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Abstract

The next generation of gravitational-wave detectors, conceived to begin operations in the
2030s, will probe fundamental physics with exquisite sensitivity. These observations will mea-
sure the equation of state of dense nuclear matter in the most extreme environments in the uni-
verse, reveal with exquisite fidelity the nonlinear dynamics of warped spacetime, put general
relativity to the strictest test, and perhaps use black holes as cosmic particle detectors. Achiev-
ing each of these goals will require a new generation of numerical relativity simulations that
will run at scale on the supercomputers of the 2030s to achieve the necessary accuracy, which
far exceeds the capabilities of numerical relativity and high-performance computing infras-
tructures available today.

Contents
1 Motivation 2

2 Gravitational waveform modeling 4

3 Nuclear physics and neutron stars 7

4 Modeling high-precision gravitational-wave observations 9

5 Testing gravity in the nonlinear regime 11

6 Black holes as cosmic particle detectors 12

7 Summary and future directions 12

1

ar
X

iv
:2

20
3.

08
13

9v
3 

 [
gr

-q
c]

  3
1 

M
ar

 2
02

2



Snowmass2021 Cosmic Frontier White Paper Template

8 List of Endorsers 13

1 Motivation
Gravitational waves are ripples of warped spacetime that travel at the speed of light. In 2015, a
century after Einstein predicted their existence, the Laser Interferometer Gravitational-Wave Ob-
servatory (Advanced LIGO) discovered gravitational waves from a merging binary black hole as
the waves passed through Earth [1]. Two years later, LIGO and Virgo observed gravitational waves
from merging neutron stars [2], a collision also observed by telescopes spanning the electromag-
netic spectrum [3]. These events, together with the dozens of gravitational waves that LIGO and
Virgo have observed, have inaugurated the era of gravitational-wave astronomy [4–6].

The next generation of gravitational-wave detectors will use gravitational waves from sources
throughout the cosmos to probe fundamental physics with unprecedented sensitivity, as discussed
in a separate Snowmass White Paper [7]. Proposed detectors on Earth include LIGO Voyager [8],
Cosmic Explorer [9], Einstein Telescope [10], and NEMO [11]; future ground-based gravitational-
wave facilities are described in a separate Snowmass [12]. In space, the Laser Interferometer
Space Antenna (LISA) [13], the DECi-hertz Interferometer Gravitational-wave Observatory (DE-
CIGO) [14], and TianQin [15] will observe gravitational waves at frequencies too low to ever detect
on Earth because they would be obscured by seismic noise.

Next-generation gravitational-wave detectors are anticipated to begin observations in the 2030s.
Their observations of coalescing binary neutron stars and black-hole/neutron-star binaries will
measure the equation of state of dense nuclear matter in the most extreme environments in the
universe, and their observations of gravitational waves from merging black holes—which contain
the strongest spacetime curvature in the universe—will put general relativity to the strictest tests.
These future gravitational-wave detectors might also enable observations that use black holes as
cosmic particle detectors, potentially giving new, complementary insight into the nature of dark
matter.

Accurate theoretical models of gravitational waves are critical for interpreting gravitational-
wave observations—specifically, for inferring the nature and behavior of their sources. Long be-
fore the time of coalescence, the gravitational waves from merging black holes and neutron stars
can be well modeled using the post-Newtonian approximation, which approximates general rel-
ativity in the limit of weak gravity and small velocities. Long after the time of coalescence, the
gravitational waves from a black hole remnant resulting from merging black holes and neutron
stars can be well approximated using perturbation theory. But near the time of coalescence, when
the spacetime curvature and (if present) neutron-star matter are the most nonlinear and dynamic, all
known analytic approximations break down: the emitted gravitational waves and the strong-gravity
dynamics of their source can only be calculated with numerical relativity.

