited energy
(top) and ratio of layer energies to total deposited energy (bottom) for incident π+ particles,
comparing Geant4 to CaloGAN [29,30] to CaloFlow [59,60].

6 Simulation of increasingly complex detectors

A number of challenges is encountered when moving from simplified detectors towards
realistic simulations of energy deposits in modern calorimeters.

A primary issue lies in the substantial number of hits that need to be simulated. For
example, the planned CMS High-Granularity Calorimeter (HGCAL) [88] will have ≈ 6
million individual read-out channels with a similar order of magnitude for calorimeters in
the future International Large Detector (ILD). Similarly, due to other design constraints,
cells in a realistic calorimeter are not arranged in a regular grid but in more complex
geometric patterns.

Simulating calorimeters with more than 10k cells using generative models was first
attempted in [89] (65k channels) and [90] (27k channels). While these numbers are still
much smaller than the entire calorimeter, they allow simulating a slice in η–φ large enough
to fully contain a shower with realistic granularity. Based on such slices, entire calorimeters
could e.g. be simulated by conditioning on impact position and angle.

The most accurate generative architecture tested by [90] was the co-called bounded
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information-bottleneck autoencoder (BIB-AE) [91]. It essentially is a VAE with additional
GAN-like critic networks. A key result of this contribution was the correct description
of the single hit energy spectrum around the energy deposited by a minimally ionizing
particle (MIP). To this end, an additional post-processing network was trained to fine-tune
the output of the generative model. Further improvement of the fidelity of the generated
data was possible by including a secondary density estimation step in the latent space [54],
following the Buffer-VAE approach from [92].

Another challenge lies in simulating the more complex (compared to purely electromag-
netic showers) showers initiated by hadrons. Here, [93] considered WGAN and BIB-AE
architectures for the simulation of positively charged pions in the highly-granular Analogue
Hadron Calorimeter (AHCal). A potentially important observation was that while the
BIB-AE yielded a more accurate initial description of showers, this difference — at least for
energy response and resolution — largely vanished after processing with standard particle
flow reconstruction. This implies that, depending on the intended downstream use, also
simpler generative models might be able to capture relevant characteristics of a shower.

Looking towards the future, a number of challenges remains to be solved:

• Simultaneous simulation of different detector geometries and materials for the full
depth of a highly granular calorimeter.

• Use of non-grid-based architectures (sets, graphs) to capture the geometry of realistic
detectors (see e.g. [51])

• Multi-dimensional conditioning on energy, impact position, impact angle, and particle
type.

• Integration in generation workflows of large experimental collaborations (see e.g. [40]
for ATLAS).

• Solid treatment of the statistical properties and uncertainties of generated calorimeter
data [75,94].

Nevertheless, the large possible speed-up over alternative methods afforded by generative
models makes them a crucial tool in understanding collider data at the highest precision.

7 Differentiable Programming for Detector Simulation, De-
sign, and Inference

Differentiable programming for simulation relies on building AD-aware HEP simulation
tools. AD uses the chain rule to evaluate derivatives of a function that is represented as
a computer program. AD takes as input program code, whose derivative can be defined,
and produces new code for evaluating the program and derivatives. AD typically builds a
computational graph, or a directed acyclic graph of mathematical operations applied to an
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input. Gradients are defined for each operation of the graph, and the total gradient can
be evaluated from input to output, called forward mode, and from output to input, called
reverse mode or backpropagation in ML.

For HEP simulation tools, ideally one would not rewrite the software but instead use
AD tools which can merge easily with the existing software. For instance, recent work on
madjax [95], a differentiable matrix element generator, augments python matrix element
code generated by MadGraph [96] and merges it with JAX.

Surrogate models trained to mimic the behavior of high fidelity detector simulators can
also be used within DP pipeline. For instance, iteratively trained surrogate models of a
Geant4 magnet simulation were used for estimating gradients in a gradient descent opti-
mization of the magnet system for the SHiP experiment [97]. This optimization found more
performant and lighter weight designs for a magnetic shield. Similarly, detector surrogates
were used to model the smearing induced by detectors on jets, and subsequently to provide
gradients for gradient-based unfolding of jet distributions in [98]. Additional applications
for fast surrogate models include optimization and design of particle accelerators [99–101],
real-time feedback during commissioning and tuning of an accelerator facility [100,101], and
uncertainty quantification of simulated parameters [102,103]. These examples show the large
potential for such surrogate systems to be used in differentiable inference pipelines for tasks
beyond only data generation, see also [25].