Numerical relativity amounts to numerically solving the equations of general relativity or, for
simulations involving neutron stars, the equations of general relativistic radiation magnetohydro-
dynamics (fluid dynamics, magnetic fields, and radiation transport); the techniques of numerical
relativity are reviewed, e.g., in Refs. [16–20], and briefly discussed in Sec. 2. Numerical-relativity
calculations are technically challenging, in part because the equations are strongly nonlinear and,
in the presence of neutron-star matter, because the solutions contain small scale features that are
especially challenging to resolve, such as shocks, neutron-star surfaces, and turbulence. These cal-
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Figure 1: Simulated gravitational-wave detector strain measurements of gravitational waves from
two merging black holes. The signal is similar to GW150914 [1], the first directly detected grav-
itational waves. The strain is shown as a function of time for the signal superimposed on both
simulated Cosmic Explorer noise (blue) and simulated LIGO A+ noise (yellow). Taken from
Fig. 5.2 of Ref. [21].

culations are also computationally expensive, requiring high-performance computing to achieve
the necessary accuracy.

How much accuracy is enough? The answer depends on the signal-to-noise ratio of an observa-
tion: roughly speaking, avoiding any bias in gravitational-wave interpretation requires numerical
uncertainties smaller than the observation’s measurement uncertainty. The observations with the
most potential to reveal new fundamental physics are those with the highest signal-to-noise ratios—
precisely those observations that demand the most accuracy from numerical-relativity models. And
the observations with the highest signal-to-noise ratios will come from next-generation detectors:
their loudest observations will have signal-to-noise ratios in the thousands, more than an order of
magnitude beyond the strongest signals observed to date. Figure 1 illustrates this gain in sensitiv-
ity by showing two simulated gravitational-wave detections of the same gravitational-wave source,
one using an upgraded LIGO detector, and the other using Cosmic Explorer, a next-generation
detector.

Extracting information from such high-fidelity signals while limiting systematic biases will re-
quire models with an order of magnitude increase in accuracy over today’s state of the art. Achiev-
ing this accuracy will require a new generation of numerical-relativity software, designed to run
at scale on the exascale supercomputers that will be available in the 2030s. New (typically open-
source) numerical-relativity codes under development today will help meet this goal by producing
publicly available catalogs of simulated gravitational waveforms for coalescing compact binaries
(i.e., binary black holes, binary neutron stars, and black-hole/neutron-star binaries).

The rest of this whitepaper is organized as follows. Sec. 2 briefly summarizes the methods of
gravitational waveform modeling, especially numerical relativity. Then, Sec. 3 discusses progress
and challenges in applying numerical relativity to probe nuclear physics and the nature of neutron
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Figure 2: Numerical relativity waveform modeling GW150914, the first gravitational wave signal
detected by LIGO. The inset shows the black holes’ horizons during the inspiral, merger and
ringdown. Taken from Fig. 2 of Ref. [1].

stars. Sec. 4 explains in more quantitative detail the challenge that high-precision gravitational-
wave observations pose to numerical-relativity waveform modeling. In Sec. 5, we discuss the
importance of numerical-relativity waveform modeling in using gravitational-wave observations
to seek physics beyond general relativity, and in Sec. 6 we discuss numerical relativity’s role in the
possibility of using black holes as cosmic particle detectors. Finally, in Sec. 7 we present a brief
summary and discuss the future work needed to fully realize the potential of gravitational waves
as probes of fundamental physics.

2 Gravitational waveform modeling
A gravitational wave signal encodes vital information about its sources, such as the masses and
spins of the companions in a compact binary, the equation of state of dense matter if one of them
is a neutron star, and the underlying theory of gravity. These parameters are identified by using
matched filtering techniques, in which the observed signal is compared against a catalog of theoret-
ical gravitational waveform models, called templates. The templates need to accurately cover the
different phases of a binary’s evolution consisting of the inspiral, merger and ringdown illustrated
in Fig. 2.

Models of a binary’s evolution typically rely on two core methods: (i) approximations, such
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as Post-Newtonian (PN) or Post-Minkowskian expansions, that are suitable for modeling the early
inspiral of a compact binary using a weak-field and small velocity expansion; and (ii) numerical
relativity, which numerically calculates a binary’s late inspiral, merger and ringdown by solving
Einstein’s equations (or extensions of them) in the nonlinear regime. Both core methods feed into
the production of full inspiral-merger-ringdown templates using either phenomenological models
that directly combine PN and numerical relativity waveforms (e.g. [22]), effective-one-body mod-
els (e.g. [23]) that are a resummation of the PN expansion and are calibrated against numerical
relativity, or surrogate models (e.g. [24]) that directly interpolate numerical-relativity waveforms.
To ensure that the gravitational-wave interpretation is not limited by modeling errors, even as future
gravitational wave detectors achieve ten to hundred times better sensitivity than today’s detectors,
highly accurate waveform templates are crucial. In this white paper, new advances and challenges
in numerical relativity are discussed, while new developments in using scattering amplitudes and
effective field theory for gravitational-wave modeling are presented in a separate Snowmass White
Paper [25]. A more extensive review on waveform modeling for future gravitational wave detectors
can be found in the LISA Waveform Working Group White Paper [26].

Before outlining new physical applications and computational challenges below, we here give
a brief summary of the current status of numerical relativity. Numerical relativity refers to solving
Einstein’s equations, or extensions of them, possibly coupled to matter or additional fundamental
fields, in four spacetime dimensions. This typically requires high-performance computing, because
the equations form a system of more than ten coupled, nonlinear, partial differential equations
(PDEs) of mixed character. By applying a spacetime decomposition into three dimensional, spatial
hypersurfaces that are then propagated in time, the equations can be formulated as a time-evolution
problem, subject to a set of constraints. Using this approach, a numerical-relativity calculation is
divided into three stages:

1. Construction of initial data that represents the initial configuration (e.g., two compact objects
orbiting each other in equilibrium). This requires solving the constraint equations, a set
of coupled, elliptic-type PDEs in three dimensions. The bulk of contemporary numerical
relativity software uses either the Bowen-York conformal approach or the conformal thin-
sandwich method.

2. Time evolution, i.e., a binary’s development in time that is encoded in a set of coupled,
hyperbolic-type PDEs and must be complemented by suitable gauge conditions. The major-
ity of the numerical relativity codes uses either a variant of the generalized harmonic formu-
lation of Einstein’s equations together with the damped harmonic gauge [27–29] or a variant
of the Z4 [30–34] or Baumgarte-Shapiro-Shibata-Nakumara (BSSN) formulations [35, 36]
that are complemented by the moving puncture approach [37, 38].

3. Extraction of physical information such as the gravitational and additional radiation or, in
case of black hole spacetimes, the apparent horizons. Note that for modeling observations in
distant gravitational-wave detectors, the gravitational radiation must be propagated to future
null infinity (see Ref. [39] for a review), either by extrapolation [40], by evolving it, e.g.
Cauchy-Characteristic Evolution (CCE) [41], or through perturbative techniques [42], and
gauge conditions and transformations at future null infinity must be treated with care to yield
well-behaved numerical waveforms.

Since the breakthroughs in numerical relativity in 2005 [27] and 2006 [37, 38], that saw the
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Code Open Source Catalog Formulation Hydro Beyond GR
AMSS-NCKU [43–46] Yes No BSSN/Z4c No Yes
BAM [47–49] No [18] BSSN/Z4c Yes No
BAMPS [50, 51] No No GHG Yes No
COFFEE[52, 53] Yes No GCFE No Yes
Dendro-GR [54–56] Yes No BSSN/CCZ4 No Yes
Einstein Toolkit [57, 58] Yes No BSSN/Z4c Yes Yes
∗Canuda [59–62] Yes No BSSN No Yes
∗IllinoisGRMHD [63] Yes No BSSN Yes No
∗LazEv [37, 64] No [65–68] BSSN+CCZ4 No No
∗Lean [69, 70] Partially No BSSN No Yes
∗MAYA [71] No [71] BSSN No Yes
∗NRPy+ [72] Yes No BSSN Yes No
∗SphericalNR [73, 74] No No spherical BSSN Yes No
∗THC [75–77] Yes [18] BSSN/Z4c Yes No
ExaHyPE [78] Yes No CCZ4 Yes No
FIL[79] No No BSSN/Z4c/CCZ4 Yes No
FUKA [80, 81] Yes No XCTS Yes No
GR-Athena++ [82] Yes No Z4c Yes No
GRChombo [83–85] Yes No BSSN+CCZ4 No Yes
HAD [86–88] No No CCZ4 Yes Yes
Illinois GRMHD [89, 90] No Yes BSSN Yes No
MANGA/NRPy+ [91] Partially No BSSN Yes No
MHDuet [92, 93] No No CCZ4 Yes Yes
SACRA-MPI [94] No BSSN+Z4c Yes No
SpEC [95, 96] No [96, 97] GHG Yes Yes
SpECTRE [98, 99] Yes No GHG Yes No
SPHINCS BSSN [100] No BSSN SPH No