8 Synergies and a Joint Framework for Detector Simulation

Different ideas surveyed in this document have shown promising results on individual chal-
lenges in detector simulation for HEP. One of the challenges in the future is to identify how
different ideas can be combined in a way that benefits the overall scientific community. One
of the biggest advantages of Geant4 is the flexibility the software provides, resulting in
widespread usage.

Providing a joint framework for detector simulation supports the testing and bench-
marking of new methods as an effective way to promote collaboration between researchers
and an ideal environment to keep track of new developments. This direction also streamlines
the combination of multiple methods, such as individual detector surrogates, that combined
create a full detector simulation.

Data challenges are also an effective method to build collaborations between different
scientific communities. Researchers of different backgrounds have the opportunity to discuss
and cooperate, promoting new developments. Data challenges are also a good opportunity
for transparent comparison of new algorithms. This goal is currently being pursued in
“Fast Calorimeter Simulation Challenge 2022” [104]. However, challenges by themselves
are not sufficient - resources are required for integrating tools into simulation frameworks
(experiment-independent or experiment-specific).

A joint software framework also opens the possibility for shared development between ex-
periments. Machine learning based models often require large amounts of data for training,
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restricting the number of users with access to computing centers with available resources for
large scale development.† However, in a shared software environment, large ML models can
be pre-trained in dedicated computing facilities using generic detector geometries. These
models can then be later fine-tuned to include experiment-specific information, decreasing
the computational burden required to achieve state-of-the-art results.

One of the biggest challenges of having a unified framework covering multiple exper-
imental facilities is to cope with the differences in computational resources available and
experiment-specific software. A possible solution is support for containerized images [106]
from experimental collaborations to reproduce their detector simulation routines. This
option reduces the need for experiment-specific knowledge while improving software porta-
bility.

Maintenance of the software also becomes crucial. New job positions for HEP software
development should also be promoted to ensure future usability and continuity, in order to
accelerate future generations of experiments and to ensure that legacy data and results are
still accessible.

9 Future Directions

The computational complexity required for full detector simulation in high energy physics
far exceeds the predicted resources available in future experimental facilities, requiring in-
novative strategies to accelerate the simulation process while preserving generation quality.
Surrogate models are proposed as fast alternatives to replace part of full simulation routines,
leveraging advancements in machine learning implemented in heterogeneous computing ar-
chitectures.

While realistic simulations were used in some projects, primarily studies with simpli-
fied calorimeters were used to demonstrate the feasibility of new models. These include
calorimeter geometries with a very regular structure or with a reduced amount of readout
channels, such as the ILD example described in Section 4 or CaloGAN dataset described
in Section 5. However, in a realistic detector this is not usually the case. The number of
cells can be large and the geometry irregular. For example, the ATLAS detector calorimeter
consists of 173,952 channels of variable size and shape [107], and the CMS High Granularity
calorimeter will be constructed using hexagonal wafers [87]. Additionally, during a typical
shower evolution into the calorimeter only a small portion of the cells (O(0.1%)) register a
signal, leading to a very sparse dataset. Novel data structures and neural network archi-
tectures are required to account for the properties of the data. An example is to represent
the calorimeter data in the form of a graph and use a Graph Neural Network to operate on
it [46, 51]. This approach also detaches the method from a particular geometry; data from
any type/shape of calorimeter can be converted into a universal graph data structure.

Differential programming can provide powerful new directions in simulator modeling.

†An alternative solution to this problem in the context of method development and prototyping was
recently discussed in [105].

14



Building a fully differentiable HEP simulation chain would open a realm of new schemes
for optimizing simulations, improving simulation speed, inference and design optimization
tasks, and for building physics-informed HEP-ML system that utilize the physics knowl-
edge within HEP simulation software. Dedicated automatic differentiation tools capable of
augmenting existing software, rather than requiring complete software rewrites, are needed.
New compiler-based source-translation based AD tools, such as enzyme [108] and CLAD [109],
are promising for such tasks.

Applications to realistic scenarios for all ideas will be crucial to identify current limita-
tions and future research directions. While examples in this document have shown promising
results, one needs to consider the software environment required to maintain, support, and
develop new algorithms. Maintenance of the software is imperative to ensure that algo-
rithms used within experimental collaborations are up to date with the ones available to
the wider scientific community.
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