Table 1: List of numerical relativity codes. We indicate if a code is open-source, if it has been used
to produce gravitational waveform catalogs, the formulation of Einstein’s equation used (GHG:
generalized harmonic, BSSN: Baumgarte-Shapiro-Shibata-Nakamura, CCZ4 / Z4c variants of the
Z4 formulation, GCFE: generalised conformal field equations ), if a code implements general rela-
tivistic hydrodynamics, and if it is capable to simulate compact binaries beyond general relativity.
An asterisk indicates codes that are either (partially) based on the open-source Einstein Toolkit or
are co-funded by its grant. Credit: Deidre Shoemaker; taken from Ref. [26].
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very first simulations of the last orbits of a black hole binary and its merger, the field has matured
into a state-of-the-art tool to investigate extreme gravity. A large variety of numerical relativity
cyberinfrastructures for computational astrophysics is available. In Table 1, we present a list of
currently available numerical-relativity software, indicating for each if it is open-source, the for-
mulation of Einstein’s equations used, if it is capable of performing general relativistic hydrody-
namics simulations (and not just vacuum simulations), and if it is capable to perform simulations
in alternative theories of gravity. This list is adapted from the LISA Waveform Working Group
White Paper [26].

A number of the numerical relativity codes (collaborations) have constructed catalogs of sim-
ulated gravitational waveforms as indicated in Table 1. For black-hole binaries, the combined
catalogs contain more than 5, 700 waveforms that cover mass ratios q = m1/m2 = 1, . . . , 15 up
to q = 128, where m1 (m2) is the mass of the heavier (lighter) black hole, and spins magnitudes
up to 0.998 [65–68, 71, 96, 101, 102]. There are also the first numerical relativity waveform
catalogs for binary neutron stars [18], and a recent study [103] used head-on collisions (in which
the black holes begin at rest) to demonstrate that numerical-relativity techniques can in principle
model gravitational-wave emission at mass ratios as high as 1000.

Given the wealth of available simulations, what future development is needed? The answer is
two-fold and concerns the waveform accuracy as well as the physics included in the models. Each
of these items will be discussed in detail in the following sections.

3 Nuclear physics and neutron stars
When two neutron stars, or a black hole and a neutron star, coalesce, they emit gravitational waves
that encode the behavior of the densest matter in the universe. The cold cores of neutron stars are
expected to have densities ρ ∼ 1015 g/cm3. In that regime, the strength of nuclear interactions
between densely packed particles is uncertain, and even the composition of the core is unknown.
The properties of dense matter are however tightly correlated with the size of neutron stars, their
maximum mass, and their response to external gravitational fields. Dense matter’s presence in a
merging binary, as a finite size object distorted by the gravitational field of its companion, leads
to more gravitational wave emission than for black hole binaries and a faster evolution towards
merger [104–111]. The size of a neutron star also determines if and when it can be tidally dis-
rupted by a black hole companion (for black hole-neutron star binaries) and when two neutron
stars collide and merge (for neutron star-neutron star binaries) [112–115]. Finally, the post-merger
evolution of a neutron star-neutron star binary is strongly impacted by the properties of dense mat-
ter: unknown nuclear physics determines whether the remnant collapses to a black hole, as well as
the frequency of post-merger gravitational waves driven by oscillations in the remnant [116–132].
Recovering this information from gravitational-wave observations requires an accurate theoretical
understanding of the emitted waves and thus high-accuracy numerical relativity simulations.

These simulations are challenging and expensive, yet they must be sufficiently accurate to avoid
introducing systematic biases into the interpretation of gravitational-wave observations. The accu-
racy required (cf. Sec. 4) increases with the square of the observation’s signal-to-noise ratio [133].
The first (and loudest) gravitational wave observation from coalescing binary neutron stars to date,
GW170817 [2], had a signal-to-noise ratio (SNR) ∼ 30. Recent studies [134–136] find that
systematic uncertainties from inaccurate waveform models would be substantial at SNRs & 70,
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which could be achieved if a signal as loud as GW170817 were observed in current-generation
detectors when they achieve their design sensitivities. The tremendous sensitivity gains that fu-
ture gravitational-wave detector concepts [8–10] would achieve means that they would observe a
GW170817-like signal with an SNR in the thousands [137], requiring vastly more accurate theo-
retical waveform models.

Simulations modeling the tidal response of the neutron stars during the last stages of the inspiral
need to decrease their phase errors by more than two orders of magnitude. With current simulation
technology, this is expected to require the grid resolution to be decreased by at least a factor 10
compared to the highest resolution simulations available to date [138, 139] (assuming second order
convergence), leading to a∼ 104 increase in computational cost. Even if numerical relativity codes
could scale efficiently to millions of CPU cores, a single simulation would still require several years
to complete and tens of billions of CPU hours.

Neutron star mergers also power bright electromagnetic counterparts that carry additional in-
formation about the merging objects, including the properties of dense matter. Neutron-rich matter
ejected during and after merger undergoes r-process nucleosynthesis, making neutron star mergers
one of the lead candidates for the production site of r-process elements [140]. The radioactive
decay of the ashes of the r-process powers kilonovae, UV/optical/infrared transients observable
days to weeks after the merger [141–143]. Some neutron star mergers also result in the formation
of massive accretion disks around a compact object that power narrow jets of highly-relativistic
material observed from Earth as short gamma-ray bursts [144–146]. Both types of signals were
observed following the first neutron star merger detection (GW170817) [147]. Numerical simula-
tions are required to understand which mergers power electromagnetic signals and to connect the
observable properties of these signals to the properties of the merging compact objects and to the
equation of state of dense matter.

Simulations aiming to model the post-merger gravitational wave signal of neutron star bina-
ries and to study their electromagnetic counterparts face the additional challenge of having to re-
solve high Reynolds number magneto-hydrodynamics turbulence and to model complex neutrino-
radiation effects, which might impact the postmerger gravitational wave signal and will certainly
impact the electromagnetic counterparts and nucleosynthesis yields of these events [125]. Ex-
tremely strong magnetic fields (∼ 1016G) are likely grown from small scale magneto-hydrodynamics
instabilities in neutron star mergers, and even the highest resolution simulations performed to date
(with grid spacing an order of magnitude smaller than what is typically affordable with current
codes) have not been able to converge to a well-defined answer for the post-merger magnetic
field [148]. As magnetic fields are likely a crucial ingredient in the production of short gamma-ray
bursts [149–151] and in the ejection of the material producing r-process elements and kilono-
vae [151, 152], this represents a major limitation in our ability to model these systems. Neutrino-
matter interactions are less important to the dynamics of the post-merger remnant, but they play
a major role in setting the composition (neutron-richness) of matter outflows, which largely de-
termines the outcome of r-process nucleosynthesis [153]. Properly including all relevant neutrino
processes is a daunting challenge. At the very least, we will need to solve the 7-dimensional
transport equations; but even that may not be enough. For example, neutrino oscillations due
to fast-flavor instabilities may significantly impact the composition of matter outflows [154] and
can only be captured by evolving the quantum kinetics equations with grid resolution orders of
magnitude smaller than what is used in merger simulations.

A direct approach using current codes and numerical methods cannot be successful. Instead,
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the numerical relativity community will need to develop more accurate numerical schemes to
model tidally interacting neutron stars, sophisticated algorithms for neutrino-radiation hydrody-
namics, and subgrid turbulence models. First steps in these directions have been made [76, 98,
155–157], but significant more work needs to be done in preparation for next-generation grav-
itational wave experiments. Several next-generation numerical relativity code are currently in
development, employing novel methods that will enable high accuracy and performance on the
supercomputers that will be available in the next decade (e.g. [82, 98, 155]), but none of them have
yet matured to the point where they can calculate gravitational waves or electromagnetic signals
from merging neutron-star binaries.

4 Modeling high-precision gravitational-wave observations
The next generation of gravitational-wave detectors on Earth and in space will yield observations
of coalescing binary black holes with signal-to-noise ratios in the thousands, enabling high-fidelity
observation of the behavior of the curved spacetime near stellar-mass black-hole horizons, the
most strongly curved spacetime known. Gravitational wave signals will be so plentiful they will
sometimes overlap.

As they have for current observations [2, 158, 159], numerical-relativity simulations will play
crucial roles in the detection and interpretation of gravitational waves from merging black holes
and neutron stars. In particular, waveforms from these simulations have been used to construct and
validate approximate, phenomenological models necessary for interpreting observations (since nu-
merical relativity is too costly to produce every model waveform needed) [158, 160–164], have
featured in direct analysis of observations [165], and have helped validate our methods for detect-
ing faint gravitational waves in detector data [166].

But to model high-precision observations, numerical-relativity calculations will have to be sig-
nificantly more accurate than today’s state of the art. Qualitatively, the increase in accuracy is
necessary to ensure that numerical errors are smaller than experimental uncertainty given the much
lower noise level that next-generation gravitational-wave detectors will achieve (cf. Fig. 3). Sec-
tion 4 of Ref. [96] gives a quantitative estimate of how much the accuracy must improve in terms
of the improvement in signal to noise ratio, based on a sufficient condition [133, 167–169] for
a model waveform and an observed gravitational waveform to be indistinguishable. Specifically,
two gravitational waveforms are indistinguishable if their mismatch M (a noise-weighted inner
product, defined, e.g., by Eq. (24) of Ref. [96]) is no larger than an amount proportional to the
inverse square of the signal-to-noise ratio ρ: M < D/ (2ρ2), where D is a constant that depends
on the number of parameters needed to specify the gravitational waveform (e.g., in Ref. [96], for
binary-black-hole waveforms, D = 8). Thus the accuracy required scales as the square of the
signal-to-noise ratio ρ.

With today’s detectors, the loudest gravitational waves from binary black holes have ρ ∼ 24,
whereas future detectors will observe binary black holes with ρ in the thousands. The estimate in
the previous paragraph suggests that future detectors will demand more than an order of magnitude
more accuracy from numerical-relativity codes, even for modeling binary black holes (a less chal-
lenging case than the case of simulations involving dense matter, cf. Sec. 3). Studies using more
sophisticated variants of the estimate sketched in the previous paragraph [170, 171] give compa-
rable conclusions: numerical-relativity waveforms will need to be significantly more sensitive to
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Figure 3: Predicted waveform accuracy for current second generation and future third generation
detectors. The mismatch between the waveform models is shown as a function of the detector
signal-to-noise ratio (SNR). Solid lines indicate results for pure numerical-relativity simulated
signals, while dashed lines come from numerical-relativity signals extended (“hybridized”) with
post-Newtonian (PN) waveforms in the inspiral. The blue lines and data points show how the
mismatch falls with rising SNR. Horizontal red lines show the mismatch of the signal against the
IMRPhenomPv2 phenomenological template waveform at the signal parameters for LIGO’s design
sensitivity. Taken from Fig. 2 of Ref. [170].
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avoid introducing bias into interpretation of high-precision gravitational-wave observations.

5 Testing gravity in the nonlinear regime
A consistent theory of quantum gravity is a major goal of modern physics. General relativity (GR)
itself is not consistent with quantum mechanics, because it breaks down at high-energy scales: it is
non-renormalizable and exhibits physical singularities, such as those inside black holes and at the
big bang. Candidate quantum-gravity theories include well-motivated extensions of GR, typically
involving additional fields, higher curvature corrections, or symmetry breaking [172–176].

Studies focusing on the formation or evolution of single black holes were considered in Lorentz-
violating theories [177, 178], massive gravity [179–184], quadratic gravity [185–194], or higher
curvature effective theories [195]. These have shown that black holes may develop scalar hair
during their collapse, e.g., if described in quadratic and higher derivative gravity. In contrast,
in scalar-tensor theories it is neutron stars that can develop a scalar hair, while black holes may
remain the same as their general-relativistic counterparts. Given the extended phase-space of al-
lowed, possibly hairy solutions one might expect new signatures during the inspiral, merger and
ringdown such as additional (scalar) radiation channels, a phase-shift of the gravitational wave
emission as compared to the GR signal or new nonlinear effects during the merger.

The nonlinear regime of gravity that unfolds during the collision of compact objects is a par-
ticularly promising target to probe for extensions of GR, both because new phenomena are ex-
pected to be most prominent in that case [196] and because candidate theories can be confronted
with gravitational-wave observations [172, 175, 197–199]. However, current gravitational-wave
based tests of gravity have either been limited to the weak-field regime or to null-tests against
GR, because complete inspiral-merger-ringdown waveform models that capture these truly non-
linear beyond-GR effects are lacking. Numerical relativity has produced first proof-of-principle
simulations beyond GR in scalar-tensor theories [70, 200–203], Einstein-Maxwell-Dilaton mod-
els [204, 205], cubic Horndeski theories [206], effect field theories for dark energy, namely k-
essence [207–209], dynamical Chern-Simons gravity [210–212], or scalar Gauss-Bonnet grav-
ity [62, 213–216]. A second body of work has studied the nonlinear dynamics of black-hole
mimickers such as boson stars [217–227]. The effect of fluctuations near black holes’ horizons,
mimicking for example microstate geometries, was modelled in Ref. [228].

An important difficulty when attempting simulations of binary mergers in beyond-GR theories
is to devise mathematically well-posed and numerically stable formulations of the evolution equa-
tions. The development of formulations of Einstein’s equations amenable to numerical simulations
took decades to come to fruition [27, 35, 36, 229–231], and repeating that work for every possible
theory of gravity beyond general relativity is a daunting task. For Brans-Dicke type scalar ten-
sor theories it was proven that the resulting time evolution equations are indeed well-posed [232].
More general scalar tensor theories of the Horndeski class can be cast in well-posed form if they
are complemented with a modified generalized harmonic gauge as long as coupling parameters
remain small [233]. Other theories for which hyperbolic formulations are available include f(R)
gravity [234], or Einstein-Aether theory [235]. On the other hand, there are a number of grav-
ity theories that involve higher derivative terms that lead to (Ostrogradski) ghost instabilities and
ill-posed evolution equations if they are treated as a complete theory. For example, this has been
shown for dynamical Chern-Simons gravity, and one “cure” is to treat it as an effective field the-
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ory [236]. Another remedy, proposed in Refs. [237, 238], and tested for a sixth-order model
in [239], is a reformulation of the evolution equations in the spirit of Israel-Stewart theory for
hydrodynamics.

Therefore, existing beyond-GR simulations have so far mainly focused on theories that can be
recast as the evolution of a scalar or vector field coupled to the usual equations of general relativity
(scalar-tensor, Maxwell-dilaton, boson stars), or on treating beyond-GR effects perturbatively [62,
210, 212–214]. That said, the calculations in the decoupling limit have already identified new
dynamical effects that have been missed with weak-field approximations. This includes burst of
scalar radiation during the merger of black holes in dynamical Chern-Simons gravity [210] or
dynamical scalarization and descalarization of black holes in scalar Gauss-Bonnet gravity [214].
The gravitational waveform typically exhibits a phase-shift, compared to the vacuum GR case, due
to additional radiation channels [62, 213, 216].

Enabling high precision tests of gravity and searches for signatures of new physics will likely
require innovative theoretical avenues to devise well-posed formulations of beyond-GR theories,
and their application to creating high-precision catalogs of simulated waveforms.

6 Black holes as cosmic particle detectors
Although dark matter makes up more than 80% of all matter in the universe, its nature, com-
position and properties have remained elusive. Black holes might shed light on the dark mat-
ter question and also ultralight beyond-standard model particles in general. Massive bosonic
fields scattering off rotating black holes might form condensates around them if the fields’ Comp-
ton wavelength is comparable to the black holes’ size [240–242]. That is, astrophysical black
holes in the mass range 5M� . . . 10

10M� are sensitive to ultralight particles in the mass range
10−21eV . . . 10−8eV [240, 241, 243]. This range includes popular dark matter candidates [244],
the QCD axion [245] and axion-like particles of the string axiverse [246], as well as higher-spin
fields such as vector fields [61, 243, 247–251] or massive spin-2 fields [252]; see also the compan-
ion Snowmass White Paper [7].

Because the underlying phenomenon of black hole superradiance only relies on gravitational
interactions, it facilitates searches for new particles independently from their specific coupling to
the standard model and thus complements traditional collider physics or direct detection exper-
iments. The single black hole scenario has been studied extensively, and there are first compu-
tations of binary black-hole systems in the weak-field regime [253–255], for extreme mass ratio
inspirals [256–258] and in the fully nonlinear regime modeling the last orbit before merger, the
merger and ringdown [259]. How these light fields impact the nonlinear dynamics of the late
inspiral and coalescence of black-hole binaries endowed with scalar condensates and what its ob-
servational signatures are remain open questions. Addressing them will enable gravitational-wave
based searches for new particles but will require significant advances in numerical relativity.

7 Summary and future directions
The next generation of gravitational-wave detectors will probe fundamental physics with exquisite
sensitivity. Observations with far higher signal-to-noise ratios than the loudest gravitational waves
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observed to date will use neutron-star mergers to probe the nuclear physics of dense matter, use
the loudest observations of binary black holes to seek physics beyond general relativity, and will
perhaps enable a search for new particles that complements existing experimental searches.

Realizing these goals will require model waveforms that will rely on a new generation of
numerical-relativity codes capable of achieving dramatically improved accuracy. These codes will
need to use novel techniques (such as task-based parallelism) that enable them to scale to make
effective use of the exascale computing resources expected to be available in the coming decade.
Active development of such codes is already underway. Examples of next-generation numerical-
relativity codes include NMesh [260], Dendro-GR [54], GR-Athena++ [82], bamps [50], GR-
Chombo [83, 84] and SpECTRE [261].

Future studies will need to determine (more precisely than estimates such as in Refs. [170,
171]) how the challenges of extremely high signal-to-noise ratios and overlapping signals will
impact the accuracy required to prevent numerical-relativity simulations from biasing the interpre-
tation of next-generation gravitational-wave observations. One approach to such a study would
be to use numerical-relativity simulations to create simulated gravitational-wave detections and
then checking how much inaccuracies in model waveforms used to interpret those signals bias the
inferred properties.

These calculations will require significant computational resources to complete. A typical
numerical-relativity model waveform today typically require weeks to months of runtime on tens
to thousands of compute cores. Future waveforms will require additional computational cost, in
part because of higher accuracy requirements (which will require higher resolution) and in part be-
cause future detectors will have more sensitivity at lower frequencies, so that simulations will have
to be much longer to span the detectors’ sensitive frequency spaces. And many simulations will
be necessary to span the parameter space of potential signals. Binary-black-hole waveforms, for
instance, are characterized by at least 7 parameters (the mass ratio and the black-hole spin angular
momenta); even spanning this space requires thousands of simulations (for instance, choosing 3
distinct possible values for each parameter would yield 37 ≈ 2, 000 simulations). Simulations in-
volving neutron stars depend on even more parameters, including the parameters characterizing the
(not yet well understood) neutron-star matter’s equation of state. Simulations in theories beyond
general relativity also introduce additional parameters.

By meeting the challenges ahead, numerical relativity will play a crucial role in realizing the
science goals of future gravitational-wave observatories, by enabling accurate, unbiased interpre-
tations of their high-fidelity observations.
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[161] Alejandro Bohé et al. Improved effective-one-body model of spinning, nonprecessing binary
black holes for the era of gravitational-wave astrophysics with advanced detectors. Phys.
Rev. D, 95(4):044028, 2017.

[162] Sebastian Khan, Sascha Husa, Mark Hannam, Frank Ohme, Michael Pürrer, Xisco
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